Maximal Diameter Sphere Theorem for Manifolds with Nonconstant Radial Curvature

Nathaphon BOONNAM
Tokai University
(Communicated by Y. Furuya)

Abstract

We generalize Toponogov's maximal diameter sphere theorem from the radial curvature geometry's standpoint. As a corollary to our main theorem, we prove that for a complete connected Riemannian n-manifold M having radial sectional curvature at a point bounded from below by the radial curvature function of an ellipsoid of prolate type, the diameter of M does not exceed the diameter of the ellipsoid. Furthermore if the diameter of such an M equals that of the ellipsoid, then M is isometric to the n-dimensional ellipsoid of revolution.

1. Introduction

The maximal diameter sphere theorem proved by Toponogov says as follows:
ThEOREM 1.1 ([T]). Let M be a complete connected Riemannian manifold whose sectional curvature is bounded from below by a positive constant H. Then the diameter of M does not exceed π / \sqrt{H}. Furthermore if the diameter of M equals π / \sqrt{H}, then M is isometric to the sphere with radius \sqrt{H}.

This theorem was generalized by Cheng [Ch] for a complete connected Riemannian manifold whose Ricci curvature is bounded from below by a positive constant H.

A natural extension of the maximal diameter sphere theorem by the radial curvature would be that for a complete connected Riemannian manifold M whose radial sectional curvature at a point $p \in M$ is not less than a positive constant H,
(A) is the diameter of M at most π / \sqrt{H} ?
(B) Furthermore, if the diameter of M equals π / \sqrt{H}, is M isometric to the sphere with the radius \sqrt{H} ?

Notice that the problem (A) can be affirmatively solved. It is an easy consequence from Theorem ?? (or the Main theorem in [SST]). Here, we define the radial plane and radial curvature from a point p of a complete connected Riemannian manifold M. For each point

[^0]$q \in M$ distinct from the point p, a 2-dimensional linear subspace σ of $T_{q} M$ is called a radial plane at q if there exists a unit speed minimal geodesic segment $\gamma:[0, d(p, q)] \rightarrow M$ satisfying $\gamma^{\prime}(d(p, q)) \in \sigma$. The sectional curvature $K(\sigma)$ of a radial plane $\sigma \subset T_{q} M$ at q is called a radial curvature at p.

The problem (B) is still open, but one can generalize the maximal diameter sphere theorem for a manifold which has radial curvature at a point bounded from below by the radial curvature function of a 2-sphere of revolution, which will be defined later, if the 2-sphere of revolution belongs to a certain class.

For introducing this class of a 2 -sphere of revolution, we start to define a 2 -sphere of revolution. Let \widetilde{M} denote a complete Riemannian manifold homeomorphic to a 2 -sphere. \widetilde{M} is called a 2 -sphere of revolution if \widetilde{M} admits a point \tilde{p} such that for any two points $\tilde{q}_{1}, \tilde{q}_{2}$ on \tilde{M} with $d\left(\tilde{p}, \tilde{q}_{1}\right)=d\left(\tilde{p}, \tilde{q}_{2}\right)$, where $d($,$) denotes the Riemannian distance function, there$ exists an isometry f on \widetilde{M} satisfying $f\left(\tilde{q}_{1}\right)=\tilde{q}_{2}$ and $f(\tilde{p})=\tilde{p}$. The point \tilde{p} is called a pole of \tilde{M}. It is proved in [ST] that \widetilde{M} has another pole \tilde{q} and the Riemannian metric g of \widetilde{M} is expressed as $g=d r^{2}+m(r)^{2} d \theta^{2}$ on $\widetilde{M} \backslash\{\tilde{p}, \tilde{q}\}$, where (r, θ) denote geodesic polar coordinates around \tilde{p} and

$$
m(r(x)):=\sqrt{g\left(\left(\frac{\partial}{\partial \theta}\right)_{x},\left(\frac{\partial}{\partial \theta}\right)_{x}\right)} .
$$

Hence \tilde{M} has a pair of poles \tilde{p} and \tilde{q}. In what follows, \tilde{p} denotes a pole of \tilde{M} and we fix it. Each unit speed geodesic emanating from \tilde{p} is called a meridian. It is observed in [ST] that each meridian $\mu:[0,4 a] \rightarrow \tilde{M}$, where $a:=\frac{1}{2} d(\tilde{p}, \tilde{q})$, passes through \tilde{q} and is periodic, hence, $\mu(0)=\mu(4 a)=\tilde{p}, \mu^{\prime}(0)=\mu^{\prime}(4 a)$. The function $G \circ \mu:[0,2 a] \rightarrow R$ is called the radial curvature function of \tilde{M}, where G denotes the Gaussian curvature of \tilde{M}.

