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Inversion Formula for the Discrete Radon Transform

Takeshi KAWAZOE

Keio University

Abstract. We shall give a characterization of the discrete Radon transform of functions in the Schwartz space

on Zn and obtain various inversion formulas for the discrete Radon transform on Z2.

1. Introduction

The classical Radon transform was firstly defined on R2 by J. Radon [5] as the integral
over a line L in R2:

Rf (L) =
∫

L

f (x)dμ(x) ,

where dμ(x) is the Euclidean measure on L. Each line L with the direction vector ω ∈ S1 is
given by L(ω, t) = {x ∈ R2 | x · ω = t} where t ∈ R and x · ω is the inner product of x and

ω. Hence the set of all lines in R2 is parameterized as S1 × R/{±1}. The Radon transform R

is related to the Fourier transform as the slice formula:

R̃f (L(ω, ·))(λ) = f̃ (λω) ,

where the left hand side is the one-dimensional Fourier transform and the right hand side is
the two-dimensional one. Hence we can recover f from Rf by using this relation. However,
this inversion formula has a difficulty of convergence of inversion Fourier transforms. An-
other method to invert the Radon transform involves the dual Radon transform. We integrate

Rf (L(ω, t)) over S1 and apply a fractional differential operator on R such as
√−Δ. The idea

to recover a function on R2 from its integrals over all lines is generalized in different settings
by various people. For an extensive survey we refer to Helgason’s book [4].

In this paper, as analogue of the classical Radon transform on R2, we shall consider the
discrete Radon transform on Zn, which was originally proposed by Strichartz [6] and was
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introduced by Abouelaz and Ihsane [1]. For a function f on Zn the discrete Radon transform
Rf is defined by the summation of f (m) over m in a discrete hyperplane H in Zn:

Rf (H) =
∑
m∈H

f (m) .(1)

Let G be the set of all discrete hyperplanes H in Zn (see §2). Then R transfers functions on
Zn to ones on G. Some basic properties of the discrete Radon transform R were obtained in
[1] and [2]. Especially, similarly as in the classical case, the slice formula and the inversion
formula for R were established. Roughly speaking, the one-dimensional Fourier series of Rf

is related with the n-dimensional Fourier series of f (see (4)). Since G is a discrete set, as
the answer in [6], the inversion formula for R has a quite simple form without a dual Radon
transform and a fractional differential operator (see (5)). However, concerning the Schwartz
theorem, we have only a partial result. In the classical case, the image of the Radon transform

of Schwartz space S(R2) is characterized as functions F in S(S1×R) which have the property
that for each k = 0, 1, 2, . . . , ∫ ∞

−∞
F(ω, t)tkdt

can be written as a homogeneous kth degree polynomial of ω (see [3]). In our discrete case, if
f is a rapidly decreasing function on Zn, then Rf (H) is decreasing when H goes away from
the parallel hyperplane through the origin and the sum of Rf (H) over parallel hyperplanes
satisfies the above property of a homogeneous polynomial. Hence R maps injectively the
Schwartz space S(Zn) into a kind of Schwartz classes on G satisfying these properties. But,
this map is not surjective.

The aim of this paper is to give a more precise characterization of the image of the
discrete Radon transform of S(Zn) and obtain several new inversion formulas for the discrete
Radon transform on Z2.

2. Notation

We briefly state some basic properties on the discrete Radon transform R on Zn. For
more details we refer to [1] and [2].

Let P be the set of all a = (a1, a2, . . . , an) ∈ Zn such that the greatest common divisor
d(a1, a2, . . . , an) equals 1. For each a ∈ P and k ∈ Z, the set H(a, k) = {x ∈ Zn | ax = k}
forms a discrete hyperplane in Zn, where ax is the inner product of a and x. Then the set G
of discrete hyperplanes on Zn is parameterized as P × Z/{±1} (see [1], §2). Hence R in (1)
transfers a function f (m) on Zn to Rf (H(a, k)) on P × Z/{±1}. Let lp(Zn), 1 ≤ p < ∞,
denote the space of all functions f on Zn with finite lp-norm

