Inversion Formula for the Discrete Radon Transform

Takeshi KAWAZOE

Keio University

Abstract. We shall give a characterization of the discrete Radon transform of functions in the Schwartz space on \mathbb{Z}^n and obtain various inversion formulas for the discrete Radon transform on \mathbb{Z}^2 .

1. Introduction

The classical Radon transform was firstly defined on \mathbb{R}^2 by J. Radon [5] as the integral over a line L in \mathbb{R}^2 :

$$Rf(L) = \int_{L} f(x)d\mu(x),$$

where $d\mu(x)$ is the Euclidean measure on L. Each line L with the direction vector $\omega \in S^1$ is given by $L(\omega, t) = \{x \in \mathbf{R}^2 \mid x \cdot \omega = t\}$ where $t \in \mathbf{R}$ and $x \cdot \omega$ is the inner product of x and ω . Hence the set of all lines in \mathbf{R}^2 is parameterized as $S^1 \times \mathbf{R}/\{\pm 1\}$. The Radon transform R is related to the Fourier transform as the slice formula:

$$\widetilde{Rf}(L(\omega,\cdot))(\lambda) = \widetilde{f}(\lambda\omega),$$

where the left hand side is the one-dimensional Fourier transform and the right hand side is the two-dimensional one. Hence we can recover f from Rf by using this relation. However, this inversion formula has a difficulty of convergence of inversion Fourier transforms. Another method to invert the Radon transform involves the dual Radon transform. We integrate $Rf(L(\omega,t))$ over S^1 and apply a fractional differential operator on \mathbf{R} such as $\sqrt{-\Delta}$. The idea to recover a function on \mathbf{R}^2 from its integrals over all lines is generalized in different settings by various people. For an extensive survey we refer to Helgason's book [4].

In this paper, as analogue of the classical Radon transform on \mathbb{R}^2 , we shall consider the discrete Radon transform on \mathbb{Z}^n , which was originally proposed by Strichartz [6] and was

Received December 9, 2013; revised May 3, 2014

2000 Mathematics Subject Classification: 44A12

Key words and phrases: discrete Radon transform, Schwartz space, inversion formula

The author is partly supported by Grant-in-Aid for Scientific Research (C), No. 24540191, Japan Society for the Promotion of Science.

introduced by Abouelaz and Ihsane [1]. For a function f on \mathbb{Z}^n the discrete Radon transform Rf is defined by the summation of f(m) over m in a discrete hyperplane H in \mathbb{Z}^n :

(1)
$$Rf(H) = \sum_{m \in H} f(m).$$

Let **G** be the set of all discrete hyperplanes H in \mathbb{Z}^n (see §2). Then R transfers functions on \mathbb{Z}^n to ones on **G**. Some basic properties of the discrete Radon transform R were obtained in [1] and [2]. Especially, similarly as in the classical case, the slice formula and the inversion formula for R were established. Roughly speaking, the one-dimensional Fourier series of Rf is related with the n-dimensional Fourier series of f (see (4)). Since **G** is a discrete set, as the answer in [6], the inversion formula for R has a quite simple form without a dual Radon transform and a fractional differential operator (see (5)). However, concerning the Schwartz theorem, we have only a partial result. In the classical case, the image of the Radon transform of Schwartz space $S(\mathbb{R}^2)$ is characterized as functions F in $S(S^1 \times \mathbb{R})$ which have the property that for each $k = 0, 1, 2, \ldots$,

$$\int_{-\infty}^{\infty} F(\omega, t) t^k dt$$

can be written as a homogeneous kth degree polynomial of ω (see [3]). In our discrete case, if f is a rapidly decreasing function on \mathbb{Z}^n , then Rf(H) is decreasing when H goes away from the parallel hyperplane through the origin and the sum of Rf(H) over parallel hyperplanes satisfies the above property of a homogeneous polynomial. Hence R maps injectively the Schwartz space $\mathcal{S}(\mathbb{Z}^n)$ into a kind of Schwartz classes on G satisfying these properties. But, this map is not surjective.

The aim of this paper is to give a more precise characterization of the image of the discrete Radon transform of $\mathcal{S}(\mathbf{Z}^n)$ and obtain several new inversion formulas for the discrete Radon transform on \mathbf{Z}^2 .

2. Notation

We briefly state some basic properties on the discrete Radon transform R on \mathbb{Z}^n . For more details we refer to [1] and [2].

Let \mathcal{P} be the set of all $a=(a_1,a_2,\ldots,a_n)\in \mathbf{Z}^n$ such that the greatest common divisor $d(a_1,a_2,\ldots,a_n)$ equals 1. For each $a\in\mathcal{P}$ and $k\in\mathbf{Z}$, the set $H(a,k)=\{x\in\mathbf{Z}^n\mid ax=k\}$ forms a discrete hyperplane in \mathbf{Z}^n , where ax is the inner product of a and x. Then the set \mathbf{G} of discrete hyperplanes on \mathbf{Z}^n is parameterized as $\mathcal{P}\times\mathbf{Z}/\{\pm 1\}$ (see [1], §2). Hence R in (1) transfers a function f(m) on \mathbf{Z}^n to Rf(H(a,k)) on $\mathcal{P}\times\mathbf{Z}/\{\pm 1\}$. Let $l^p(\mathbf{Z}^n)$, $1\leq p<\infty$, denote the space of all functions f on \mathbf{Z}^n with finite l^p -norm

$$||f||_p = \left(\sum_{m \in \mathbf{Z}^n} |f(m)|^p\right)^{1/p}$$

and $l^{\infty}(\mathbf{Z}^n)$ the one with finite l^{∞} -norm. Since $\underset{k \in \mathbf{Z}}{\cup} H(a,k) = \mathbf{Z}^n$ for all $a \in \mathcal{P}$, R is well-defined for $f \in l^1(\mathbf{Z}^n)$ and

