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Abstract. The aim of this paper is to determine the structure of the cut locus for a class of surfaces of revolution
homeomorphic to a cylinder. Let M denote a cylinder of revolution which admits a reflective symmetry fixing a
parallel called the equator of M. It will be proved that the cut locus of a point p of M is a subset of the union of the
meridian and the parallel opposite to p respectively, if the Gaussian curvature of M is decreasing on each upper half
meridian.

1. Introduction

It is a very difficult problem to determine the structure of the cut locus of a Riemannian
manifold and it was difficult even for a quadric surface.

Since Elerath ([E]) succeeded in specifying the structure of the cut locus for paraboloids
of revolution and (2-sheeted) hyperboloids of revolution, the structures of the cut locus for
quadric surfaces of revolution have been studied. After his work, Sinclair and Tanaka ([ST])
determined the structure of the cut locus for a class of surfaces of revolution containing the
ellipsoids. Notice that the structures of the cut locus for triaxial ellipsoids with unequal axes
were also determined by Itoh and Kiyohara ([IK]).

On the structure of the cut locus for a cylinder of revolution (R1 × S1, dt2 + m(t)2dθ2),

Tsuji ([Ts]) first determined the cut locus of a point on the equator t = 0 if the cylinder is
symmetric with respect to the equator and the Gaussian curvature is decreasing on the upper
half meridian t > 0, θ = 0. In 2003, Tamura ([Ta]) determined the structure of the cut locus
by adding an assumption m′ �= 0 except t = 0. In this paper, we determine the structure of
the cut locus without this assumption.

Here, let us review the notion of a cut point and the cut locus of a point. Let γ : [0, a] →
M be a minimal geodesic segment in a complete Riemannian manifold M. The end point of
γ (a) is called a cut point of γ (0) along γ, if any geodesic extension of γ is not minimal
anymore. The cut locus Cp of a point p of M is by definition the set of the cut points along
all minimal geodesic segments emanating from p.
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In this paper we will prove the following theorem.

MAIN THEOREM. Let (M, ds2) be a complete Riemannian manifold R1 × S1 with a

warped product metric ds2 = dt2 + m(t)2dθ2 of the real line (R1, dt2) and the unit circle

(S1, dθ2). Suppose that the warping function m is a positive-valued even function and the
Gaussian curvature of M is decreasing along the half meridian t−1[0,∞) ∩ θ−1(0). If the
Gaussian curvature of M is positive on t = 0, then the structure of the cut locus Cq of a point

q ∈ θ−1(0) in M is given as follows:
1. The cut locus Cq is the union of a subarc of the parallel t = −t (q) opposite to

q and the meridian opposite to q if |t (q)| < t0 := sup{t > 0 | m′(t) < 0} and
ϕ(m(t (q))) < π. More precisely,

Cq = θ−1(π) ∪
(
t−1(−t (q)) ∩ θ−1[ϕ(m(t (q))), 2π − ϕ(m(t (q)))]

)
.

2. The cut locus Cq is the meridian θ−1(π) opposite to q if ϕ(m(t (q))) ≥ π or if
|t (q)| ≥ t0.

Here, the function ϕ(ν) on (inf m,m(0)) is defined as

ϕ(ν) := 2
∫ 0

−ξ(ν)

ν

m
√

m2 − ν2
dt = 2

∫ ξ(ν)

0

ν

m
√

m2 − ν2
dt ,

where ξ(ν) := min{t > 0 | m(t) = ν}. Notice that the point q is an arbitrarily given point if
the coordinates (t, θ) are chosen so as to satisfy θ(q) = 0.

REMARK 1.1. If the Gaussian curvature of a cylinder of revolution is nonpositive ev-
erywhere, then any geodesic has no conjugate point. Therefore, it is clear to see that the cut
locus of a point on the manifold is the meridian opposite to the point.

2. Preliminaries

Let f be the solution of the differential equation

f ′′ + Kf = 0 (2.1)

with initial conditions f (0) = c and f ′(0) = 0. Here c denotes a fixed positive number and
K : [0,∞) → R denotes a continuous function.

LEMMA 2.1. If K(0) > 0 and f ′(t) �= 0 for any t > 0, then f ′(t) < 0 on (0,∞).
Furthermore, if f > 0 on [0,∞), then K(t) < 0 for some t > 0.