A 2 -sphere of revolution \tilde{M} with a pair of poles \tilde{p} and \tilde{q} is called a model surface if \widetilde{M} satisfies the following two properties:
(1.1) \tilde{M} has a reflective symmetry with respect to the equator, $r=a=\frac{1}{2} d(\tilde{p}, \tilde{q})$.
(1.2) The Gaussian curvature G of \tilde{M} is strictly decreasing along a meridian from the point \tilde{p} to the point on the equator.
A typical example of a model surface is an ellipsoid of prolate type, i.e., the surface defined by

$$
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1, \quad b>a>0
$$

The points $(0,0, \pm b)$ are a pair of poles and $z=0$ is the equator.
The fact that the Gaussian curvature of a model surface is not always positive everywhere is the worthy of note. In [ST], an interesting model surface was introduced. The surface
generated by the (x, z)-plane curve $(m(t), 0, z(t))$ is a model surface, where

$$
m(t):=\frac{\sqrt{3}}{10}\left(9 \sin \frac{\sqrt{3}}{9} t+7 \sin \frac{\sqrt{3}}{3} t\right), \quad z(t):=\int_{0}^{t} \sqrt{1-m^{\prime}(t)^{2}} d t .
$$

It is easy to see that the Gaussian curvature of the equator $r=3 \sqrt{3} \pi / 2$ is -1 .
Let M be a complete connected n-dimensional Riemannian manifold with a base point p. M is said to have radial sectional curvature at p bounded from below by that of a model surface \widetilde{M} if for any point $q(\neq p)$ and any radial plane $\sigma \subset T_{q} M$ at q, the sectional curvature $K(\sigma)$ of M satisfies $K(\sigma) \geq G \circ \mu(d(p, q))$.

For each 2-dimensional model \tilde{M} with a Riemannian metric $d r^{2}+m(r)^{2} d \theta^{2}$, we define an n-dimensional model \widetilde{M}^{n} homeomorphic to an n-sphere S^{n} with a Riemannian metric

$$
g^{*}=d r^{2}+m(r)^{2} d \Theta^{2},
$$

where $d \Theta^{2}$ denotes the Riemannian metric of the $(n-1)$-dimensional unit sphere $S^{n-1}(1)$. For example, the n-dimensional model of the ellipsoid above is the n-dimensional ellipsoid defined by

$$
\sum_{i=1}^{n} \frac{x_{i}^{2}}{a^{2}}+\frac{x_{n+1}^{2}}{b^{2}}=1
$$

In this paper, we generalize the maximal diameter sphere theorem as follows:
Main Theorem. Let M be a complete connected n-dimensional Riemannian manifold with a base point $p \in M$ whose radial sectional curvature at p bounded from below by that of a model surface \widetilde{M}. Then, the diameter of M does not exceed the diameter of \widetilde{M}. Furthermore if the diameter of M equals that of \tilde{M}, then M is isometric to the n-dimensional model \widetilde{M}^{n}.

As a corollary, we get an interesting result:
Corollary to Main Theorem. For any complete connected n-dimensional Riemannian manifold M having radial sectional curvature at a point p bounded from below by that of the ellipsoid \tilde{M} defined by

$$
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1, \quad b>a>0,
$$

the diameter of M does not exceed the diameter of \widetilde{M}. Furthermore if the diameter of such an M equals that of \tilde{M}, then M is isometric to the n-dimensional ellipsoid $\sum_{i=1}^{n} \frac{x_{i}^{2}}{a^{2}}+\frac{x_{n+1}^{2}}{b^{2}}=1$.

We refer to [CE] for basic tools in Riemannian Geometry, and [SST] for some properties of geodesics on a surface of revolution.

The present author would like to deeply express thanks to Professor Minoru Tanaka for suggesting the Main Theorem and giving him various comments.