(2)
$$\sum_{k \in \mathbb{Z}} |Rf(H(a,k))| \le ||f||_1.$$

The slice formula for the discrete Radon transform R is given as follows. For $f \in l^1(\mathbb{Z}^n)$ and $\varphi \in l^{\infty}(\mathbb{Z})$,

(3)
$$\sum_{k \in \mathbf{Z}} Rf(H(a,k))\varphi(k) = \sum_{k \in \mathbf{Z}} \left(\sum_{m \in H(a,k)} f(m)\right)\varphi(k)$$
$$= \sum_{m \in \mathbf{Z}^n} f(m)\varphi(am).$$

Especially, letting $\varphi_{\lambda}(k) = e^{i\lambda k}$, $0 < \lambda < 2\pi$, we see that

(4)
$$\widetilde{Rf}(H(a,\cdot))(\lambda) = \widetilde{f}(\lambda a),$$

where the tildes denote the Fourier inverse transforms on \mathbb{Z} and \mathbb{Z}^n , that is, the Fourier series on \mathbb{T} and \mathbb{T}^n respectively.

The inversion formula for R is given as follows. Let χ_N be the characteristic function of a discrete ball $B(N) = \{x \in \mathbf{Z}^n \mid ||x|| \le N\}$, where $||\cdot||$ denotes the Euclidean norm on \mathbf{R}^n . Then, for all $\varepsilon > 0$, there exists a sufficiently large N for which $||f - f\chi_N||_1 < \varepsilon$ and thus, by (2)

$$|R(f \gamma_N)(H(a,k)) - Rf(H(a,k))| < \varepsilon$$

for all $a \in \mathcal{P}$. Let $a_j = (1, j, j^2, ..., j^{n-1})$ for $j \in \mathbb{N}$. As shown in [1], if j > N, then $B(N) \cap H(a_j, 0) = \{0\}$ and thus, $R(f\chi_N)(H(a, 0)) = f\chi_N(0) = f(0)$. Therefore, combining the above inequality, we have the following inversion formula: For $f \in l^1(\mathbb{Z}^n)$,

(5)
$$\lim_{i \to \infty} Rf(a_j, 0) = f(0).$$

When n = 2, we can prove that $B(N) \cap H(a, 0) = \{0\}$ if $||a|| > N^{\dagger}$. Hence, it follows that for $f \in l^1(\mathbb{Z}^2)$,

$$\lim_{\|a\| \to \infty} Rf(a,0) = f(0).$$

3. Schwartz space

Let $\mathcal{S}(\mathbf{Z}^n)$ be the Schwartz space on \mathbf{Z}^n consisting of all functions f on \mathbf{Z}^n such that

$$p_N(f) = \sup_{m \in \mathbb{Z}^n} (1 + ||m||^2)^N |f(m)| < \infty$$

[†]This is not true when n > 2. For example, let n = 3 and $a_p = (p, 2, -(p+2))$ for a prime number p. Then $(1, 1, 1) \in H(a_p, 0)$ for all a_p .

for all N = 0, 1, 2, ... Then $\{p_N \mid N = 0, 1, 2, ...\}$ is a family of semi-norms of $\mathcal{S}(\mathbf{Z}^n)$. We note that, for $f \in \mathcal{S}(\mathbf{Z}^n)$ and $N \in \mathbb{N}$, if 2N > n, then

$$(1+k^{2})^{N} Rf(H(a,k))$$

$$\leq \sum_{\{m|am=k\}} |f(m)|(1+|am|^{2})^{N}$$

$$\leq \sum_{\{m|am=k\}} |f(m)|(1+||a||^{2})^{N}(1+||m||^{2})^{N}$$

$$\leq p_{2N}(f) \sum_{m \in \mathbb{Z}^{n}} (1+||m||^{2})^{-N} \cdot (1+||a||^{2})^{N}.$$

Therefore, it follows that

(6)
$$|Rf(H(a,k))| \le c_N p_{2N}(f) \left(\frac{1 + ||a||^2}{1 + k^2}\right)^N,$$

where c_N is independent of a and k. In what follows, for simplicity, we assume that n = 2. In the case of general n, the same arguments are easily applicable. For $a = (a_1, a_2) \in \mathcal{P}$, $H(a, k), k \in \mathbb{Z}$, are discrete hyperplanes with the same direction and they cover \mathbb{Z}^2 . For each $k \in \mathbb{Z}$, we choose $m \in H(a, k)$ that is nearest to the origin. We denote it by $m_0(a, k)$ and set

