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Abstract. In this paper, we consider a classification problem for continuous fractional binary operations on
K, where K denotes the real field R or the complex field C. We first show that there exist exactly two continuous
fractional binary operations on R up to isomorphism. In the complex case, we describe completely all continuous
fractional binary operations on C in terms of ordinary fraction. Applying this description, we give a partial solution
to the classification problem in the complex case. Moreover we show that there exist exactly two homogeneous
cancellative binary operations on K up to isomorphism.

1. Introduction

Recently S. Saitoh gave the formal identities 100/0=0 and 0/0=0 by the concept of
Tikhonov regularization using the theory of reproducing kernels. Also he asked whether there
exist some real examples supporting the above results (cf. [1, 2]). Actually take two real
numbers a, b arbitrarily. For any positive number t ,

xt = ab

t + b2

is a value which minimizes the Tikhonov function tx2+(bx−a)2. This is called the fractional
in the sense of Tikhonov. Put

S(a, b) = lim
t→+0

xt .

Then we have

S(a, b) =
{
a/b (b �= 0) ,
0 (b = 0) .

We call S(a, b) Saitoh’s fraction. Of course we can consider Saitoh’s fraction in the complex
case.
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In this paper, inspired by his idea, we investigate the continuous fractional binary opera-
tions on K (see the next section for the definition). Here K denotes the field R of real numbers
or the field C of complex numbers.

In fact our purpose is to classify all continuous fractional binary operations on K. We
first show that there exist exactly two continuous fractional binary operations on R up to
isomorphism (see Theorem 1). In the complex case, we completely describe all continuous
fractional binary operations on C in terms of ordinary fraction (see Theorem 2). Applying this
description, we give a partial solution to the classification problem in the complex case (see
Theorems 3 and 4). Moreover we show that there exist exactly two homogeneous cancellative
binary operations on K up to isomorphism (see Theorem 5).

2. Preliminary and main results

Let ∗ be a binary operation on K. We say that ∗ is fractional if

(a + b) ∗ c = (a ∗ c)+ (b ∗ c) (distribution)

and

(ax) ∗ (bx) = a ∗ b (cancellation)

for all a, b, c, x ∈ K with x �= 0. Also we say that ∗ is continuous if the map : x �→ x ∗ b is
continuous on K for each b ∈ K. Moreover we say that ∗ is homogeneous if

(ab) ∗ c = a(b ∗ c)
for all a, b, c ∈ K. Of course, the binary operation ∗ on K defined by a ∗ b = 0 (a, b ∈ K)
is continuous, fractional and homogeneous. Such a binary operation is said to be trivial. Let
CF(K) be the set of all continuous fractional binary operations on K. For two operations
∗, ◦ ∈ CF(K) we say that ∗ is isomorphic to ◦ (simply ∗ ∼= ◦) if there exists a homeomor-
phism f : K → K such that

f (a ∗ b) = f (a) ◦ f (b)
holds for all a, b ∈ K. Clearly “∼=” is an equivalent relation on CF(K). We hope to classify
all continuous fractional binary operations on K modulo “∼=”.

The first classification result is the following theorem which asserts that there exist ex-
actly two continuous fractional binary operations on R up to isomorphism.

THEOREM 1. All nontrivial continuous fractional binary operations on R are isomor-
phic to Saitoh’s fraction on R.

For the complex case, we can completely describe all continuous fractional binary oper-
ations on C in terms of ordinary fraction as follows:
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THEOREM 2. If ∗ is a continuous fractional binary operation on C, then there exist
two unique complex numbers α and β such that

(1) z ∗ w =
{
αRe z

w
+ iβ Im z

w
(w �= 0)

0 (w = 0) ,

for all z,w ∈ C. Conversely, the binary operation given by (1) is a continuous fractional
binary operation on C.

We denote by ∗(α,β) the binary operation defined by (1). Then the map

Φ : (α, β) �→ ∗(α,β)
is a bijection from C2 to CF(C).

REMARK. Φ(0, 0) is the trivial fractional binary operation on C. Also Φ(1, 1) is just
Saitoh’s fraction on C.

Let Ĉ = C ∪ {∞} and put

Lγ =
{ {(α, β) ∈ C2 \ {(0, 0)} : β = αγ } (γ ∈ C)

{(α, β) ∈ C2 \ {(0, 0)} : α = 0} (γ = ∞) .

Then we have

C2 = {(0, 0)} ∪
⋃
γ∈Ĉ

Lγ (disjoint union) .

The following two theorems give a partial solution to the classification problem in the complex
case.