‖f ‖p =
( ∑

m∈Zn

|f (m)|p
)1/p
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and l∞(Zn) the one with finite l∞-norm. Since ∪
k∈Z

H(a, k) = Zn for all a ∈ P , R is well-

defined for f ∈ l1(Zn) and ∑
k∈Z

|Rf (H(a, k))| ≤ ‖f ‖1 .(2)

The slice formula for the discrete Radon transform R is given as follows. For f ∈ l1(Zn)

and ϕ ∈ l∞(Z), ∑
k∈Z

Rf (H(a, k))ϕ(k) =
∑
k∈Z

( ∑
m∈H(a,k)

f (m)
)
ϕ(k)(3)

=
∑

m∈Zn

f (m)ϕ(am) .

Especially, letting ϕλ(k) = eiλk , 0 ≤ λ < 2π , we see that

R̃f (H(a, ·))(λ) = f̃ (λa) ,(4)

where the tildes denote the Fourier inverse transforms on Z and Zn, that is, the Fourier series
on T and Tn respectively.

The inversion formula for R is given as follows. Let χN be the characteristic function of
a discrete ball B(N) = {x ∈ Zn | ‖x‖ ≤ N}, where ‖ · ‖ denotes the Euclidean norm on Rn.
Then, for all ε > 0, there exists a sufficiently large N for which ‖f − fχN‖1 < ε and thus,
by (2)

|R(f χN)(H(a, k)) − Rf (H(a, k))| < ε

for all a ∈ P . Let aj = (1, j, j2, . . . , jn−1) for j ∈ N. As shown in [1], if j > N ,
then B(N) ∩ H(aj , 0) = {0} and thus, R(f χN)(H(a, 0)) = f χN(0) = f (0). Therefore,

combining the above inequality, we have the following inversion formula: For f ∈ l1(Zn),

lim
j→∞ Rf (aj , 0) = f (0) .(5)

When n = 2, we can prove that B(N) ∩ H(a, 0) = {0} if ‖a‖ > N † . Hence, it follows that

for f ∈ l1(Z2),

lim‖a‖→∞ Rf (a, 0) = f (0) .

3. Schwartz space

Let S(Zn) be the Schwartz space on Zn consisting of all functions f on Zn such that

pN(f ) = sup
m∈Zn

(1 + ‖m‖2)N |f (m)| < ∞
†This is not true when n > 2. For example, let n = 3 and ap = (p, 2, −(p + 2)) for a prime number p. Then

(1, 1, 1) ∈ H(ap, 0) for all ap .
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for all N = 0, 1, 2, . . . . Then {pN | N = 0, 1, 2, . . .} is a family of semi-norms of S(Zn).
We note that, for f ∈ S(Zn) and N ∈ N, if 2N > n, then

(1 + k2)NRf (H(a, k))

≤
∑

{m|am=k}
|f (m)|(1 + |am|2)N

≤
∑

{m|am=k}
|f (m)|(1 + ‖a‖2)N (1 + ‖m‖2)N

≤p2N(f )
∑

m∈Zn

(1 + ‖m‖2)−N · (1 + ‖a‖2)N .

Therefore, it follows that

|Rf (H(a, k))| ≤ cNp2N(f )
(1 + ‖a‖2

1 + k2

)N

,(6)

where cN is independent of a and k. In what follows, for simplicity, we assume that n = 2.
In the case of general n, the same arguments are easily applicable. For a = (a1, a2) ∈ P ,

H(a, k), k ∈ Z, are discrete hyperplanes with the same direction and they cover Z2. For each
k ∈ Z, we choose m ∈ H(a, k) that is nearest to the origin. We denote it by m0(a, k) and set

D(a) = {m0(a, k) | k ∈ Z},
where we take m0(a, 0) = 0. Clearly, we see that

H(a, k) = {m0 + la0 | l ∈ Z},
where a0 = (−a2, a1) and m0 = m0(a, k) ∈ D(a). Then it follows that

Rf (H(a, k)) =
∑

m∈H(a,k)

f (m)

= f (m0) +
∑

0<|l|≤4
‖m0‖
‖a‖

f (m0 + la0) +
∑

|l|>4
‖m0‖
‖a‖

f (m0 + la0)

= f (m0) + I1 + I2.

