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Abstract. We generalize Toponogov’s maximal diameter sphere theorem from the radial curvature geometry’s
standpoint. As a corollary to our main theorem, we prove that for a complete connected Riemannian n-manifold M

having radial sectional curvature at a point bounded from below by the radial curvature function of an ellipsoid of
prolate type, the diameter of M does not exceed the diameter of the ellipsoid. Furthermore if the diameter of such an
M equals that of the ellipsoid, then M is isometric to the n-dimensional ellipsoid of revolution.

1. Introduction

The maximal diameter sphere theorem proved by Toponogov says as follows:

THEOREM 1.1 ([T]). Let M be a complete connected Riemannian manifold whose
sectional curvature is bounded from below by a positive constant H . Then the diameter of M

does not exceed π/
√

H . Furthermore if the diameter of M equals π/
√

H , then M is isometric

to the sphere with radius
√

H .

This theorem was generalized by Cheng [Ch] for a complete connected Riemannian
manifold whose Ricci curvature is bounded from below by a positive constant H .

A natural extension of the maximal diameter sphere theorem by the radial curvature
would be that for a complete connected Riemannian manifold M whose radial sectional cur-
vature at a point p ∈ M is not less than a positive constant H ,

(A) is the diameter of M at most π/
√

H ?

(B) Furthermore, if the diameter of M equals π/
√

H , is M isometric to the sphere with the

radius
√

H?

Notice that the problem (A) can be affirmatively solved. It is an easy consequence from
Theorem ?? (or the Main theorem in [SST]). Here, we define the radial plane and radial
curvature from a point p of a complete connected Riemannian manifold M . For each point
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q ∈ M distinct from the point p, a 2-dimensional linear subspace σ of TqM is called a radial
plane at q if there exists a unit speed minimal geodesic segment γ : [0, d(p, q)] → M

satisfying γ ′(d(p, q)) ∈ σ . The sectional curvature K(σ) of a radial plane σ ⊂ TqM at q is
called a radial curvature at p.

The problem (B) is still open, but one can generalize the maximal diameter sphere the-
orem for a manifold which has radial curvature at a point bounded from below by the radial
curvature function of a 2-sphere of revolution, which will be defined later, if the 2-sphere of
revolution belongs to a certain class.

For introducing this class of a 2-sphere of revolution, we start to define a 2-sphere of
revolution. Let M̃ denote a complete Riemannian manifold homeomorphic to a 2-sphere. M̃

is called a 2-sphere of revolution if M̃ admits a point p̃ such that for any two points q̃1, q̃2 on
M̃ with d(p̃, q̃1) = d(p̃, q̃2), where d( , ) denotes the Riemannian distance function, there
exists an isometry f on M̃ satisfying f (q̃1) = q̃2 and f (p̃) = p̃. The point p̃ is called a
pole of M̃ . It is proved in [ST] that M̃ has another pole q̃ and the Riemannian metric g of

M̃ is expressed as g = dr2 + m(r)2dθ2 on M̃ \ {p̃, q̃}, where (r, θ) denote geodesic polar
coordinates around p̃ and

m(r(x)) :=
√
g

((
∂

∂θ

)
x

,

(
∂

∂θ

)
x

)
.

Hence M̃ has a pair of poles p̃ and q̃. In what follows, p̃ denotes a pole of M̃ and we fix it.
Each unit speed geodesic emanating from p̃ is called a meridian. It is observed in [ST] that

each meridian μ : [0, 4a] → M̃ , where a := 1
2d(p̃, q̃), passes through q̃ and is periodic,

hence, μ(0) = μ(4a) = p̃, μ′(0) = μ′(4a). The function G ◦ μ : [0, 2a] → R is called the
radial curvature function of M̃, where G denotes the Gaussian curvature of M̃ .

A 2-sphere of revolution M̃ with a pair of poles p̃ and q̃ is called a model surface if M̃

satisfies the following two properties:

(1.1) M̃ has a reflective symmetry with respect to the equator, r = a = 1
2d(p̃, q̃).

