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Abstract. We establish a characterization of dualizing modules among semidualizing modules. Let R be a
finite dimensional commutative Noetherian ring with identity and C a semidualizing R-module. We show that C is a

dualizing R-module if and only if TorR
i

(E,E′) is C-injective for all C-injective R-modules E and E′ and all i ≥ 0.

1. Introduction

Throughout this paper, R will denote a commutative Noetherian ring with non-zero iden-
tity. The injective envelope of an R-module M is denoted by ER(M).

A finitely generated R-module C is called semidualizing if the homothety map R −→
HomR(C,C) is an isomorphism and ExtiR(C,C) = 0 for all i > 0. Immediate examples of
such modules are free R-modules of rank one. A semidualizing R-module C with finite in-
jective dimension is called dualizing. Although R always possesses a semidualizing module,
it does not possess a dualizing module in general. Keeping [BH, Theorem 3.3.6] in mind,
it is straightforward to see that the ring R possesses a dualizing module if and only if it is
Cohen-Macaulay and it is homomorphic image of a finite dimensional Gorenstein ring.

Let (R,m, k) be a local ring. There are several characterizations in the literature for a
semidualizing R-module C to be dualizing. For instance, Christensen [C, Proposition 8.4] has
shown that a semidualizing R-module C is dualizing if and only if the Gorenstein dimension
of k with respect to C is finite. Also, Takahashi et al. [TYY, Theorem 1.3] proved that a
semidualizing R-module C is dualizing if and only if every finitely generated R-module can
be embedded in an R-module of finite C-dimension. Our aim in this paper is to give a new
characterization for a semidualizing R-module C to be dualizing.

Let C be a semidualizing R-module. An R-module M is said to be C-projective (respec-
tively C-flat) if it has the form C ⊗R U for some projective (respectively flat) R-module U .
Also, a C-free R-module is defined as a direct sum of copies of C. We can see that every
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C-projective R-module is a direct summand of a C-free R-module and over a local ring every
finitely generated C-flat R-module is C-free. Also, an R-module M is said to be C-injective
if it has the form HomR(C, I) for some injective R-module I .

Yoneda raised a question of whether the tensor product of injective modules is injective.
Ishikawa in [I, Theorem 2.4] showed that if ER(R) is flat, then E ⊗R E′ is injective for all
injective R-modules E and E′. Further, Enochs and Jenda [EJ, Theorem 4.1] proved that R is

Gorenstein if and only if for every injective R-modules E and E′ and any i ≥ 0, TorRi (E,E′)
is injective. We extend this result in terms of a semidualizing R-module. More precisely, for
a semidualizing R-module C, we show that the following are equivalent (see Theorem 2.7):

(i) Cp is a dualizing Rp-module for all p ∈ Spec R.
(ii) For any prime ideal p of R and any i ≥ 0,

TorRi (EC(R/p), EC(R/p)) =
{

0 if i �= dimRp Cp

EC(R/p) if i = dimRp Cp ,

where EC(R/p) := HomR(C, ER(R/p)).
(iii) For any C-injective R-modules E and E′ and any i ≥ 0, TorRi (E,E′) is C-

injective.

2. The Results

Let p be a prime ideal of R. Recall that an R-module M is said to have property t (p) if

for each r ∈ R − p, the map M
r−→ M is an isomorphism and if for each x ∈ M we have

pmx = 0 for some m ≥ 1. If an R-module M has t (p)-property, then it has the structure as an
Rp-module. It is known that ER(R/p) has t (p)-property.

To prove Theorem 2.7, which is our main result, we shall need the following five prelim-
inary lemmas.

LEMMA 2.1. Let C be a semidualizing R-module. Then the following statements hold
true.

(i) EC(R/p) := HomR(C, ER(R/p)) has t(p)-property for each p ∈ Spec R.

(ii) If p and q are two distinct prime ideals of R, then TorRi (EC(R/p), EC(R/q)) = 0
for all i ≥ 0.