As for I1, since |f (m)| ≤ pN(f )(1 + ‖m‖2)−N ≤ pN(f )(1 + ‖m0‖2)−N ,

|I1| ≤ pN(f )(1 + ‖m0‖2)−N 4
‖m0‖
‖a‖

≤ c

‖a‖(1 + ‖m0‖)2N−1
,
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where c is independent of a and k. As for I2, we note that ‖a0‖ = ‖a‖ and 2lm0a0 ≥
−2|l|‖m0‖‖a0‖ ≥ −|l|2‖a‖2

2
. Hence

‖m‖2 = ‖m0‖2 + l2‖a‖2 + 2lm0a ≥ ‖m0‖2 + l2‖a‖2

2

and thus,

|f (m)| ≤ pN(f )
(

1 + ‖m0‖2 + l2‖a‖2

2

)−N

.

Therefore, if N > 1, then

|I2| ≤ cpN(f )
∑

|l|>4
‖m0‖
‖a‖

(
1 + ‖m0‖2 + l2‖a‖2

2

)−N

≤ 2cpN(f )

∫ ∞

4
‖m0‖
‖a‖

(
1 + ‖m0‖2 + x2‖a‖2

2

)−N

dx

≤ c

‖a‖(1 + ‖m0‖)2N−1
,

where c is independent of a and k. Hence we can deduce that Rf (H(a, k)) has a decomposi-
tion

Rf (H(a, k)) = f (m0) + g(a, k)(7)

and for each N = 0, 1, 2, . . . ,

g(a, k) ≤ c

‖a‖(1 + ‖m0‖)N ,(8)

where c is independent of a and k. Moreover, noting (3) and (4), we see that

R̃f (H(a, ·))(λ) =
∑

m∈Zn

f (m)eiλam

=
∑

m0∈D(a)

f (m0)e
iλam0 +

∑
m∈D(a)c

f (m)eiλam

= ˜f |D(a)(λa) + ˜f |D(a)c(λa) .

On the other hand, from (7) we see that

R̃f (H(a, ·))(λ) =
∑
k∈Z

(
f (m0(a, k))eiλk + g(a, k)eiλk

)

= ˜f |D(a)(λa) + g̃(a, ·)(λ) .

Hence we can obtain that

g̃(a, ·)(λ) = ˜f |D(a)c(λa) .(9)
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We now consider a characterization of the image of the discrete Radon transforms

Rf (H(a, k)) of f ∈ S(Z2).

PROPOSITION 3.1. Let F(a, k) and f (m) be functions on G and Z2 respectively. We
suppose that

F(a, k) = f (m0) + g(a, k) ,

where m0 = m(a, k) ∈ D(a) and g(a, k) is a function on G, which satisfies that for each
N = 0, 1, 2, . . . ,

g(a, k) ≤ c

‖a‖(1 + ‖m0‖)N ,

where c is independent of a and k. Then

lim‖a‖→∞ F(a, am) = f (m)(10)

for all m ∈ Z2. Especially, the above decomposition of F is unique. Furthermore, F satisfies
that for each N = 0, 1, 2, . . . ,

|F(a, k)| ≤ c
(1 + ‖a‖2

1 + k2

)N

,(11)

where c is independent of a and k, if and only if f ∈ S(Z2).

PROOF. We fix m ∈ Z2 and consider a ∈ P such that ‖a‖ > 2‖m‖‡). Then it easily
follows that

m0(a, am) = m

and thus,

|F(a, am) − f (m)| ≤ c

‖a‖(1 + ‖m‖)N ,(12)

where c is independent of a and m, Therefore,

lim‖a‖→∞ F(a, am) = f (m) .