$$D(a) = \{m_0(a, k) \mid k \in \mathbf{Z}\},\$$

where we take $m_0(a, 0) = 0$. Clearly, we see that

$$H(a, k) = \{m_0 + la_0 \mid l \in \mathbf{Z}\},\$$

where $a_0 = (-a_2, a_1)$ and $m_0 = m_0(a, k) \in D(a)$. Then it follows that

$$Rf(H(a,k)) = \sum_{m \in H(a,k)} f(m)$$

$$= f(m_0) + \sum_{0 < |l| \le 4 \frac{\|m_0\|}{\|a\|}} f(m_0 + la_0) + \sum_{|l| > 4 \frac{\|m_0\|}{\|a\|}} f(m_0 + la_0)$$

$$= f(m_0) + I_1 + I_2.$$

As for
$$I_1$$
, since $|f(m)| \le p_N(f)(1 + ||m||^2)^{-N} \le p_N(f)(1 + ||m_0||^2)^{-N}$,

$$|I_1| \le p_N(f)(1 + ||m_0||^2)^{-N} 4 \frac{||m_0||}{||a||}$$

$$\le \frac{c}{||a||(1 + ||m_0||)^{2N-1}},$$

where c is independent of a and k. As for I_2 , we note that $||a_0|| = ||a||$ and $2lm_0a_0 \ge -2|l||m_0|||a_0|| \ge -\frac{|l|^2||a||^2}{2}$. Hence

$$||m||^2 = ||m_0||^2 + l^2||a||^2 + 2lm_0a \ge ||m_0||^2 + \frac{l^2||a||^2}{2}$$

and thus,

$$|f(m)| \le p_N(f) \Big(1 + ||m_0||^2 + \frac{l^2 ||a||^2}{2}\Big)^{-N}.$$

Therefore, if N > 1, then

$$\begin{aligned} |I_2| &\leq cp_N(f) \sum_{|l| > 4\frac{\|m_0\|}{\|a\|}} \left(1 + \|m_0\|^2 + \frac{l^2\|a\|^2}{2}\right)^{-N} \\ &\leq 2cp_N(f) \int_{4\frac{\|m_0\|}{\|a\|}}^{\infty} \left(1 + \|m_0\|^2 + \frac{x^2\|a\|^2}{2}\right)^{-N} dx \\ &\leq \frac{c}{\|a\|(1 + \|m_0\|)^{2N-1}}, \end{aligned}$$

where c is independent of a and k. Hence we can deduce that Rf(H(a,k)) has a decomposition

(7)
$$Rf(H(a,k)) = f(m_0) + g(a,k)$$

and for each N = 0, 1, 2, ...,

(8)
$$g(a,k) \le \frac{c}{\|a\|(1+\|m_0\|)^N},$$

where c is independent of a and k. Moreover, noting (3) and (4), we see that

$$\widetilde{Rf}(H(a,\cdot))(\lambda) = \sum_{m \in \mathbb{Z}^n} f(m)e^{i\lambda am}$$

$$= \sum_{m_0 \in D(a)} f(m_0)e^{i\lambda am_0} + \sum_{m \in D(a)^c} f(m)e^{i\lambda am}$$

$$= \widetilde{f|_{D(a)}}(\lambda a) + \widetilde{f|_{D(a)^c}}(\lambda a).$$

On the other hand, from (7) we see that

$$\widetilde{Rf}(H(a,\cdot))(\lambda) = \sum_{k \in \mathbb{Z}} \left(f(m_0(a,k))e^{i\lambda k} + g(a,k)e^{i\lambda k} \right)$$
$$= \widetilde{f|_{D(a)}}(\lambda a) + \widetilde{g}(a,\cdot)(\lambda).$$

Hence we can obtain that

(9)
$$\widetilde{g}(a,\cdot)(\lambda) = \widehat{f}|_{D(a)^c}(\lambda a).$$

We now consider a characterization of the image of the discrete Radon transforms Rf(H(a, k)) of $f \in \mathcal{S}(\mathbf{Z}^2)$.

PROPOSITION 3.1. Let F(a, k) and f(m) be functions on G and \mathbb{Z}^2 respectively. We suppose that

$$F(a,k) = f(m_0) + g(a,k),$$

where $m_0 = m(a, k) \in D(a)$ and g(a, k) is a function on G, which satisfies that for each N = 0, 1, 2, ...,

$$g(a,k) \le \frac{c}{\|a\|(1+\|m_0\|)^N},$$

where c is independent of a and k. Then

(10)
$$\lim_{\|a\| \to \infty} F(a, am) = f(m)$$

for all $m \in \mathbb{Z}^2$. Especially, the above decomposition of F is unique. Furthermore, F satisfies that for each $N = 0, 1, 2, \ldots$,

(11)
$$|F(a,k)| \le c \left(\frac{1 + ||a||^2}{1 + k^2}\right)^N,$$

where c is independent of a and k, if and only if $f \in \mathcal{S}(\mathbf{Z}^2)$.