2. Preliminaries

Here, we review the notion of a cut point and a cut locus. Let M be a complete Riemannian manifold with a base point p. Let $\gamma:[0, a] \rightarrow M$ denote a unit speed minimal geodesic segment emanating from $p=\gamma(0)$ on M. If any extended geodesic segment $\bar{\gamma}:[0, b] \rightarrow M$ of γ, where $b>a$, is not minimizing arc joining p to $\bar{\gamma}(b)$ anymore, then the endpoint $\gamma(a)$ of the geodesic segment is called a cut point of p along γ. For each point p on M, the cut locus C_{p} is defined by the set of all cut points along the minimal geodesic segments emanating from p.

Remark 2.1. It is known (for example see [SST]) that the cut locus has a local tree structure for 2-dimensional Riemannian manifolds.

We need the following two theorems, which was proved by Sinclair and Tanaka [ST].
Theorem 2.2 ([ST]). Let M be a 2 -sphere of revolution with a pair of poles p, q satisfying the following two properties,
(i) M is symmetric with respect to the reflection fixing $r=a$, where $2 a$ denotes the distance between p and q.
(ii) The Gaussian curvature G of M is monotone along a meridian from the point p to the point on $r=a$.
Then the cut locus of a point $x \in M \backslash\{p, q\}$ with $\theta(x)=0$ is a single point or a subarc of the opposite half meridian $\theta=\pi$ (resp. the parallel $r=2 a-r(x))$ when G is decreasing (resp. increasing) along a meridian from p to the point on $r=a$. Furthermore, if the cut locus of a point $x \in M \backslash\{p, q\}$ is a single point, then the Gaussian curvature is constant.

THEOREM 2.3 ([ST]). Let M be a complete connected n-dimensional Riemannian manifold with a base point p such that M has radial sectional curvature at p bounded from below by the radial curvature function of a 2 -sphere of revolution \tilde{M} with a pair of poles \tilde{p}, \tilde{q}. Suppose that the cut locus of any point on \widetilde{M} distinct from its two poles is a subset of the half meridian opposite to the point. Then for each geodesic triangle $\Delta(p x y)$ in M, there exists a geodesic triangle $\widetilde{\Delta}(p x y):=\triangle(\tilde{p} \tilde{x} \tilde{y})$ in \tilde{M} such that

$$
\begin{equation*}
d(p, x)=d(\tilde{p}, \tilde{x}), \quad d(p, y)=d(\tilde{p}, \tilde{y}), \quad d(x, y)=d(\tilde{x}, \tilde{y}), \tag{2.1}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\angle(p x y) \geqslant \angle(\tilde{p} \tilde{x} \tilde{y}), \quad \angle(p y x) \geqslant \angle(\tilde{p} \tilde{y} \tilde{x}), \quad \angle(x p y) \geqslant \angle(\tilde{x} \tilde{p} \tilde{y}) . \tag{2.2}
\end{equation*}
$$

Here, $L(p x y)$ denotes the angle at the vertex x of the geodesic triangle $\Delta(p x y)$.

3. Proof of Main Theorem

Let M be a complete connected n-dimensional Riemannian manifold with a base point p and \widetilde{M} a 2 -sphere of revolution with a pair of poles \tilde{p}, \tilde{q} satisfying (1.1) and (1.2) in the
introduction, i.e., a model surface.
From now on, we assume that M has radial sectional curvature at p bounded from below by that of \tilde{M}. By scaling the Riemannian metrics of M and \widetilde{M}, we may assume that $2 a=\pi$.

LEMMA 3.1. The perimeter of any geodesic triangle $\widetilde{\Delta}(p x y)$ of \widetilde{M} does not exceed 2π, i.e.,

$$
\begin{equation*}
d(\tilde{p}, \tilde{x})+d(\tilde{p}, \tilde{y})+d(\tilde{x}, \tilde{y}) \leqslant 2 \pi . \tag{3.1}
\end{equation*}
$$

Proof. Since $d(\tilde{p}, \tilde{q})=2 a=\pi$, it follows from the triangle inequality that

$$
\begin{aligned}
d(\tilde{x}, \tilde{y}) & \leqslant d(\tilde{q}, \tilde{x})+d(\tilde{q}, \tilde{y}) \\
& =(\pi-d(\tilde{p}, \tilde{x}))+(\pi-d(\tilde{p}, \tilde{y})) \\
& =2 \pi-d(\tilde{p}, \tilde{x})-d(\tilde{p}, \tilde{y}) .
\end{aligned}
$$