We suppose that F(a, k) satisfies (11). Without loss of generality, we may suppose that, for
m = (m1,m2), m2 �= 0 and |m2| ≥ |m1|. Let aj = (1, j) ∈ P and ‖aj‖ > 2‖m‖. Then for
each N = 0, 1, 2, . . . ,

(1 + ‖m‖2)N |F(aj , ajm)| ≤ c(1 + ‖m‖2)N
( 1 + ‖aj‖2

1 + (ajm)2

)N

≤ c(1 + m2
1 + m2

2)
N

( 1 + 1 + j2

1 + (m1 + jm2)2

)N

‡)See REMARK 3.2.
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≤ c(1 + m2
2)

N
( 1 + j2

1 + (j − 1)2m2
2

)N

≤ c ,

where c is independent of aj and m. Hence, by multiplying (1 + ‖m‖2)N to the both sides of
(12) replaced a and N by aj and 2N respectively, and then, by letting j go to ∞, it follows
that

sup
m∈Z2

(1 + ‖m‖2)N |f (m)| < ∞ .

Conversely, we suppose that f ∈ S(Zn). Since m0 = m0(a, k) is in H(a, k) and thus, lies on
the line m0 + ta0, t ∈ R, and a ⊥ a0. Hence

‖m0‖ ≥ |m0a|
‖a‖ = |k|

‖a‖
and thus,

1

1 + ‖m0‖2 ≤ 1 + ‖a‖2

1 + k2 .

Therefore, the desired result follows from the decomposition of F . �

REMARK 3.2. As pointed in §2, when n > 2, the inversion formula (10) in Proposition
3.1 is not true. The one replaced a by aj holds.

PROPOSITION 3.3. Let F(a, k) = f (m0) + g(a, k), where m0 = m(a, k) ∈ D(a).

We suppose that f belongs to S(Z2) and g̃(a, ·)(λ) = ˜f |D(a)c(λa). Then for each N =
0, 1, 2, . . . ,

|g(a, k)| ≤ c

‖a‖(1 + ‖m0‖)N ,

where c is independent of a and k.

PROOF. We note that

g(a, k) =
∫

T

˜f |D(a)c(λa)e−iλkdλ

=
∑

m∈D(a)c,ma=k

f (m)

=
∑

m�=m0(a,k)∈H(a,k)

f (m) .

As in the calculation that yields (8), g satisfies the desired estimate. �

We now define S∗(G) as follows.
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DEFINITION 3.4. Let S∗(G) be the space of all F(a, k) on G being of the form

F(a, k) = f (m0) + g(a, k) ,(13)

where f ∈ S(Z2), m0 = m0(a, k) ∈ D(a) and g satisfies that for λ ∈ T,

g̃(a, ·)(λ) = ˜f |D(a)c(λa) .(14)

According to Propositions 3.1 and 3.3, if F ∈ S∗(G), then the decomposition F(a, k) =
f (m0) + g(a, k) is unique and the following properties hold: For each N = 0, 1, 2, . . . ,

|g(a, k)| ≤ c

‖a‖(1 + ‖m0‖)N ,

|F(a, k)| ≤ c
(1 + ‖a‖2

1 + k2

)N

,

lim‖a‖→∞ F(a, am) = f (m)‡,

where c is independent of a and k. We define for all N = 0, 1, 2, . . . ,

qN(F ) = sup
a∈P,k∈Z

(1 + ‖a‖2

1 + k2

)−N |F(a, k)| .

Then {qN | N = 0, 1, 2, . . .} is a family of semi-norms of S∗(G).
Our main theorem is the following.

THEOREM 3.5. R is a bijective continuous map from S(Z2) to S∗(G).