PROOF. (i) As ER(R/p) has t(p)-property, one can easily check that for any finitely
generated R-module M , the R-module HomR(M, ER(R/p)) has t (p)-property.

(ii) By (i) EC(R/p) has t (p)-property and EC(R/q) has t (q)-property. So, [EH, 5] im-
plies that

TorRi (EC(R/p), EC(R/q)) = 0

for all i ≥ 0. �
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LEMMA 2.2. Let (R,m, k) be a local ring, C a semidualizing R-module and I an Ar-
tinian C-injective R-module. Then HomR(I, ER(k)) is a finitely generated Ĉ-free R̂-module.

PROOF. Denote the functor HomR(−, ER(k)) by (−)∨. We have I = HomR(C, I ′)
for some injective R-module I ′. Clearly, C ⊗R I is also an Artinian R-module. Since

C ⊗R I ∼= C ⊗R HomR(C, I ′) ∼= HomR(HomR(C,C), I ′) ∼= I ′,

we deduce that I ′ is also Artinian. So, I ′ ∼= n⊕ ER(k) for some nonnegative integer n.
Now, one has

I∨ = HomR(C, I ′)∨ ∼= C ⊗R I ′∨ ∼= n⊕Ĉ ,

and so I∨ is a finitely generated Ĉ-free R̂-module. �

In the next result, we collect some useful known properties of semidualizing modules.
We may use them without any further comments.

LEMMA 2.3. Let C be a semidualizing R-module and r := r1, . . . , rn a sequence of
elements of R. The following statements hold.

(i) SuppR C = Spec R, and so dimR C = dim R.

(ii) If R is local, then Ĉ is a semidualizing R̂-module.
(iii) r is a regular R-sequence if and only if r is a regular C-sequence.
(iv) If r is a regular R-sequence, then C/(r)C is a semidualizing R/(r)-module.
(v) If R is local and r is a regular R-sequence, then C is a dualizing R-module if and

only if C/(r)C is a dualizing R/(r)-module.

PROOF. (i) and (ii) follow easily by the definition of a semidualizing module.
(iii) and (iv) are hold by [S, Corollary 3.3.3].
(v) Assume that R is local and r is a regular R-sequence. Then by (iv), C/(r)C is a

semidualizing R/(r)-module. On the other hand, [BH, Corollary 3.1.15] yields that

id R
(r)

C

(r)C
= idR C − n .

This implies the conclusion. �

In the proof of the following result, R � C will denote the trivial extension of R by C.
For any R � C-module X, its Gorenstein injective dimension will be denoted by GidR�C X.
Also, we recall that for a module M over a local ring (R,m, k), the width of M is defined by

widthR M := inf{i ∈ N0| TorRi (k,M) �= 0}.
LEMMA 2.4. Let (R,m, k) be a local ring and C a semidualizing R-module. Then

EC(k) ⊗R EC(k) is a non-zero C-injective R-module if and only if C is a dualizing R-module
of dimension 0.
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PROOF. Suppose that EC(k) ⊗R EC(k) is a non-zero C-injective R-module. As EC(k)

is Artinian, by [KLS, Corollary 3.9] the length of EC(k) ⊗R EC(k) is finite. So, also,
(EC(k) ⊗R EC(k))∨ has finite length. Since

HomR(EC(k), Ĉ) ∼= (EC(k) ⊗R EC(k))∨ ,

by Lemma 2.2, we deduce that HomR(EC(k), Ĉ) is isomorphic to a direct sum of finitely
many copies of Ĉ. This, in particular, implies that Ĉ has finite length. Thus Lemma 2.3 yields
that

dim R = dimR C = dimR̂ Ĉ = 0,

and so, in particular, R is complete. Next, one has

HomR(EC(k), R) ∼= HomR(EC(k), HomR(C,C))

∼= HomR(C, HomR(EC(k), C))

∼= n⊕ HomR(C,C)

∼= Rn

for some n > 0. This, in particular, implies that

AnnR(HomR(EC(k), R)) = AnnR R .