Therefore, the inequality (3.1) holds.
LEMMA 3.2. The perimeter of a geodesic triangle $\triangle(p x y)$ of M does not exceed 2π.
Proof. Let $\Delta(p x y)$ be any geodesic triangle of M. From Theorem ??, we get a geodesic triangle $\widetilde{\Delta}(p x y)$ of \widetilde{M} satisfying (2.1). Hence, by Lemma 3.1, the perimeter of $\Delta(p x y)$ does not exceed 2π.

Lemma 3.3. The diameter of \tilde{M} equals π, where the diameter $\operatorname{diam} \tilde{M}$ of \tilde{M} is defined by

$$
\operatorname{diam} \tilde{M}:=\max \{d(\tilde{x}, \tilde{y}) \mid \tilde{x}, \tilde{y} \in \tilde{M}\}
$$

Proof. Choose any points \tilde{x}, \tilde{y} on \tilde{M}. By the triangle inequality,

$$
\begin{equation*}
d(\tilde{x}, \tilde{y}) \leqslant d(\tilde{p}, \tilde{x})+d(\tilde{p}, \tilde{y}) . \tag{3.2}
\end{equation*}
$$

Thus, by combining (3.1) and (3.2), we obtain

$$
d(\tilde{x}, \tilde{y}) \leqslant \pi=d(\tilde{p}, \tilde{q})
$$

for any \tilde{x}, \tilde{y} on \tilde{M}.
Lemma 3.4. The diameter $\operatorname{diam} M$ of M does not exceed the diameter of \tilde{M}.
Proof. Choose a pair of points $x, y \in M$ satisfying $d(x, y)=\operatorname{diam} M$. We first consider the case where $x=p$ or $y=p$. By the Rauch comparison theorem, there does not exist a minimal geodesic segment emanating from p whose length exceeds π, since the manifold M has radial curvature at p bounded from below by the radial curvature function of the model surface \tilde{M}. Thus, $\operatorname{diam} M=d(x, y) \leqslant \pi$. Hence we assume $x \neq p$ and $y \neq p$. Then, for the geodesic triangle $\Delta(p x y)$ in M, there exists a geodesic triangle $\widetilde{\Delta}(p x y)$ in \widetilde{M} satisfying (2.1). Therefore, we obtain $\operatorname{diam} M=d(\tilde{x}, \tilde{y}) \leqslant \operatorname{diam} \tilde{M}$.

Lemma 3.5. If $\operatorname{diam} M=\operatorname{diam} \tilde{M}$, then there exists a point $q \in M$ with $d(p, q)=$ $\operatorname{diam} \tilde{M}$.

Proof. Let $x, y \in M$ be points satisfying $\pi=\operatorname{diam} M=d(x, y)$. Supposing that $x \neq p$ and $y \neq p$, we will get a contradiction. Then, there exists a geodesic triangle $\Delta(p x y)$ with $d(x, y)=\pi$. It follows from Theorem ?? that there exists a geodesic triangle $\widetilde{\Delta}(p x y)$ corresponding to $\Delta(p x y)$ satisfying $d(\tilde{x}, \tilde{y})=d(x, y)=\pi$. By the triangle inequality, $d(\tilde{p}, \tilde{x})+d(\tilde{p}, \tilde{y}) \geqslant d(\tilde{x}, \tilde{y})=\pi$, and Lemma 3.1, we get

$$
d(\tilde{p}, \tilde{x})+d(\tilde{p}, \tilde{y})=\pi=d(\tilde{x}, \tilde{y}) .
$$

This means that $\angle(\tilde{x} \tilde{p} \tilde{y})=\pi$ so that the subarc α (passing through \tilde{p}) of the meridian joining \tilde{x} to \tilde{y} is minimal. Hence the complementary subarc of α in the meridian is also a minimal geodesic segment joining \tilde{x} to \tilde{y}, since the length of each meridian is 2π. Therefore, by Theorem ??, \tilde{y} is a unique cut point of \tilde{x} and hence, the Gaussian curvature G of \tilde{M} is constant. We get a contradiction since G is strictly decreasing along a meridian from p to the point on the equator. This implies the existence of the point q.