PROOF. We fix $m \in \mathbb{Z}^2$ and consider $a \in \mathcal{P}$ such that $||a|| > 2||m||^{\frac{1}{2}}$. Then it easily follows that

$$m_0(a, am) = m$$

and thus,

$$|F(a, am) - f(m)| \le \frac{c}{\|a\|(1 + \|m\|)^N},$$

where c is independent of a and m, Therefore,

$$\lim_{\|a\| \to \infty} F(a, am) = f(m).$$

We suppose that F(a, k) satisfies (11). Without loss of generality, we may suppose that, for $m = (m_1, m_2), m_2 \neq 0$ and $|m_2| \geq |m_1|$. Let $a_j = (1, j) \in \mathcal{P}$ and $||a_j|| > 2||m||$. Then for each $N = 0, 1, 2, \ldots$,

$$(1 + ||m||^2)^N |F(a_j, a_j m)| \le c (1 + ||m||^2)^N \left(\frac{1 + ||a_j||^2}{1 + (a_j m)^2}\right)^N$$

$$\le c (1 + m_1^2 + m_2^2)^N \left(\frac{1 + 1 + j^2}{1 + (m_1 + j m_2)^2}\right)^N$$

^{‡)}See REMARK 3.2.

$$\leq c(1+m_2^2)^N \left(\frac{1+j^2}{1+(j-1)^2 m_2^2}\right)^N$$

$$\leq c.$$

where c is independent of a_j and m. Hence, by multiplying $(1 + ||m||^2)^N$ to the both sides of (12) replaced a and N by a_j and 2N respectively, and then, by letting j go to ∞ , it follows that

$$\sup_{m \in \mathbb{Z}^2} (1 + ||m||^2)^N |f(m)| < \infty.$$

Conversely, we suppose that $f \in \mathcal{S}(\mathbf{Z}^n)$. Since $m_0 = m_0(a, k)$ is in H(a, k) and thus, lies on the line $m_0 + ta_0$, $t \in \mathbf{R}$, and $a \perp a_0$. Hence

$$||m_0|| \ge \frac{|m_0 a|}{||a||} = \frac{|k|}{||a||}$$

and thus,

$$\frac{1}{1 + \|m_0\|^2} \le \frac{1 + \|a\|^2}{1 + k^2} \,.$$

Therefore, the desired result follows from the decomposition of F.

REMARK 3.2. As pointed in §2, when n > 2, the inversion formula (10) in Proposition 3.1 is not true. The one replaced a by a_i holds.

PROPOSITION 3.3. Let $F(a,k) = f(m_0) + g(a,k)$, where $m_0 = m(a,k) \in D(a)$. We suppose that f belongs to $S(\mathbf{Z}^2)$ and $\widetilde{g}(a,\cdot)(\lambda) = f|_{D(a)^c}(\lambda a)$. Then for each $N = 0, 1, 2, \ldots$,

$$|g(a,k)| \le \frac{c}{\|a\|(1+\|m_0\|)^N},$$

where c is independent of a and k.

PROOF. We note that

$$g(a,k) = \int_{\mathbf{T}} \widetilde{f|_{D(a)^c}}(\lambda a) e^{-i\lambda k} d\lambda$$
$$= \sum_{m \in D(a)^c, ma = k} f(m)$$
$$= \sum_{m \neq m_0(a,k) \in H(a,k)} f(m).$$

As in the calculation that yields (8), g satisfies the desired estimate.

We now define $S_*(\mathbf{G})$ as follows.

DEFINITION 3.4. Let $S_*(\mathbf{G})$ be the space of all F(a, k) on \mathbf{G} being of the form

(13)
$$F(a,k) = f(m_0) + q(a,k),$$

where $f \in \mathcal{S}(\mathbf{Z}^2)$, $m_0 = m_0(a, k) \in D(a)$ and g satisfies that for $\lambda \in \mathbf{T}$,

(14)
$$\widetilde{g}(a,\cdot)(\lambda) = \widetilde{f|_{D(a)^c}}(\lambda a).$$

According to Propositions 3.1 and 3.3, if $F \in \mathcal{S}_*(\mathbf{G})$, then the decomposition $F(a, k) = f(m_0) + g(a, k)$ is unique and the following properties hold: For each $N = 0, 1, 2, \ldots$,

$$|g(a,k)| \le \frac{c}{\|a\|(1+\|m_0\|)^N},$$

$$|F(a,k)| \le c\left(\frac{1+\|a\|^2}{1+k^2}\right)^N,$$

$$\lim_{\|a\|\to\infty} F(a,am) = f(m)^{\ddagger},$$

where c is independent of a and k. We define for all N = 0, 1, 2, ...

$$q_N(F) = \sup_{a \in \mathcal{P}, k \in \mathbb{Z}} \left(\frac{1 + ||a||^2}{1 + k^2} \right)^{-N} |F(a, k)|.$$

Then $\{q_N \mid N=0,1,2,\ldots\}$ is a family of semi-norms of $\mathcal{S}_*(\mathbf{G})$.

Our main theorem is the following.

THEOREM 3.5. R is a bijective continuous map from $S(\mathbf{Z}^2)$ to $S_*(\mathbf{G})$.

PROOF. From (6), (7), (8), (9), and Propositions 3.1, it follows that R is an injective continuous map from $S(\mathbf{Z}^n)$ to $S_*(\mathbf{G})$. We shall prove that R is surjective. Let F be in $S_*(\mathbf{G})$ and F = f + g denote the decomposition (13) of F in Definition 3.4. Since $f \in S(\mathbf{Z}^n)$, $Rf \in S_*(\mathbf{G})$ and thus, H = F - Rf belongs to $S_*(\mathbf{G})$. By noting (7), the unique decomposition (13) of H is of the form H = 0 + g'. Hence $\widetilde{g}'(a, \cdot) = 0$ for all $a \in \mathcal{P}$ by (14). Then g' = 0 and thus, F = Rg.