PROOF. From (6), (7), (8), (9), and Propositions 3.1, it follows that R is an injective
continuous map from S(Zn) to S∗(G). We shall prove that R is surjective. Let F be in S∗(G)

and F = f +g denote the decomposition (13) of F in Definition 3.4. Since f ∈ S(Zn), Rf ∈
S∗(G) and thus, H = F − Rf belongs to S∗(G). By noting (7), the unique decomposition

(13) of H is of the form H = 0 + g ′. Hence g̃ ′(a, ·) = 0 for all a ∈ P by (14). Then g ′ = 0
and thus, F = Rg . �

REMARK 3.6. The relation (14) in Definition 3.4 is used to prove that, if f = 0, then
F(a, ·) = 0 for all a ∈ P . Since Rf (H(a, k)) satisfies (3), we may replace the relation by
the following condition: Let H be an infinite dimensional Hilbert space and {vk | k ∈ Z} a
complete orthonormal system of H. Then F and f satisfy∑

k∈Z

F(a, k)vk =
∑

m∈Zn

f (m)vam

for all a ∈ P . Actually, if f = 0, then F(a, ·) = 0 for all a ∈ P .

‡See REMARK 3.2.
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4. Inversion formula

In the following, let n = 2. In addition to (5) we shall obtain several methods of recov-
ering f from Rf . For a, b ∈ N, let [a, b] denote the sets of integers p such that a ≤ p ≤ b.

For a set S ⊂ Z2, let χS denote the characteristic function of S and |S| the cardinality of S.

4.1. Mean inversion formula. Let Q be a direction function on Z2 which depends
only on directions:

Q(0) = 0, Q(x) = Q(a) = Q(−a) for x = la,(15)

where a ∈ P and l �= 0 ∈ Z. Suppose that ‖Q‖∞ < ∞ and
∑
a∈P

Q(a) < ∞. Then for

f ∈ l1(Z2), since Q(0) = 0, it follows that

Q ∗ f (m) =
∑

m′∈Z2

Q(m − m′)f (m′)

= 1

2

∑
a∈P

∑
l �=0∈Z

Q(a)f (m + la)

= 1

2

∑
a∈P

Q(a0)Rf (H(a, am)) − 1

2
f (m)

∑
a∈P

Q(a) ,

where a ⊥ a0 and a0 ∈ P . Hence we can obtain the following.

THEOREM 4.1. Let Q be a direction function on Z2 and suppose that ‖Q‖∞ < ∞
and

∑
a∈P

Q(a) �= 0 < ∞. Then for f ∈ l1(Z2),

f (m) = 1∑
a∈P

Q(a)

( ∑
a∈P

Q(a0)Rf (H(a, am)) − 2Q ∗ f (m)
)

.(16)

COROLLARY 4.2. Let {Qi}, i ∈ N, be a sequence of direction functions on Z2 satis-
fying

(a) ‖Qi‖∞ < C for all i,

(b)
∑
a∈P

Qi(a) → ∞ if i → ∞.

Then for f ∈ l1(Z2),

f (m) = lim
i→∞

1∑
a∈P

Qi(a)

∑
a∈P

Qi(a0)Rf (H(a, am)) .

For example, if we take Qi(x) = χB(i)(a) for x = la, then we see that

f (m) = lim
i→∞

1

|B(i) ∩ P |
∑

a∈B(i)∩P
Rf (H(a, am)) .
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PROOF. Since ‖Qi ∗ f ‖∞ ≤ ‖Qi‖∞‖f ‖1 ≤ C‖f ‖1,
( ∑
a∈P

Qi(a)
)−1

Qi ∗ f → 0 if

i → ∞ by (b). Hence the desired formula follows from (16). �

COROLLARY 4.3. Let {Qi}, i ∈ N, be a sequence of direction functions on Z2. Fur-
thermore, we suppose that

(a) ‖Qi‖∞ < C for all i,

(b) supp Qi ⊂ B(ri)
c where ri → ∞ if i → ∞,

(c) lim
i→∞

∑
a∈P

Qi(a) > 0 .

Then for f ∈ l1(Z2),

f (m) = lim
i→∞

1∑
a∈P

Qi(a)

∑
a∈P

Qi(a0)Rf (H(a, am)) .

For example, if we take a finite subset Si in B(ri )
c and let Qi(x) = χSi (a) for x = la, then

f (m) = lim
i→∞

1

|Si |
∑
a∈Si

Rf (H(a, am)) .