Lemma 3.6. If there exists a point $q \in M$ with $d(p, q)=\operatorname{diam} M$, then q is a unique cut point of p, and

$$
K(\sigma)=G \circ \mu(d(p, x))
$$

holds for any point $x \in M \backslash\{p\}$ and any radial plane σ at x.
Proof. It follows from Lemma 3.4 that the point q is the farthest point from p. Hence $q \in C_{p}$. Choose any point $x \in M \backslash\{p, q\}$. By the triangle inequality,

$$
d(p, x)+d(x, q) \geqslant d(p, q)=\pi
$$

and by Lemma 3.2,

$$
d(p, x)+d(x, q)+d(p, q) \leqslant 2 \pi
$$

Hence, we get

$$
d(p, x)+d(x, q)=d(p, q)=\pi
$$

and it is easy to see that q is a unique cut point of p because $\angle(p x q)=\pi$.
Next, we will prove that $K(\sigma)=G \circ \mu(d(p, x))$ for any $x \in M \backslash\{p, q\}$ and any radial plane σ at x. Suppose that there exist a point $x \in M \backslash\{p, q\}$ and a radial plane σ at x such that $K(\sigma)>G \circ \mu(d(p, x))$. Let $\gamma:[0, \pi] \rightarrow M$ denote the minimal geodesic segment emanating from p passing through x. Choose a unit tangent vector $v \in \sigma \subset T_{x} M$ orthogonal to $\gamma^{\prime}(d(p, x))$. Let $Y(t)$ denote the Jacobi field along $\gamma(t)$ satisfying $Y(0)=0$ and $Y(d(p, x))=v$, and hence σ is spanned by $Y(d(p, x))$ and $\gamma^{\prime}(d(p, x))$. By the Rauch comparison theorem, there exists a conjugate point $\gamma\left(t_{1}\right)$ of p along γ for some $t_{1} \in(0, \pi)$, since $K(\sigma)>G \circ \mu(d(p, x))$ and the sectional curvature of the radial plane spanned by
$Y(t)$ and $\gamma^{\prime}(t)$ is not less than $G \circ \mu(t)$ for each $t \in(0, \pi)$. This contradicts the fact that the geodesic segment γ is minimal.

Proof of Main Theorem. The first claim is clear from Lemma 3.4. Assume $\operatorname{diam} M=\operatorname{diam} \tilde{M}$. By Lemmas 3.5 and 3.6, $K(\sigma)=G \circ \mu(d(p, x))$ for any point $x \in M \backslash\{p\}$ and any radial plane σ at x. Thus, it follows from Lemma 1 and Theorem 3 in [KK] that M is isometric to the n-dimensional model of \tilde{M}. Incidentally, the explicit isometry φ between M and the n-dimensional model of \widetilde{M} is given by

$$
\varphi(x):= \begin{cases}\exp _{\tilde{p}} \circ I \circ \exp _{p}^{-1}(x) & \text { if } \quad x \neq q \\ \tilde{q} & \text { if } \quad x=q\end{cases}
$$

where $I: T_{p} M \rightarrow T_{\tilde{p}} \tilde{M}$ denotes a linear isometry and q denotes the unique cut point of p.

References

[Ch] S. Y. CHENG, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 289-297.
[CE] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam and New York, 1975.
[KK] Neil N. Katz and Kei Kondo, Generalized space forms, Trans. Amer. Math. Soc. 354 (2002), 22792284.
[SST] K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge tracts in mathematics 159, Cambridge University Press, Cambridge, 2003.
[ST] R. Sinclair and M. TANAKA, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J. 59 (2007), 379-399.
[T] V. A. Toponogov, Riemann spaces with curvature bounded below (in Russian), Uspehi Mat. Nauk 14 (1959), no. 1 (85), 87-130.

Present Address:

Department of Mathematics,
Tokai University,
Hiratsuka City, Kanagawa 259-1292, Japan.
e-mail: nut4297nb@gmail.com

[^0]: Received November 18, 2013; revised January 20, 2014
 2010 Mathematics Subject Classification: 53C22
 Key words and phrases: maximal diameter sphere theorem, 2-sphere of revolution, ellipsoid, Toponogov comparison theorem