THEOREM 3. For each γ ∈ Ĉ, it holds that Φ(α, β) ∼= Φ(α′, β ′) for all
(α, β), (α′, β ′) ∈ Lγ .

THEOREM 4. (i) Φ(0, 0) is not isomorphic to any nontrivial continuous fractional
binary operation on C.

(ii) If γ = 0 or ∞ and γ ′ ∈ C \ {0}, then Φ(α, β) � Φ(α′, β ′) for each (α, β) ∈ Lγ

and (α′, β ′) ∈ Lγ ′ with Reα′β ′ �= 0.

(iii) Φ(α, β) � Φ(α′, β ′) for each (α, β) ∈ L0 and (α′, β ′) ∈ L∞.
(iv) Let α, β ∈ C \ {0}. Then Φ(α, β) ∼= Φ(1, 1) if and only if α = β.

REMARK. (a) By (ii) and (iv), we have that if γ ∈ Ĉ \ {1}, then Φ(α, β) � Φ(α′, β ′)
for each (α, β) ∈ L1 and (α′, β ′) ∈ Lγ . However we do not know whether Φ(α, β) ∼=
Φ(α′, β ′) or not for each (α, β) ∈ Lγ and (α′, β ′) ∈ Lγ ′ when γ, γ ′ ∈ Ĉ \ {1} and γ �= γ ′.

(b) If the function x �→ 1 ∗ x is continuous at x = 0, then ∗ is trivial.

The last classification result is the following theorem which asserts that there exist ex-
actly two homogeneous cancellative binary operations on K up to isomorphism.
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THEOREM 5. All nontrivial homogeneous cancellative binary operations on K are
isomorphic to Saitoh’s fraction on K.

3. Proof of main results

I. PROOF OF THEOREM 1. Let ∗ be a nontrivial continuous fractional binary opera-
tion on R. For each b ∈ R, put

R(x) = x ∗ b (x ∈ R) .

Since R is a continuous additive map from R to itself, we can find a unique real number ϕ(b)
such that R(x) = xϕ(b) for all x ∈ R. Therefore we have

a ∗ b = aϕ(b)

for all a, b ∈ R. So ∗ is necessarily homogeneous. Take a, b ∈ R with b �= 0 arbitrarily. Put
e = 1 ∗ 1. Since ∗ is cancellative, it follows that

a ∗ b = aϕ(b) = abϕ(b)

b
= a(b ∗ b)

b
= a(1 ∗ 1)

b
= ae

b
.

Also since ∗ is cancellative and homogeneous, it follows that

a ∗ 0 = (2a) ∗ 0 = 2(a ∗ 0) ,

and hence a ∗ 0 = 0. Therefore we have

a ∗ b =
{
ae
b

(b �= 0)
0 (b = 0) .

Since ∗ is nontrivial, it follows that e �= 0. Define

f (x) = x

e

for each x ∈ R. Then f is a homeomorphism from R to itself. Take a, b ∈ R arbitrarily. If
b �= 0, then f (b) �= 0, and hence

f (a ∗ b) = f

(
ae

b

)
= 1

e

ae

b
= a

b
= a/e

b/e
= S(f (a), f (b)) .

If b = 0, then

f (a ∗ b) = f (0) = 0 = S(f (a), 0) = S(f (a), f (0)) = S(f (a), f (b)) .

Consequently, ∗ is isomorphic to Saitoh’s fraction on R. �
II. PROOF OF THEOREM 2. We need the following lemma. It seems that this lemma

is a known result, but we give a proof for the sake of completeness.
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LEMMA 1. If ϕ is a continuous additive map from C to itself, then it is mixed-linear,
that is, there exist two unique complex numbers α and β such that ϕ(z) = αz + βz for all
z ∈ C.

PROOF. Let ϕ be a continuous additive map from C to itself. Put

u(x) = Re ϕ(x) and v(x) = Imϕ(x)

for each x ∈ R. Then

ϕ(x + y) = u(x + y)+ iv(x + y)

and

ϕ(x)+ ϕ(y) = u(x)+ iv(x)+ u(y)+ iv(y)

= u(x)+ u(y)+ i(v(x)+ v(y))

for all x, y ∈ R. Since ϕ(x + y) = ϕ(x)+ ϕ(y) (x, y ∈ R), it follows that

u(x + y) = u(x)+ u(y) and v(x + y) = v(x)+ v(y)

hold for all x, y ∈ R. Then both u and v are continuous additive real-valued functions on
R. This implies easily that u(x) = ax and v(x) = bx for all real numbers x and some real
numbers a, b. We next put

u′(x) = Re ϕ(ix) and v′(x) = Imϕ(ix)

for each x ∈ R. Then

ϕ(i(x + y)) = u′(x + y)+ iv′(x + y)

and

ϕ(ix)+ ϕ(iy) = u′(x)+ iv′(x)+ u′(y)+ iv′(y)