PROOF. Since Qi(0) = 0, |Qi ∗ f (m)| ≤ ‖Qi‖∞
∑

m′∈B(ri)
c

|f (m + m′)| ≤

C
∑

m′∈B(ri)c
|f (m + m′)|. Hence, |Qi ∗ f (m)| → 0 if i → ∞, because f ∈ l1(Z2) and

(b). Therefore, the desired formula follows from (16) and (c). �

REMARK 4.4. These corollaries are generalizations of the formulas obtained in [2],
Theorem 2.1 (a) and (b). In Corollary 4.3, if we take Si = {ai}, ai ∈ P , then we can deduce
(5).

4.2. Discrete Fourier inversion formula. We introduce an inversion formula using
the discrete Fourier transform.

Step1. We first suppose that supp f ⊂ [−N,N]2. Since |am| ≤ (|a1| + |a2|)N = |a|N ,

where |a| = |a1|+|a2|, for a = (a1, a2) ∈ P and m ∈ [−N,N]2, the support of Rf (H(a, k))

with respect to k is in [−|a|N, |a|N]. We recall the discrete Fourier transform on [−N,N]2

and its inversion formula: For t = (t1, t2), 0 ≤ t1, t2 ≤ 2N , the discrete Fourier transform
F(t) of f (n) is given by

F(t) = 1

(2N + 1)2

2N∑
n1,n2=0

f ((n1, n2) − (N,N))e−i
2(n1t1+n2t2)π

2N+1
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and for n = (n1, n2), −N ≤ n1, n2 ≤ N , f (m) is recovered as

f (n) =
2N∑

t1,t2=0

F(t)ei
2((n1+N)t1+(n2+N)t2)π

2N+1

=
∑

t∈[0,2N]2

F(t)(−1)|t |ei
(2nt−|t|)π

2N+1 .(17)

Step2. We apply the slice formula (3). For each a = (a1, a2) ∈ P with a1, a2 ≥ 0, and
l ∈ Z,

|a|N∑
k=−|a|N

Rf (H(a, k))e−i
2(k+|a|N)lπ

2N+1

=
∑

m∈Z2

f (m)e−i
2(am+|a|N)lπ

2N+1(18)

=
∑

m∈Z2

f ((m1,m2) − (N,N))e−i
2l(m1a1+m2a2)π

2N+1

=(2N + 1)2F(la) .

Step3. We combine (17) and (18). Let P(N) = P ∩ [0, 2N]2 and Z+ the set of the
positive integers. We denote t = (t1, t2) �= (0, 0), 0 ≤ t1, t2 ≤ 2N , as

t = (t1, t2) = lt at ,

where at ∈ P(N) and lt ∈ Z+. When t = (0, 0), we let lt = 0 and at is arbitrary. Then,
replacing F(t) = F(ltat ) in (17) with (18), we see that

f (n) = 1

(2N + 1)2

∑
t∈[0,2N]2

( |at |N∑
k=−|at |N

Rf (H(at , k))e−i
2(k+|at |N)lt π

2N+1

)

× (−1)|t |ei
(2nt−|t|)π

2N+1

= 1

(2N + 1)2

∑
t∈[0,2N]2

( |at |N∑
k=−|at |N

Rf (H(at , k))e−i
2(k−nat )lt π

2N+1

)
.

For a ∈ P(N) let L(a,N) = max{l ∈ N | la ∈ [0, 2N]2}. We recall that, when t = (0, 0),
lt = 0, and that

∑
k∈Z

Rf (H(at, k)) = ∑
m∈Z2

f (m). Hence, we can rewrite the previous equation

as

f (n) = 1

(2N + 1)2

( ∑
a∈P(N)

( |a|N∑
k=−|a|N

Rf (H(a, k))

L(a,N)∑
l=1

e−i 2(k−na)lπ
2N+1

))
.
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Step4. Let f be an arbitrary function in l1(Z2). Then it is easy to see that

1

(2N + 1)2

∣∣∣ ∑
a∈P(N)

( |a|N∑
k=−|a|N

R(f − fχN)(H(a, k))

L(a,N)∑
l=1

e−i
2(k−na)lπ

2N+1

)∣∣∣

≤ 1

(2N + 1)2

∑
a∈P(N)

L(a,N)

|a|N∑
k=−|a|N

|R(f − fχN)(H(a, k))|

≤ N2

(2N + 1)2

∑
‖m‖>N

|f (m)| .