REMARK 3.6. The relation (14) in Definition 3.4 is used to prove that, if f = 0, then $F(a, \cdot) = 0$ for all $a \in \mathcal{P}$. Since Rf(H(a, k)) satisfies (3), we may replace the relation by the following condition: Let \mathcal{H} be an infinite dimensional Hilbert space and $\{v_k \mid k \in \mathbf{Z}\}$ a complete orthonormal system of \mathcal{H} . Then F and f satisfy

$$\sum_{k \in \mathbf{Z}} F(a, k) v_k = \sum_{m \in \mathbf{Z}^n} f(m) v_{am}$$

for all $a \in \mathcal{P}$. Actually, if f = 0, then $F(a, \cdot) = 0$ for all $a \in \mathcal{P}$.

[‡]See Remark 3.2.

4. Inversion formula

In the following, let n=2. In addition to (5) we shall obtain several methods of recovering f from Rf. For $a, b \in \mathbb{N}$, let [a, b] denote the sets of integers p such that $a \le p \le b$. For a set $S \subset \mathbb{Z}^2$, let χ_S denote the characteristic function of S and |S| the cardinality of S.

4.1. Mean inversion formula. Let Q be a direction function on \mathbb{Z}^2 which depends only on directions:

(15)
$$Q(0) = 0$$
, $Q(x) = Q(a) = Q(-a)$ for $x = la$,

where $a \in \mathcal{P}$ and $l \neq 0 \in \mathbf{Z}$. Suppose that $\|Q\|_{\infty} < \infty$ and $\sum_{a \in \mathcal{P}} Q(a) < \infty$. Then for

 $f \in l^1(\mathbf{Z}^2)$, since Q(0) = 0, it follows that

$$\begin{split} Q*f(m) &= \sum_{m' \in \mathbf{Z}^2} Q(m-m')f(m') \\ &= \frac{1}{2} \sum_{a \in \mathcal{P}} \sum_{l \neq 0 \in \mathbf{Z}} Q(a)f(m+la) \\ &= \frac{1}{2} \sum_{a \in \mathcal{P}} Q(a_0)Rf(H(a,am)) - \frac{1}{2}f(m) \sum_{a \in \mathcal{P}} Q(a), \end{split}$$

where $a \perp a_0$ and $a_0 \in \mathcal{P}$. Hence we can obtain the following.

THEOREM 4.1. Let Q be a direction function on \mathbb{Z}^2 and suppose that $\|Q\|_{\infty} < \infty$ and $\sum_{a \in \mathcal{P}} Q(a) \neq 0 < \infty$. Then for $f \in l^1(\mathbb{Z}^2)$,

(16)
$$f(m) = \frac{1}{\sum_{a \in \mathcal{P}} Q(a)} \left(\sum_{a \in \mathcal{P}} Q(a_0) Rf(H(a, am)) - 2Q * f(m) \right).$$

COROLLARY 4.2. Let $\{Q_i\}$, $i \in \mathbb{N}$, be a sequence of direction functions on \mathbb{Z}^2 satisfying

(a)
$$||Q_i||_{\infty} < C$$
 for all i ,

(b)
$$\sum_{a\in\mathcal{P}} Q_i(a) \to \infty \text{ if } i \to \infty.$$

Then for $f \in l^1(\mathbf{Z}^2)$,

$$f(m) = \lim_{i \to \infty} \frac{1}{\sum_{a \in \mathcal{P}} Q_i(a)} \sum_{a \in \mathcal{P}} Q_i(a_0) Rf(H(a, am)).$$

For example, if we take $Q_i(x) = \chi_{B(i)}(a)$ for x = la, then we see that

$$f(m) = \lim_{i \to \infty} \frac{1}{|B(i) \cap \mathcal{P}|} \sum_{a \in B(i) \cap \mathcal{P}} Rf(H(a, am)).$$

PROOF. Since $\|Q_i * f\|_{\infty} \le \|Q_i\|_{\infty} \|f\|_1 \le C \|f\|_1$, $\left(\sum_{a \in \mathcal{P}} Q_i(a)\right)^{-1} Q_i * f \to 0$ if $i \to \infty$ by (b). Hence the desired formula follows from (16).

COROLLARY 4.3. Let $\{Q_i\}$, $i \in \mathbb{N}$, be a sequence of direction functions on \mathbb{Z}^2 . Furthermore, we suppose that

- (a) $||Q_i||_{\infty} < C$ for all i,
- (b) supp $Q_i \subset B(r_i)^c$ where $r_i \to \infty$ if $i \to \infty$,

(c)
$$\lim_{i\to\infty}\sum_{a\in\mathcal{P}}Q_i(a)>0$$
.

Then for $f \in l^1(\mathbf{Z}^2)$,

$$f(m) = \lim_{i \to \infty} \frac{1}{\sum_{a \in \mathcal{D}} Q_i(a)} \sum_{a \in \mathcal{D}} Q_i(a_0) Rf(H(a, am)).$$

For example, if we take a finite subset S_i in $B(r_i)^c$ and let $Q_i(x) = \chi_{S_i}(a)$ for x = la, then

$$f(m) = \lim_{i \to \infty} \frac{1}{|S_i|} \sum_{a \in S_i} Rf(H(a, am)).$$

PROOF. Since $Q_i(0) = 0$, $|Q_i * f(m)| \leq \|Q_i\|_{\infty} \sum_{m' \in B(r_i)^c} |f(m+m')| \leq C \sum_{m' \in B(r_i)^c} |f(m+m')|$. Hence, $|Q_i * f(m)| \to 0$ if $i \to \infty$, because $f \in l^1(\mathbf{Z}^2)$ and (b). Therefore, the desired formula follows from (16) and (c).