= u′(x)+ u′(y)+ i(v′(x)+ v′(y))

for all x, y ∈ R. Since ϕ(i(x + y)) = ϕ(ix)+ ϕ(iy) (x, y ∈ R), it follows that

u′(x + y) = u′(x)+ u′(y) and v′(x + y) = v′(x)+ v′(y)

hold for all x, y ∈ R. Then both u′ and v′ are also continuous additive real-valued functions
on R. This implies easily that u′(x) = cx and v′(x) = dx for all real numbers x and some
real numbers c, d . Therefore

ϕ(z) = ϕ(x + iy)

= ϕ(x)+ ϕ(iy)

= ax + ibx + cy + idy

= (a + ib)Re z+ (c + id)Im z
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holds for all z = x + iy ∈ C. Put

α = a + ib

2
+ c + id

2i
and β = a + ib

2
− c + id

2i
.

Then we have from the above equation that ϕ(z) = αz + βz for all z ∈ C. Moreover it will
be clear that such α and β are unique. �

Let ∗ be a continuous fractional binary operation on C. For each w ∈ C, put

f (z) = z ∗ w (z ∈ C) .

Since f is a continuous additive map from C to itself, it follows from Lemma 1 that there
exist two unique complex numbers ϕ(w) and ψ(w) such that f (z) = zϕ(w)+ zψ(w) for all
z ∈ C. Therefore

(2) z ∗ w = zϕ(w)+ zψ(w)

holds for all z,w ∈ C. Hence we have

(3) (rz) ∗ w = r(z ∗ w)
for all r ∈ R and z,w ∈ C. Put

α = 1 ∗ 1 and β = i ∗ 1

i
.

If x is a nonzero real number, we have from (2) that

α = 1 ∗ 1 = x ∗ x = xϕ(x)+ xψ(x) = x(ϕ(x)+ ψ(x))

holds because ∗ is cancellative. Then

(4) ϕ(x)+ ψ(x) = α

x

holds for all x ∈ R \ {0}. Similarly we have that if x is a nonzero real number, then

iβ = i ∗ 1 = (xi) ∗ x = xiϕ(x)+ xiψ(x) = xiϕ(x)− xiψ(x)

holds. Then

(5) ϕ(x)− ψ(x) = β

x

holds for all x ∈ R \ {0}. Therefore we have from (4) and (5) that

(6)

{
ϕ(x) = α+β

2x

ψ(x) = α−β
2x

holds for all x ∈ R \ {0}. Then we have from (2) and (6) that

(7) x ∗ y = xϕ(y)+ xψ(y) = x(α + β)

2y
+ x(α − β)

2y
= xα

y
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holds for all x, y ∈ R with y �= 0. Note that

(8) i ∗ x = i

x
∗ x
x

= i

x
∗ 1 = 1

x
(i ∗ 1) = iβ

x

holds for all x ∈ R \ {0}. If a, b ∈ R with a2 + b2 �= 0, then we have from (3), (7) and (8)
that

i ∗ (a + ib) = ((a − ib)i) ∗ (a2 + b2)

= (b + ia) ∗ (a2 + b2)

= b ∗ (a2 + b2)+ (ai) ∗ (a2 + b2)

= bα

a2 + b2 + aiβ

a2 + b2

= bα + aiβ

a2 + b2

and

1 ∗ (a + ib) = (a − ib) ∗ (a2 + b2)

= a ∗ (a2 + b2)− b(i ∗ (a2 + b2))

= aα

a2 + b2
− biβ

a2 + b2

= aα − biβ

a2 + b2
.

Therefore if z = a + ib,w = c + id �= 0, then

z ∗ w = a(1 ∗w)+ b(i ∗w)

= a(cα − diβ)

c2 + d2 + b(dα + ciβ)

c2 + d2

= (ac + bd)α + (bc− ad)iβ

c2 + d2

= α Re (zw)+ iβ Im (zw)

|w|2

= α Re

(
zw

|w|2
)

+ iβ Im

(
zw

|w|2
)

= α Re

(
z

w

)
+ iβ Im

(
z

w

)
.

Moreover since ∗ is cancellative, it follows from (3) that

z ∗ 0 = 0
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holds for all z ∈ C as observed in the proof of Theorem 1. Hence we have

z ∗ w =
{
α Re

(
z
w

) + iβ Im
(
z
w

)
(w �= 0)

0 (w = 0) .