Since R is Artinian, mt = 0 andmt−1 �= 0 for some t > 0. If for every f ∈ HomR(EC(k), R),
im f ⊆ m, then mt−1f = 0 so mt−1 HomR(EC(k), R) = 0 a contradiction. Thus there is an
epimorphism EC(k) → R → 0, and so R is a direct summand of EC(k). Next, [HJ1, Lemma
2.6] implies that R is a Gorenstein injective R � C-module. This yields that C is a dualizing
R-module, because by [HJ2, Proposition 4.5], one has

idR C ≤ GidR�C R + widthR R .

Conversely, if C is a dualizing R-module of dimension 0, then dim R = 0 by Lemma
2.3 (i). Hence, ER(k) is a dualizing R-module, and then by [BH, Theorem 3.3.4 (b)] we have
C ∼= ER(k). Thus

EC(k) ⊗R EC(k) ∼= HomR(ER(k), ER(k)) ⊗R HomR(ER(k), ER(k))

∼= R ⊗R R

∼= R

∼= HomR(C, ER(k)) ,

which is a non-zero C-injective R-module. �

REMARK 2.5 (See [B, (2.5)]). Let M be an R-module and let r ∈ R be a non-unit

which is a non-zero divisor of both R and M . Let 0 → M → I 0 d0→ I 1 → · · · be a
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minimal injective resolution of M . Then there is a natural R/(r)-isomorphism M/(r)M ∼=
HomR(R/(r), im d0) and

0 → HomR(R/(r), I 1) → HomR(R/(r), I 2) → · · ·
is a minimal injective resolution of the R/(r)-module M/(r)M .

Next, we recall the definition of the notion of co-regular sequences. Let X be an R-

module. An element r of R is said to be co-regular on X if the map X
r−→ X is surjective.

A sequence r1, . . . , rn of elements of R is said to be a co-regular sequence on X if ri is
co-regular on (0 :M (r1, . . . , ri−1)) for all i = 1, . . . , n.

The following result plays a crucial role in the proof of Theorem 2.7.

LEMMA 2.6. Let (R,m, k) be a local ring and C a semidualizing R-module. Let

r ∈ m be a non-zero divisor of R. Assume that r is co-regular on TorRi (EC(k), EC(k)) for all

i. Then for any i ≥ 0, we have a natural R̄-isomorphism

TorR̄i−1(EC̄(k), EC̄(k)) ∼= HomR(R̄, TorRi (EC(k), EC(k))),

where R̄ := R/(r), C̄ := C/(r)C, EC(k) := HomR(C, ER(k)) and EC̄ (k) :=
HomR̄(C̄, ER̄(k)).

PROOF. Let 0 → I 0 → I 1 → · · · be a minimal injective resolution of C. Then

· · · → HomR(I 1, ER(k)) → HomR(I 0, ER(k)) → 0

is a flat resolution of EC(k). Applying EC(k) ⊗R −, we get the complex

· · · → EC(k) ⊗R HomR(I 1, ER(k)) → EC(k) ⊗R HomR(I 0, ER(k)) → 0 .

We will denote EC(k) ⊗R HomR(I i , ER(k)) by Xi and set

X• := · · · −→ Xi −→ · · · −→ X1 −→ X0 −→ 0 .

Then for each i ≥ 0, we have Hi(X•) = TorRi (EC(k), EC(k)).
By Remark 2.5,

0 → HomR(R̄, I 1) → HomR(R̄, I 2) → · · ·
is a minimal injective resolution of C̄ as an R̄-module. So,

· · · → HomR̄(HomR(R̄, I 2), ER̄(k)) → HomR̄(HomR(R̄, I 1), ER̄(k)) → 0

is a flat resolution of EC̄(k) as an R̄-module. Thus for each i ≥ 1, the R̄-module

TorR̄i−1(EC̄ (k), EC̄(k)) is isomorphic to the ith homology of the following complex

(�) · · · −→ EC̄(k) ⊗R̄ HomR̄(HomR(R̄, I 2), ER̄(k))
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−→ EC̄ (k) ⊗R̄ HomR̄(HomR(R̄, I 1), ER̄(k)) → 0 .