REMARK 4.4. These corollaries are generalizations of the formulas obtained in [2], Theorem 2.1 (a) and (b). In Corollary 4.3, if we take $S_i = \{a_i\}, a_i \in \mathcal{P}$, then we can deduce (5).

4.2. Discrete Fourier inversion formula. We introduce an inversion formula using the discrete Fourier transform.

Step1. We first suppose that supp $f \subset [-N, N]^2$. Since $|am| \le (|a_1| + |a_2|)N = |a|N$, where $|a| = |a_1| + |a_2|$, for $a = (a_1, a_2) \in \mathcal{P}$ and $m \in [-N, N]^2$, the support of Rf(H(a, k)) with respect to k is in [-|a|N, |a|N]. We recall the discrete Fourier transform on $[-N, N]^2$ and its inversion formula: For $t = (t_1, t_2)$, $0 \le t_1, t_2 \le 2N$, the discrete Fourier transform F(t) of f(n) is given by

$$F(t) = \frac{1}{(2N+1)^2} \sum_{n_1, n_2=0}^{2N} f((n_1, n_2) - (N, N)) e^{-i\frac{2(n_1t_1 + n_2t_2)\pi}{2N+1}}$$

and for $n = (n_1, n_2), -N \le n_1, n_2 \le N, f(m)$ is recovered as

(17)
$$f(n) = \sum_{t_1, t_2 = 0}^{2N} F(t) e^{i\frac{2((n_1 + N)t_1 + (n_2 + N)t_2)\pi}{2N + 1}}$$
$$= \sum_{t \in [0, 2N]^2} F(t) (-1)^{|t|} e^{i\frac{(2nt - |t|)\pi}{2N + 1}}.$$

Step 2. We apply the slice formula (3). For each $a=(a_1,a_2)\in\mathcal{P}$ with $a_1,a_2\geq 0$, and $l\in\mathbf{Z}$,

(18)
$$\sum_{k=-|a|N}^{|a|N} Rf(H(a,k))e^{-i\frac{2(k+|a|N)l\pi}{2N+1}}$$

$$= \sum_{m\in\mathbb{Z}^2} f(m)e^{-i\frac{2(am+|a|N)l\pi}{2N+1}}$$

$$= \sum_{m\in\mathbb{Z}^2} f((m_1, m_2) - (N, N))e^{-i\frac{2l(m_1a_1 + m_2a_2)\pi}{2N+1}}$$

$$= (2N+1)^2 F(la).$$

Step3. We combine (17) and (18). Let $\mathcal{P}(N) = \mathcal{P} \cap [0, 2N]^2$ and \mathbf{Z}_+ the set of the positive integers. We denote $t = (t_1, t_2) \neq (0, 0), 0 \leq t_1, t_2 \leq 2N$, as

$$t = (t_1, t_2) = l_t a_t$$
.

where $a_t \in \mathcal{P}(N)$ and $l_t \in \mathbf{Z}_+$. When t = (0, 0), we let $l_t = 0$ and a_t is arbitrary. Then, replacing $F(t) = F(l_t a_t)$ in (17) with (18), we see that

$$f(n) = \frac{1}{(2N+1)^2} \sum_{t \in [0,2N]^2} \left(\sum_{k=-|a_t|N}^{|a_t|N} Rf(H(a_t,k)) e^{-i\frac{2(k+|a_t|N)l_t\pi}{2N+1}} \right)$$

$$\times (-1)^{|t|} e^{i\frac{(2nt-|t|)\pi}{2N+1}}$$

$$= \frac{1}{(2N+1)^2} \sum_{t \in [0,2N]^2} \left(\sum_{k=-|a_t|N}^{|a_t|N} Rf(H(a_t,k)) e^{-i\frac{2(k-na_t)l_t\pi}{2N+1}} \right).$$

For $a \in \mathcal{P}(N)$ let $L(a, N) = \max\{l \in \mathbb{N} \mid la \in [0, 2N]^2\}$. We recall that, when t = (0, 0), $l_t = 0$, and that $\sum_{k \in \mathbb{Z}} Rf(H(a_t, k)) = \sum_{m \in \mathbb{Z}^2} f(m)$. Hence, we can rewrite the previous equation as

$$f(n) = \frac{1}{(2N+1)^2} \left(\sum_{a \in \mathcal{D}(N)} \left(\sum_{k=-|a|N}^{|a|N} Rf(H(a,k)) \sum_{l=1}^{L(a,N)} e^{-i\frac{2(k-na)l\pi}{2N+1}} \right) \right).$$

Step4. Let f be an arbitrary function in $l^1(\mathbb{Z}^2)$. Then it is easy to see that

$$\begin{split} & \frac{1}{(2N+1)^2} \bigg| \sum_{a \in \mathcal{P}(N)} \bigg(\sum_{k=-|a|N}^{|a|N} R(f-f\chi_N)(H(a,k)) \sum_{l=1}^{L(a,N)} e^{-i\frac{2(k-na)l\pi}{2N+1}} \bigg) \bigg| \\ \leq & \frac{1}{(2N+1)^2} \sum_{a \in \mathcal{P}(N)} L(a,N) \sum_{k=-|a|N}^{|a|N} |R(f-f\chi_N)(H(a,k))| \\ \leq & \frac{N^2}{(2N+1)^2} \sum_{\|m\|>N} |f(m)| \, . \end{split}$$

Since the last term goes to 0 if $N \to \infty$, we can obtain the following.