Since the last term goes to 0 if N → ∞, we can obtain the following.

THEOREM 4.5. For each N ∈ N, let P(N) = P ∩ [0, 2N]2 and for each a ∈ P(N),
let L(a,N) = max{l ∈ N | la ∈ [0, 2N]2}. Then for f ∈ l1(Z2),

f (n) = lim
N→∞

1

(2N + 1)2

∑
a∈P(N)

( |a|N∑
k=−|a|N

Rf (H(a, k))

L(a,N)∑
l=1

e−i
2(k−na)lπ

2N+1

)
.

4.3. Algorithmic inversion formula. We introduce a method to recover f (0, 0) from
Rf (H(a, k)) by an algorithmic process. We first note that, if f is supported on [−N,N]2and
‖a‖ > N , then

Rf (H(a, 0)) = f (0, 0) ,

because [−N,N]2 ∩ H(a, 0) = {(0, 0)} (see Fig. 1).
In the following, we shall consider an algorithm by which f (0, 0) is recovered from

Rf (H(a, k)) with ‖a‖ ≤ N .
Step1. For each j = 0, 1, 2, . . . , we first define a set V (N, j) of points in [−N,N]2 and

a set E(N, j) of hyperplanes on Z2 inductively. The case of N = 3 is referred to Example

FIGURE 1. N = 3 and a = (4,−1)
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4.6. Let

E(N, 0) = ∅, V (N, 0) = [−N,N]2.

Let E(N, 1) be the set of hyperplanes H(a, ap) through p ∈ V (N, 0) such that

(i) H(a, ap) ∩ V (N, 0) = {p}
(ii) ‖a‖ is minimum among H(a, ap) satisfying (i)

and V (N, 1) = V (N, 0) − {p | H(a, ap) ∈ E(N, 1)}. Furthermore, inductively, we define
E(N, j + 1) as the set of hyperplanes H(a, ap) through p ∈ V (N, j) such that

(i) H(a, ap) ∩ V (N, j) = {p}
(ii) ‖a‖ is minimum among H(a, ap) satisfying (i)

and V (N, j + 1) = V (N, j) − {p | H(a, ap) ∈ E(N, j + 1)}.
We note that there exists jN for which V (N, jN − 1) is not contained in [−(N − 1),N −

1]2, but

V (N, jN) ⊂ [−(N − 1),N − 1]2.

EXAMPLE 4.6. Let N = 3. In the following figures we denote the area only in the
first quadrant.

V (3, j)+ = V (3, j) ∩ [0, 3]2,

E(3, j)+ = {H(a, ap) ∈ E(3, j) | p ∈ [0, 3]2} .

In the first line of Fig. 2, we let a = (1, 1) and p = (3, 3). Then H(a, 6) ∩ V (3, 0) = {p}
and ‖a‖ = √

2. Hence it follows that

E(3, 1)+ = {H((1, 1), 6)}
V (3, 1)+ = [0, 3]2 − {(3, 3)} .

In the second line in Fig. 2, we let a = (1, 2), (2, 1) and p = (2, 4), (4, 2) respectively. Then

H(a, 10) ∩ V (3, 1) = {p} and ‖a‖ = √
5. Hence it follows that

E(3, 2)+ = {H((1, 2), 10),H((2, 1), 10)}
V (3, 2)+ = V (3, 1)+ − {(2, 4), (4, 2)} .

Finally, we see that V (3, 4)+ ⊂ [0, 2]2 and thus, j3 = 4.