We shall show that the later complex is isomorphic to the complex Y• := HomR(R̄,X•).
Noting that ER̄(k) ∼= HomR(R̄, ER(k)) and using Adjointness yields that

EC̄ (k) = HomR̄(C̄, ER̄(k)) ∼= HomR(R̄, EC(k)).

Hence for each i ≥ 0, by using Adjointness, Hom-evaluation and Tensor-evaluation, one has

the following natural R̄-isomorphisms:

EC̄ (k) ⊗R̄ HomR̄(HomR(R̄, I i ), ER̄(k)) ∼= EC̄ (k) ⊗R̄ HomR̄(HomR(R̄, I i ), HomR(R̄, ER(k)))

∼= EC̄ (k) ⊗R̄ HomR(HomR(R̄, I i ), ER(k))

∼= EC̄ (k) ⊗R̄ (R̄ ⊗R HomR(I i, ER(k)))

∼= HomR(R̄, EC(k)) ⊗R HomR(I i, ER(k))

∼= HomR(R̄, EC(k) ⊗R HomR(I i, ER(k)))

∼= Yi .

Note that HomR(I i, ER(k)) is a flat R-module. As r is a non-zero divisor of R, it is also a non-
zero divisor of C. This implies that r is a non-zero divisor of I 0, and so HomR(R̄, I 0) = 0.

Thus

Y0 ∼= EC̄ (k) ⊗R̄ HomR̄(HomR(R̄, I 0), ER̄(k)) = 0 .

Therefore, the two complexes (�) and Y• are isomorphic, and so we deduce that

TorR̄i−1(EC̄ (k), EC̄(k)) = Hi(Y•) for all i ≥ 0.
Since r is a non-zero divisor of C, it is co-regular on EC(k), and so it is co-regular on Xi

for all i. Thus, we can deduce the following exact sequence of complexes

0 −→ Y• −→ X•
r−→ X• −→ 0 .

It yields the following exact sequences of modules

· · · −→ TorRi+1(EC(k), EC(k))
r−→ TorRi+1(EC(k), EC(k)) −→ TorR̄i−1(EC̄(k), EC̄ (k))

fi−→ TorRi (EC(k), EC(k))
r−→ TorRi (EC(k), EC(k)) −→ · · · .

As r is a co-regular element on TorRi (EC(k), EC(k)) for all i, we deduce that fi is a monomor-
phism for all i. This implies our desired isomorphisms. �

THEOREM 2.7. Let C be a semidualizing R-module. The following are equivalent:
(i) Cp is a dualizing Rp-module for all p ∈ Spec R.

(ii) For any prime ideal p of R and any i ≥ 0,

TorRi (EC(R/p), EC(R/p)) =
{

0 if i �= dimRp Cp

EC(R/p) if i = dimRp Cp ,
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where EC(R/p) := HomR(C, ER(R/p)).

(iii) For any C-injective R-modules E and E′ and any i ≥ 0, TorRi (E,E′) is C-
injective.

PROOF. (i) ⇒ (ii) Let p be a prime ideal of R. There are natural Rp-isomorphisms
EC(R/p) ∼= ECp(Rp/pRp) and

TorRi (EC(R/p), EC(R/p)) ∼= Tor
Rp

i (ECp(Rp/pRp), ECp(Rp/pRp))

for all i ≥ 0. Hence, we can complete the proof of this part by showing that if C is a dualizing
module of a local ring (R,m, k), then

TorRi (EC(k), EC(k)) =
{

0 i �= dimR C

EC(k) i = dimR C .

Set d := dimR C. As C is a dualizing R-module, [BH, Theorem 3.3.10] implies that for
any prime ideal p, one has

μi(p, C) =
{

0 i �= ht p

1 i = ht p .