THEOREM 4.5. For each $N \in \mathbb{N}$, let $\mathcal{P}(N) = \mathcal{P} \cap [0, 2N]^2$ and for each $a \in \mathcal{P}(N)$, let $L(a, N) = \max\{l \in \mathbb{N} \mid la \in [0, 2N]^2\}$. Then for $f \in l^1(\mathbb{Z}^2)$,

$$f(n) = \lim_{N \to \infty} \frac{1}{(2N+1)^2} \sum_{a \in \mathcal{P}(N)} \left(\sum_{k=-|a|N}^{|a|N} Rf(H(a,k)) \sum_{l=1}^{L(a,N)} e^{-i\frac{2(k-na)l\pi}{2N+1}} \right).$$

4.3. Algorithmic inversion formula. We introduce a method to recover f(0, 0) from Rf(H(a, k)) by an algorithmic process. We first note that, if f is supported on $[-N, N]^2$ and ||a|| > N, then

$$Rf(H(a, 0)) = f(0, 0)$$
,

because $[-N, N]^2 \cap H(a, 0) = \{(0, 0)\}$ (see Fig. 1).

In the following, we shall consider an algorithm by which f(0,0) is recovered from Rf(H(a,k)) with $||a|| \le N$.

Step1. For each j = 0, 1, 2, ..., we first define a set V(N, j) of points in $[-N, N]^2$ and a set E(N, j) of hyperplanes on \mathbb{Z}^2 inductively. The case of N = 3 is referred to Example

FIGURE 1. N = 3 and a = (4, -1)

4.6. Let

$$E(N, 0) = \emptyset, \ V(N, 0) = [-N, N]^2.$$

Let E(N, 1) be the set of hyperplanes H(a, ap) through $p \in V(N, 0)$ such that

(*i*)
$$H(a, ap) \cap V(N, 0) = \{p\}$$

(ii) ||a|| is minimum among H(a, ap) satisfying (i)

and $V(N, 1) = V(N, 0) - \{p \mid H(a, ap) \in E(N, 1)\}$. Furthermore, inductively, we define E(N, j + 1) as the set of hyperplanes H(a, ap) through $p \in V(N, j)$ such that

(*i*)
$$H(a, ap) \cap V(N, j) = \{p\}$$

(ii) ||a|| is minimum among H(a, ap) satisfying (i)

and
$$V(N, j + 1) = V(N, j) - \{p \mid H(a, ap) \in E(N, j + 1)\}.$$

We note that there exists j_N for which $V(N, j_N - 1)$ is not contained in $[-(N-1), N-1]^2$, but

$$V(N, j_N) \subset [-(N-1), N-1]^2$$
.

EXAMPLE 4.6. Let N=3. In the following figures we denote the area only in the first quadrant.

$$V(3, j)_{+} = V(3, j) \cap [0, 3]^{2},$$

$$E(3, j)_{+} = \{H(a, ap) \in E(3, j) \mid p \in [0, 3]^{2}\}.$$

In the first line of Fig. 2, we let a=(1,1) and p=(3,3). Then $H(a,6)\cap V(3,0)=\{p\}$ and $||a||=\sqrt{2}$. Hence it follows that

$$E(3, 1)_{+} = \{H((1, 1), 6)\}$$
$$V(3, 1)_{+} = [0, 3]^{2} - \{(3, 3)\}.$$

In the second line in Fig. 2, we let a=(1,2),(2,1) and p=(2,4),(4,2) respectively. Then $H(a,10)\cap V(3,1)=\{p\}$ and $\|a\|=\sqrt{5}$. Hence it follows that

$$E(3,2)_+ = \{H((1,2),10), H((2,1),10)\}$$

$$V(3,2)_{+} = V(3,1)_{+} - \{(2,4),(4,2)\}.$$

Finally, we see that $V(3,4)_+ \subset [0,2]^2$ and thus, $j_3 = 4$.

Step2. We define an operator Shave_N for a function f on $[-N, N]^2$. We note that, if f is supported in V(N, j), then Rf(H(a, ap)) = f(p) for each $H(a, ap) \in E(N, j)$. We define a set of functions $\{f_i\}$ inductively as

FIGURE 2.

$$f_1 = f - \sum_{H(a,ap) \in E(N,1)} Rf(H(a,ap))\delta_p,$$

$$f_{j+1} = f_j - \sum_{H(a,ap) \in E(N,j+1)} Rf_j(H(a,ap))\delta_p$$

and put

Shave_N
$$(f) = f_{i_N}$$
.

Clearly, Shave_N(f) is supported on $[-(N-1), N-1]^2$.