(1.2) The Gaussian curvature G of M̃ is strictly decreasing along a meridian from the point
p̃ to the point on the equator.

A typical example of a model surface is an ellipsoid of prolate type, i.e., the surface defined
by

x2 + y2

a2 + z2

b2 = 1, b > a > 0 .

The points (0, 0,±b) are a pair of poles and z = 0 is the equator.
The fact that the Gaussian curvature of a model surface is not always positive everywhere

is the worthy of note. In [ST], an interesting model surface was introduced. The surface
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generated by the (x, z)-plane curve (m(t), 0, z(t)) is a model surface, where

m(t) :=
√

3

10

(
9 sin

√
3

9
t + 7 sin

√
3

3
t

)
, z(t) :=

∫ t

0

√
1 − m′(t)2dt .

It is easy to see that the Gaussian curvature of the equator r = 3
√

3π/2 is −1.

Let M be a complete connected n-dimensional Riemannian manifold with a base point
p. M is said to have radial sectional curvature at p bounded from below by that of a model
surface M̃ if for any point q( �= p) and any radial plane σ ⊂ TqM at q , the sectional curvature
K(σ) of M satisfies K(σ) ≥ G ◦ μ(d(p, q)).

For each 2-dimensional model M̃ with a Riemannian metric dr2 + m(r)2dθ2, we define
an n-dimensional model M̃n homeomorphic to an n-sphere Sn with a Riemannian metric

g∗ = dr2 + m(r)2dΘ2,

where dΘ2 denotes the Riemannian metric of the (n − 1)-dimensional unit sphere Sn−1(1).
For example, the n-dimensional model of the ellipsoid above is the n-dimensional ellipsoid
defined by

n∑
i=1

x2
i

a2 + x2
n+1

b2 = 1 .

In this paper, we generalize the maximal diameter sphere theorem as follows:

MAIN THEOREM. Let M be a complete connected n-dimensional Riemannian manifold
with a base point p ∈ M whose radial sectional curvature at p bounded from below by that of
a model surface M̃ . Then, the diameter of M does not exceed the diameter of M̃ . Furthermore
if the diameter of M equals that of M̃, then M is isometric to the n-dimensional model M̃n.

As a corollary, we get an interesting result:

COROLLARY TO MAIN THEOREM. For any complete connected n-dimensional Rie-
mannian manifold M having radial sectional curvature at a point p bounded from below by
that of the ellipsoid M̃ defined by

x2 + y2

a2 + z2

b2 = 1, b > a > 0,

the diameter of M does not exceed the diameter of M̃ . Furthermore if the diameter of such an

M equals that of M̃, then M is isometric to the n-dimensional ellipsoid
∑n

i=1
x2
i

a2 + x2
n+1
b2 = 1.

We refer to [CE] for basic tools in Riemannian Geometry, and [SST] for some properties
of geodesics on a surface of revolution.

The present author would like to deeply express thanks to Professor Minoru Tanaka for
suggesting the Main Theorem and giving him various comments.
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2. Preliminaries

Here, we review the notion of a cut point and a cut locus. Let M be a complete Riemann-
ian manifold with a base point p. Let γ : [0, a] → M denote a unit speed minimal geodesic
segment emanating from p = γ (0) on M . If any extended geodesic segment γ̄ : [0, b] → M

of γ , where b > a, is not minimizing arc joining p to γ̄ (b) anymore, then the endpoint γ (a)

of the geodesic segment is called a cut point of p along γ . For each point p on M , the cut lo-
cus Cp is defined by the set of all cut points along the minimal geodesic segments emanating
from p.

REMARK 2.1. It is known (for example see [SST]) that the cut locus has a local tree
structure for 2-dimensional Riemannian manifolds.

We need the following two theorems, which was proved by Sinclair and Tanaka [ST].

THEOREM 2.2 ([ST]). Let M be a 2-sphere of revolution with a pair of poles p, q

satisfying the following two properties,

(i) M is symmetric with respect to the reflection fixing r = a, where 2a denotes the distance
between p and q .