So, if I • = 0 → I 0 → I 1 → · · · is a minimal injective resolution of C, then Id ∼= ER(k)

and for any i �= d , ER(k) is not a direct summand of I i . In particular, HomR(R/m, I i ) = 0
for all i �= d . Now, HomR(I •, ER(k)) is a flat resolution of EC(k). Clearly, one has

EC(k) ⊗R HomR(Id , ER(k)) ∼= EC(k) ⊗R R̂ ∼= EC(k) .

Next, let i �= d . Since HomR(I i , ER(k)) is a flat R-module, [M, Theorem 23.2 (ii)] implies
that

AssR(EC(k) ⊗R HomR(I i , ER(k))) = AssR(R/m ⊗R HomR(I i , ER(k))) .

But,

R/m ⊗R HomR(I i , ER(k)) ∼= HomR(HomR(R/m, I i ), ER(k)) = 0 ,

and so EC(k) ⊗R HomR(I i , ER(k)) = 0. Therefore, it follows that the complex EC(k) ⊗R

HomR(I •, ER(k)) has EC(k) in its d-place and 0 in its other places. Thus, we deduce that

TorRi (EC(k), EC(k)) = Hi(EC(k) ⊗R HomR(I •, E(k))) =
{

0 i �= d

EC(k) i = d .

(ii) ⇒ (iii) Let E be an injective R-module. Since E ∼= ⊕
p∈Spec R

ER(R/p)μ
0(p,E) and C
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is finitely generated, we have

HomR(C,E) ∼=
⊕

p∈SpecR

EC(R/p)μ
0(p,E).

As R is Noetherian, clearly any direct sum of C-injective R-modules is again C-injective, and
so (ii) yields (iii) by Lemma 2.1 (ii).

(iii) ⇒ (i) It is easy to check that a given Rp-module M is Cp-injective if and only if it
is the localization at p of a C-injective R-module. Thus, it is enough to show that if C is a

semidualizing module of a local ring (R,m, k) such that TorRi (E,E′) is C-injective for all

C-injective R-modules E and E′ and all i ≥ 0, then C is dualizing.
Let r = r1, . . . , rd ∈ m be a maximal regular R-sequence. Then r is also a regular

C-sequence. It is easy to verify that r is a co-regular sequence on any C-injective R-module,

and consequently r is a co-regular sequence on TorRi (EC(k), EC(k)) for all i ≥ 0. Letting

R̄ := R/(r) and C̄ := C/(r)C, by Lemma 2.3 (iv), it turns out that C̄ is a semidualizing

R̄-module. Making repeated use of Lemma 2.6, we can establish the following natural R̄-
isomorphism

EC̄(k) ⊗R̄ EC̄ (k) ∼= HomR(R̄, TorRd (EC(k), EC(k))).

So, EC̄ (k) ⊗R̄ EC̄(k) is a C̄-injective R̄-module. Lemma 2.3 implies that

deptĥ̄R ̂̄C = depthR̄ C̄ = depthR̄ R̄ = 0,

and so there are natural inclusion maps k
i

↪→ C̄ and k
j

↪→ ̂̄C. By applying the functor
HomR̄(−, ER̄(k)) on i, we get an epimorphism EC̄ (k) � k. Next, by applying the functor

HomR̄(−, ̂̄C) on the later map, we see that

HomR̄(EC̄(k) ⊗R̄ EC̄ (k), ER̄(k)) ∼= HomR̄(EC̄(k), ̂̄C) �= 0 .

Hence, EC̄(k) ⊗R̄ EC̄ (k) is a non-zero C̄-injective R̄-module, and so Lemma 2.4 yields that

C̄ is a dualizing R̄-module. Now, by Lemma 2.3 (v), we deduce that C is a dualizing R-
module. �

We end the paper with the following immediate corollary.

COROLLARY 2.8. Let R be a finite dimensional ring and C a semidualizing R-

module. Then C is a dualizing R-module if and only if TorRi (E,E′) is C-injective for all

C-injective R-modules E and E′ and all i ≥ 0.
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