Step3. We replace N by N-1 and apply the previous arguments to $\operatorname{Shave}_N(f)$, which is supported on $[-(N-1), N-1]^2$. Furthermore, we repeat the process successively. Then we can easily deduce that

(19)
$$f(0,0)\delta_{(0,0)} = \operatorname{Shave}_{1} \circ \operatorname{Shave}_{2} \circ \cdots \circ \operatorname{Shave}_{N-1} \circ \operatorname{Shave}_{N}(f)$$

$$= f - \sum_{\substack{p \in [-N,N]^{2}, \\ p \neq (0,0)}} d_{N}(Rf,p)\delta_{p},$$

where $d_N(Rf, p)$ is a linear combination of Rf(H) with

$$H \in \bigcup_{n=1}^{N} \bigcup_{j=1}^{j_n} E(n, j)$$
.

Therefore, for $p \neq (0, 0) \in [-N, N]^2$, it follows that

$$f(p) = d_N(Rf, p)$$
.

For p = (0, 0), we take the discrete Radon transform over H((0, 1), 0). Since $H((0, 1), 0) = \{(q, 0) \mid q \in \mathbb{Z}\}$, it follows that

(20)
$$f(0,0) = Rf(H(0,1),0) - \sum_{q=-N, q \neq 0}^{N} d_N(Rf,(q,0)).$$

REMARK 4.7. We suppose that all a of H(a,ap) in $\bigcup_{1 \leq j \leq j_N-1} E(N,j)$ are of the forms $(1,\pm l)$ or $(\pm l,1),\ l \geq 1$, and l_0 their maximum. Then we can deduce that $1+2+\cdots+l_0+l_0 \geq N$ (see Fig. 3 for the case of N=9). Therefore, since $E(N,j_N)=\{H((1,0),\pm N),\ H((0,1),\pm N)\}$, the maximum $\|a\|$ of H(a,ap) in $\bigcup_{1 \leq j \leq j_N} E(N,j)$ is $O(\sqrt{N})$. Hence, in the formulas (19) and (20) we use Rf(H(a,k)) with $\|a\|=O(\sqrt{N})$.

Step4. Let f be an arbitrary function in $\mathcal{S}(\mathbf{Z}^2)$. We extend the definition of the operator Shave_N to f, that is, we apply (19) to f. We note that, in the process to define Shave_N, each hyperplane H(a, ap) is used to vanish the value f(p) at p when f is supported in $[-N, N]^2$.

FIGURE 3. $V(9, 16)_+, j_9 = 17$ and $l_0 = 3$

Therefore, the total number of discrete hyperplanes which appear to define Shave_N is at most $O(N^2)$ and thus, the total number of hyperplanes appeared in (19) is $O(N^3)$. Since $f - f \chi_N$ is supported in $B(N)^c$ and is rapidly decreasing, it is easy to see that for each $q \in \mathbb{N}$, $|f(m)| \le C_q (1 + ||m||^2)^{-q}$ and thus, $||R(f - f \chi_N)||_{\infty} \le C_q \sum_{m \in B(N)^c} (1 + ||m||^2)^{-q} \le cN^{-2(q-1)}$. Hence, if q > 2, then

$$\|\operatorname{Shave}_1 \circ \cdots \circ \operatorname{Shave}_N(f - f\chi_N)\|_{\infty} \le C_q N^3 N^{-2(q-1)},$$

and this goes to 0 if $N \to \infty$. Hence, it follows that

$$f(0,0)\delta_{(0,0)} = (f\chi_N)(0,0)\delta_{(0,0)}$$

$$= \operatorname{Shave}_1 \circ \operatorname{Shave}_2 \circ \cdots \circ \operatorname{Shave}_{N-1} \circ \operatorname{Shave}_N(f\chi_N)$$

$$= \lim_{N \to \infty} \operatorname{Shave}_1 \circ \operatorname{Shave}_2 \circ \cdots \circ \operatorname{Shave}_{N-1} \circ \operatorname{Shave}_N(f).$$

Therefore, we can obtain the following.

THEOREM 4.8. Let notations be as above. For $f \in \mathcal{S}(\mathbf{Z}^2)$,

$$f(p) = \lim_{N \to \infty} d_N(R(f), p), \quad p \neq (0, 0),$$

$$f(0,0) = Rf(H(0,1),0) - \lim_{N \to \infty} \sum_{q=-N, q \neq 0}^{N} d_N(R(f), (q,0)).$$

ACKNOWLEDGMENT. The author would like to thank the referee for his valuable comments and suggestions to improve the quality of the paper.

References

[1] ABOUELAZ, A. and IHSANE, A. Diophantine Integral Geometry, Mediterr. J. Math. 5 (2008), 77–99.

- [2] ABOUELAZ, A. and KAWAZOE, T. Characterizations of function spaces by the discrete Radon transform, Integral Transforms and Special Functions 23 (2012), 627–637.
- [3] HELGASON, S. The Radon transform on Euclidean space, compact two-point homogeneous space and Grassmann manifolds, Acta Math. 113 (1965), 153–180.
- [4] HELGASON, S. The Radon transform, Birkhäuser, Boston, 1980.
- [5] RADON, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl. 69 (1917), 262–277.
- [6] STRICHARTZ, R. S. Radon inversion—variations on a theme, Amer. Math. Monthly 89 (1982), 377–384, 420–423.

Present Address:

DEPARTMENT OF MATHEMATICS,

KEIO UNIVERSITY AT SFC,

ENDO, FUJISAWA, KANAGAWA 252–0882, JAPAN.