(ii) The Gaussian curvature G of M is monotone along a meridian from the point p to the
point on r = a.

Then the cut locus of a point x ∈ M \ {p, q} with θ(x) = 0 is a single point or a subarc of the
opposite half meridian θ = π (resp. the parallel r = 2a − r(x)) when G is decreasing (resp.
increasing) along a meridian from p to the point on r = a. Furthermore, if the cut locus of a
point x ∈ M \ {p, q} is a single point, then the Gaussian curvature is constant.

THEOREM 2.3 ([ST]). Let M be a complete connected n-dimensional Riemannian
manifold with a base point p such that M has radial sectional curvature at p bounded from
below by the radial curvature function of a 2-sphere of revolution M̃ with a pair of poles p̃, q̃.

Suppose that the cut locus of any point on M̃ distinct from its two poles is a subset of the half
meridian opposite to the point. Then for each geodesic triangle �(pxy) in M , there exists a
geodesic triangle �̃(pxy) := �(p̃x̃ỹ) in M̃ such that

d(p, x) = d(p̃, x̃), d(p, y) = d(p̃, ỹ), d(x, y) = d(x̃, ỹ), (2.1)

and such that

� (pxy) � � (p̃x̃ỹ), � (pyx) � � (p̃ỹx̃), � (xpy) � � (x̃p̃ỹ) . (2.2)

Here, � (pxy) denotes the angle at the vertex x of the geodesic triangle �(pxy).

3. Proof of Main Theorem

Let M be a complete connected n-dimensional Riemannian manifold with a base point
p and M̃ a 2-sphere of revolution with a pair of poles p̃, q̃ satisfying (1.1) and (1.2) in the
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introduction, i.e., a model surface.
From now on, we assume that M has radial sectional curvature at p bounded from below

by that of M̃ . By scaling the Riemannian metrics of M and M̃, we may assume that 2a = π .

LEMMA 3.1. The perimeter of any geodesic triangle �̃(pxy) of M̃ does not exceed
2π , i.e.,

d(p̃, x̃) + d(p̃, ỹ) + d(x̃, ỹ) � 2π . (3.1)

PROOF. Since d(p̃, q̃) = 2a = π , it follows from the triangle inequality that

d(x̃, ỹ) � d(q̃, x̃) + d(q̃, ỹ)

= (π − d(p̃, x̃)) + (π − d(p̃, ỹ))

= 2π − d(p̃, x̃) − d(p̃, ỹ) .

Therefore, the inequality (3.1) holds. �

LEMMA 3.2. The perimeter of a geodesic triangle �(pxy) of M does not exceed 2π .

PROOF. Let �(pxy) be any geodesic triangle of M . From Theorem ??, we get a
geodesic triangle �̃(pxy) of M̃ satisfying (2.1). Hence, by Lemma 3.1, the perimeter of
�(pxy) does not exceed 2π . �

LEMMA 3.3. The diameter of M̃ equals π, where the diameter diam M̃ of M̃ is defined
by

diam M̃ := max{d(x̃, ỹ)|x̃, ỹ ∈ M̃} .

PROOF. Choose any points x̃, ỹ on M̃ . By the triangle inequality,

d(x̃, ỹ) � d(p̃, x̃) + d(p̃, ỹ) . (3.2)

Thus, by combining (3.1) and (3.2), we obtain

d(x̃, ỹ) � π = d(p̃, q̃)

for any x̃, ỹ on M̃ . �

LEMMA 3.4. The diameter diam M of M does not exceed the diameter of M̃.

PROOF. Choose a pair of points x, y ∈ M satisfying d(x, y) = diam M . We first
consider the case where x = p or y = p. By the Rauch comparison theorem, there does
not exist a minimal geodesic segment emanating from p whose length exceeds π, since the
manifold M has radial curvature at p bounded from below by the radial curvature function of
the model surface M̃. Thus, diam M = d(x, y) � π. Hence we assume x �= p and y �= p.