To show the uniqueness of α and β, suppose that

α Re

(
z

w

)
+ iβ Im

(
z

w

)
= α′ Re

(
z

w

)
+ iβ ′ Im

(
z

w

)

holds for all z,w ∈ C with w �= 0. Taking z = w = 1 in the above equation, we have α = α′.
Also taking z = i and w = 1 in the above equation, we have iβ = iβ ′ and hence β = β ′.
Then α and β are unique. �

III. PROOF OF THEOREM 3. Let γ ∈ Ĉ and (α, β), (α′, β ′) ∈ Lγ . Then we must
show that Φ(α, β) ∼= Φ(α′, β ′). Note that β = αγ and β ′ = α′γ .

(a) The case where γ ∈ C \ {0}. Note that α �= 0, β �= 0, α′ �= 0 and β ′ �= 0. Then we
have

β

α
= β ′

α′ .

Put

λ = α′

α
= β ′

β

and

f (z) = λz

for each z ∈ C. Then f is a homeomorphism from C to itself and

f (z ∗(α,β) w) = λ

(
αRe

z

w
+ iβ Im

z

w

)

= α′ Re
z

w
+ iβ ′ Im

z

w

= α′ Re
f (z)

f (w)
+ iβ ′ Im

f (z)

f (w)

= f (z) ∗(α′,β ′) f (w)

for all z,w ∈ C with w �= 0. Moreover we have

f (z ∗(α,β) 0) = f (0) = 0 = f (z) ∗(α′,β ′) 0 = f (z) ∗(α′,β ′) f (0)

for all z ∈ C. Consequently we obtain Φ(α, β) ∼= Φ(α′, β ′).
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(b) The case where γ = 0. Note that β = β ′ = 0 and α �= 0, α′ �= 0. Put

f (z) = α

α′ z

for each z ∈ C. Then f is a homeomorphism from C to itself and

f (z ∗(α′,β ′) w) = α

α′ (z ∗(α′,β ′) w) = α

α′ α
′Re

z

w
= αRe

α
α′ z
α
α′w

= αRe
f (z)

f (w)
= f (z) ∗(α,β) f (w)

holds for all z,w ∈ C with w �= 0. Moreover we have

f (z ∗(α′,β ′) 0) = f (0) = 0 = f (z) ∗(α,β) 0 = f (z) ∗(α,β) f (0)
holds for all z ∈ C. Consequently we obtain Φ(α, β) ∼= Φ(α′, β ′).

(c) The case where γ = ∞. Note that α = α′ = 0 and β �= 0, β ′ �= 0. Put

f (z) = β

β ′ z

for each z ∈ C. Then f is a homeomorphism from C to itself and

f (z ∗(α′,β ′) w) = β

β ′ (z ∗(α′,β ′) w) = β

β ′β
′i Im

z

w
= βi Im

β
β ′ z
β
β ′w

= βi Im
f (z)

f (w)
= f (z) ∗(α,β) f (w)

holds for all z,w ∈ C with w �= 0. Moreover we have

f (z ∗(α′,β ′) 0) = f (0) = 0 = f (z) ∗(α,β) 0 = f (z) ∗(α,β) f (0)
holds for all z ∈ C. Consequently we obtain Φ(α, β) ∼= Φ(α′, β ′). �

IV. PROOF OF THEOREM 4. Let α, β, α′, β ′ ∈ C and suppose that Φ(α, β) ∼=
Φ(α′, β ′). Let f be a corresponding homeomorphism from C to itself. Then

(9) f (z ∗(α, β) w) = f (z) ∗(α′, β ′) f (w)

holds for all z,w ∈ C. In this case we have

(10) f (0) = 0 .

Actually since f is bijective, we can choose a z0 ∈ C with f (z0) = 0. Taking z = z0 and
w = 0 in (9), we have f (0) = f (z0) ∗(α′, β ′) f (0) = 0 ∗(α′, β ′) f (0) = 0.
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By (9), (10) and Theorem 2, we have

(11) f

(
α Re

z

w
+ iβ Im

z

w

)
= α′ Re

f (z)

f (w)
+ iβ ′ Im

f (z)

f (w)

for all z,w ∈ C with w �= 0. Also taking z = w = 1 in (11), we have

(12) f (α) = α′ .

(i) Let α, β ∈ C and suppose that Φ(α, β) ∼= Φ(0, 0). If f is a corresponding homeo-
morphism, then

f (α Re z+ iβ Im z) = f (z ∗(α,β) 1) = f (z) ∗(0,0) f (1) = 0

for all z ∈ C. Taking z = 1 in the above equation, we obtain that f (α) = f (0), hence
α = 0 since f (0) = 0 by (10). Similarly taking z = i in the same equation, we obtain
iβ = 0, namely, β = 0. Consequently,Φ(0, 0) is not isomorphic to any nontrivial continuous
fractional binary operation on C.