Step2. We define an operator ShaveN for a function f on [−N,N]2. We note that, if f is
supported in V (N, j), then Rf (H(a, ap)) = f (p) for each H(a, ap) ∈ E(N, j). We define
a set of functions {fj } inductively as
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FIGURE 2.
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f1 = f −
∑

H(a,ap)∈E(N,1)

Rf (H(a, ap))δp ,

fj+1 = fj −
∑

H(a,ap)∈E(N,j+1)

Rfj (H(a, ap))δp

and put

ShaveN(f ) = fjN .

Clearly, ShaveN(f ) is supported on [−(N − 1),N − 1]2.
Step3. We replace N by N − 1 and apply the previous arguments to ShaveN(f ), which

is supported on [−(N − 1),N − 1]2. Furthermore, we repeat the process successively. Then
we can easily deduce that

f (0, 0)δ(0,0) = Shave1 ◦ Shave2 ◦ · · · ◦ ShaveN−1 ◦ ShaveN(f )

= f −
∑

p∈[−N,N]2,
p �=(0,0)

dN(Rf, p)δp ,(19)

where dN(Rf, p) is a linear combination of Rf (H) with

H ∈ N∪
n=1

jn∪
j=1

E(n, j) .

Therefore, for p �= (0, 0) ∈ [−N,N]2, it follows that

f (p) = dN(Rf, p) .

For p = (0, 0), we take the discrete Radon transform over H((0, 1), 0). Since H((0, 1), 0) =
{(q, 0) | q ∈ Z}, it follows that

f (0, 0) = Rf (H(0, 1), 0) −
N∑

q=−N, q �=0

dN(Rf, (q, 0)) .(20)

REMARK 4.7. We suppose that all a of H(a, ap) in ∪
1≤j≤jN−1

E(N, j) are of the

forms (1,±l) or (±l, 1), l ≥ 1, and l0 their maximum. Then we can deduce that
1 + 2 + · · · + l0 + l0 ≥ N (see Fig. 3 for the case of N = 9). Therefore, since E(N, jN) =
{H((1, 0),±N),H((0, 1),±N)}, the maximum ‖a‖ of H(a, ap) in ∪

1≤j≤jN

E(N, j) is

O(
√

N). Hence, in the formulas (19) and (20) we use Rf (H(a, k)) with ‖a‖ = O(
√

N).

Step4. Let f be an arbitrary function in S(Z2). We extend the definition of the operator
ShaveN to f , that is, we apply (19) to f . We note that, in the process to define ShaveN , each

hyperplane H(a, ap) is used to vanish the value f (p) at p when f is supported in [−N,N]2.
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FIGURE 3. V (9, 16)+, j9 = 17 and l0 = 3

Therefore, the total number of discrete hyperplanes which appear to define ShaveN is at most

O(N2) and thus, the total number of hyperplanes appeared in (19) is O(N3). Since f − fχN

is supported in B(N)c and is rapidly decreasing, it is easy to see that for each q ∈ N, |f (m)| ≤
Cq(1 + ‖m‖2)−q and thus, ‖R(f − fχN)‖∞ ≤ Cq

∑
m∈B(N)c(1 + ‖m‖2)−q ≤ cN−2(q−1).

Hence, if q > 2, then

‖Shave1 ◦ · · · ◦ ShaveN(f − fχN)‖∞ ≤ CqN3N−2(q−1),

and this goes to 0 if N → ∞. Hence, it follows that

f (0, 0)δ(0,0) =(f χN)(0, 0)δ(0,0)

=Shave1 ◦ Shave2 ◦ · · · ◦ ShaveN−1 ◦ ShaveN(f χN)

= lim
N→∞ Shave1 ◦ Shave2 ◦ · · · ◦ ShaveN−1 ◦ ShaveN(f ) .

Therefore, we can obtain the following.

THEOREM 4.8. Let notations be as above. For f ∈ S(Z2),

f (p) = lim
N→∞ dN(R(f ), p), p �= (0, 0),

f (0, 0) = Rf (H(0, 1), 0) − lim
N→∞

N∑
q=−N, q �=0

dN(R(f ), (q, 0)) .
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