Then, for the geodesic triangle �(pxy) in M , there exists a geodesic triangle �̃(pxy) in M̃

satisfying (2.1). Therefore, we obtain diam M = d(x̃, ỹ) � diam M̃ . �
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LEMMA 3.5. If diam M = diam M̃ , then there exists a point q ∈ M with d(p, q) =
diam M̃.

PROOF. Let x, y ∈ M be points satisfying π = diam M = d(x, y). Supposing that
x �= p and y �= p, we will get a contradiction. Then, there exists a geodesic triangle �(pxy)

with d(x, y) = π. It follows from Theorem ?? that there exists a geodesic triangle �̃(pxy)

corresponding to �(pxy) satisfying d(x̃, ỹ) = d(x, y) = π . By the triangle inequality,
d(p̃, x̃) + d(p̃, ỹ) � d(x̃, ỹ) = π , and Lemma 3.1, we get

d(p̃, x̃) + d(p̃, ỹ) = π = d(x̃, ỹ) .

This means that � (x̃p̃ỹ) = π so that the subarc α (passing through p̃) of the meridian joining
x̃ to ỹ is minimal. Hence the complementary subarc of α in the meridian is also a minimal
geodesic segment joining x̃ to ỹ, since the length of each meridian is 2π . Therefore, by
Theorem ??, ỹ is a unique cut point of x̃ and hence, the Gaussian curvature G of M̃ is constant.
We get a contradiction since G is strictly decreasing along a meridian from p to the point on
the equator. This implies the existence of the point q. �

LEMMA 3.6. If there exists a point q ∈ M with d(p, q) = diam M, then q is a unique
cut point of p, and

K(σ) = G ◦ μ(d(p, x))

holds for any point x ∈ M \ {p} and any radial plane σ at x.

PROOF. It follows from Lemma 3.4 that the point q is the farthest point from p. Hence
q ∈ Cp. Choose any point x ∈ M \ {p, q}. By the triangle inequality,

d(p, x) + d(x, q) � d(p, q) = π

and by Lemma 3.2,

d(p, x) + d(x, q) + d(p, q) � 2π .

Hence, we get

d(p, x) + d(x, q) = d(p, q) = π

and it is easy to see that q is a unique cut point of p because � (pxq) = π .
Next, we will prove that K(σ) = G ◦ μ(d(p, x)) for any x ∈ M \ {p, q} and any

radial plane σ at x. Suppose that there exist a point x ∈ M \ {p, q} and a radial plane σ at
x such that K(σ) > G ◦ μ(d(p, x)). Let γ : [0, π] → M denote the minimal geodesic
segment emanating from p passing through x. Choose a unit tangent vector v ∈ σ ⊂ TxM

orthogonal to γ ′(d(p, x)). Let Y (t) denote the Jacobi field along γ (t) satisfying Y (0) = 0
and Y (d(p, x)) = v, and hence σ is spanned by Y (d(p, x)) and γ ′(d(p, x)). By the Rauch
comparison theorem, there exists a conjugate point γ (t1) of p along γ for some t1 ∈ (0, π),

since K(σ) > G ◦ μ(d(p, x)) and the sectional curvature of the radial plane spanned by
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Y (t) and γ ′(t) is not less than G ◦ μ(t) for each t ∈ (0, π). This contradicts the fact that the
geodesic segment γ is minimal. �

PROOF OF MAIN THEOREM. The first claim is clear from Lemma 3.4. Assume
diam M = diam M̃. By Lemmas 3.5 and 3.6, K(σ) = G ◦ μ(d(p, x)) for any point
x ∈ M \ {p} and any radial plane σ at x. Thus, it follows from Lemma 1 and Theorem
3 in [KK] that M is isometric to the n-dimensional model of M̃. Incidentally, the explicit
isometry ϕ between M and the n-dimensional model of M̃ is given by

ϕ(x) :=
{

expp̃ ◦I ◦ exp−1
p (x) if x �= q

q̃ if x = q,

where I : TpM → Tp̃M̃ denotes a linear isometry and q denotes the unique cut point of p.
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