(ii) Let γ = 0 or ∞, γ ′ ∈ C \ {0}, (α, β) ∈ Lγ and (α′, β ′) ∈ Lγ ′ with Re α′β ′ �= 0.

Then we must show that Φ(α, β) � Φ(α′, β ′).

(ii-a) The case where γ = 0. Note that β = 0 and α �= 0. Assume that Φ(α, β) ∼=
Φ(α′, β ′). By Theorem 3,

Φ(α′, β ′) ∼= Φ(α, β) = Φ(α, 0) ∼= Φ(1, 0) .

Then Φ(α′, β ′) ∼= Φ(1, 0), so let f be its corresponding homeomorphism. Then we have
from (11) that

f

(
α′Re

z

w
+ iβ ′Im z

w

)
= Re

f (z)

f (w)

holds for all z,w ∈ C with w �= 0. Taking w = 1 in the above equation, we obtain that

f (α′Re z + iβ ′ Im z) = Re
f (z)

f (1)
∈ R

for all z ∈ C. Since Reα′β ′ �= 0 by hypothesis, we can easily see that

(13) {w ∈ C : w = α′Re z+ iβ ′ Im z, z ∈ C} = C.

Therefore we have from (13) that f (C) = R, a contradiction. Consequently, Φ(α, β) �

Φ(α′, β ′).

(ii-b) The case where γ = ∞. Note that α = 0 and β �= 0. Assume that Φ(α, β) ∼=
Φ(α′, β ′). By Theorem 3,

Φ(α′, β ′) ∼= Φ(α, β) = Φ(0, β) ∼= Φ(0, 1) .
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Then Φ(α′, β ′) ∼= Φ(0, 1), so let g be its corresponding homeomorphism. Then we have
from (11) that

g

(
α′Re

z

w
+ iβ ′Im z

w

)
= i Im

g(z)

g(w)

holds for all z,w ∈ C with w �= 0. Taking w = 1 in the above equation, we obtain that

g(α′Re z+ iβ ′ Im z) = i Im
g(z)

g(1)
∈ i R

for all z ∈ C. Since Reα′β ′ �= 0 by hypothesis, it follows from (13) that g(C) = i R, a
contradiction. Consequently,Φ(α, β) � Φ(α′, β ′).

(iii) Let (α, β) ∈ L0 and (α′, β ′) ∈ L∞. Assume that Φ(α, β) ∼= Φ(α′, β ′). Since
α �= 0, β = 0, α′ = 0 and β ′ �= 0, it follows from Theorem 3 that

Φ(0, 1) ∼= Φ(0, β ′) = (Φ(α′, β ′) ∼= Φ(α, β) = Φ(α, 0) ∼= Φ(1, 0) .

Then Φ(0, 1) ∼= Φ(1, 0), so let f be its corresponding homeomorphism. Then we have from
(11) that

f

(
i Im

z

w

)
= Re

f (z)

f (w)

holds for all z,w ∈ C with w �= 0. Taking z = w = 1 in the above equation, we obtain that

f (0) = f (i Im 1) = Re
f (1)

f (1)
= Re 1 = 1

Since f (0) = 0 by (10), it follows that 0 = 1, a contradiction. Consequently, Φ(α, β) �

Φ(α′, β ′).

(iv) Let α, β ∈ C \ {0} and suppose that Φ(α, β) ∼= Φ(1, 1). Let f be a corresponding
homeomorphism. Then f (α) = 1 by (12). Also we have from (11) that

f

(
α Re

z

w
+ iβ Im

z

w

)
= f (z)

f (w)

for all z,w ∈ C with w �= 0. Taking w = α in the above equation, we obtain

f

(
αRe

z

α
+ iβ Im

z

α

)
= f (z)

f (α)
= f (z)

for all z ∈ C. Since f is injective, it follows that

αRe
z

α
+ iβ Im

z

α
= z

holds for all z ∈ C. Taking z = iα in the above equation, we obtain iβ = iα, hence α = β.
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The converse follows immediately from Theorem 3. �
IV. PROOF OF THEOREM 5. Let ∗ be a nontrivial homogeneous cancellative binary

operation on K. Put

ϕ(b) = 1 ∗ b
for each b ∈ K. Then we have a ∗ b = aϕ(b) for all a, b ∈ K. Then ∗ must be isomorphic to
Saitoh’s fraction on K as observed in the proof of Theorem 1. �
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