PROOF. Since f ′′(0) = −K(0)f (0) < 0 by (2.1), f ′(t) is strictly decreasing on (0, δ)

for some δ > 0. This implies that 0 = f ′(0) > f ′(t) for any t ∈ (0, δ). Since f ′ �= 0 on
[0,∞), f ′(t) < 0 on (0,∞). Furthermore, we assume that f > 0 on [0,∞). Supposing that
K ≥ 0 on [0,∞), we will get a contradiction. By (2.1),

f ′′(t) = −K(t)f (t) ≤ 0
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on [0,∞). Hence f ′(t) is decreasing on [0,∞). In particular, 0 = f ′(0) > f ′(δ) ≥ f ′(t) for
any t ≥ δ. This contradicts the assumption f > 0. �

LEMMA 2.2. Suppose that K(0) > 0 and f > 0 on [0,∞). If f ′(t) = 0 for some
t > 0 and K is decreasing, then there exist a unique solution t = t0 ∈ (0,∞) of f ′(t) = 0
such that f ′(t) < 0 on (0, t0) and f ′(t) > 0 on (t0,∞) and there exists t1 ∈ (0, t0) satisfying
K(t1) = 0. Hence K ≥ 0 on [0, t1] and K ≤ 0 on [t1,∞).

PROOF. Let a > 0 denote the minimum positive solution t = a of f ′(t) = 0. Suppose
that there exist another solution b(> a) satisfying f ′(b) = 0. By the mean value theorem,
there exist t1 ∈ (0, a) and s1 ∈ (a, b) satisfying f ′′(t1) = f ′′(s1) = 0. Hence K(t1) =
K(s1) = 0 by (2.1). Since K is decreasing, K = 0 on [t1, s1]. Therefore, by (2.1), f ′′(t) = 0
on [t1, s1]. In particular, f ′(a) = f ′(t1) = 0. Since 0 < t1 < a, t1 is a positive solution t

of f ′(t) = 0, which is less than a. This is a contradiction. Therefore, there exists a unique
positive solution t = t0 of f ′(t) = 0. From the mean value theorem and (2.1), there exists
t1 ∈ (0, t0) satisfying K(t1) = 0. Since K(t) is decreasing, K ≥ 0 on [0, t1] and K ≤ 0 on
[t1,∞). Hence by (2.1), f ′′(t) = −K(t)f (t) ≥ 0 on [t1,∞) and f ′(t) ≥ f ′(t0) = 0 for any
t > t0. Since f ′ has a unique positive zero, f ′ > 0 on (t0,∞). It is clear from the proof of
Lemma 2.1 that f ′ < 0 on (0, t0). �

3. Review of the behavior of geodesics

From now on, M denotes a complete Riemannian manifold R1 × S1 with a warped

product Riemannian metric ds2 = dt2 + m(t)2dθ2 of the real line (R1, dt2) and the unit

circle (S1, dθ2). Let us review the behavior of a geodesic γ (s) = (t (s), θ(s)) on the manifold
M . For each unit speed geodesic γ (s) = (t (s), θ(s)), there exists a constant ν satisfying

m(t(s))2θ ′(s) = ν . (3.1)

Hence, if η(s) denotes the angle made by the velocity vector γ ′(s) of the geodesic γ (s) and
the tangent vector (∂/∂θ)γ (s), then

m(t(s)) cos η(s) = ν (3.2)

for any s. The constant ν is called the Clairaut constant of γ. The reader should refer to
Chapter 7 in [SST] for the Clairaut relation. Since γ (s) is unit speed,

t ′(s)2 + m(t(s))2θ ′(s)2 = 1 (3.3)

holds. By (3.1) and (3.3), it follows that

t ′(s) = ±
√

m(t(s))2 − ν2

m(t(s))
(3.4)

θ(s2) − θ(s1) = ε(t ′(s))
∫ t (s2)

t (s1)

ν

m
√

m2 − ν2
dt (3.5)
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holds, if t ′(s) �= 0 on (s1, s2) and ε(t ′(s)) denotes the sign of t ′(s).
The length L(γ ) of a geodesic segment γ (s) = (t (s), θ(s)), s1 ≤ s ≤ s2 is

L(γ ) = ε(t ′(s))
∫ t (s2)

t (s1)

m(t)√
m(t)2 − ν2

dt (3.6)

if t ′(s) �= 0 on (s1, s2).

From a direct computation, the Gaussian curvature G of M is given by

G(q) = −m′′

m
(t(q))

at each point q ∈ M . Since G is constant on t−1(a) for each a ∈ R, a smooth function K on
R is defined by

K(u) := G(q)

for q ∈ t−1(u). Therefore m satisfies the following differential equation

m′′ + Km = 0

with m′(0) = 0.
From now on, we assume that the Gaussian curvature G of M is positive on t−1(0), and

m(t) = m(−t) holds for any t ∈ R. Hence, M is symmetric with respect to the equator t = 0
and if K is decreasing on [0,∞), then by Lemma 2.2, m′(t) < 0 for all t > 0 or there exists
a unique positive solution t = t0 of m′(t) = 0 such that m′ < 0 on (0, t0) and m′ > 0 on
(t0,∞). Furthermore, if the latter case happens, there exists t1 ∈ (0, t0) such that K ≥ 0 on
[0, t1] and K ≤ 0 on [t1,∞).

For technical reasons, we treat both geodesics on M and its universal covering space

π : M̃ → M, where M̃ := (R1 × R1, dt̃2 + m(t̃)2dθ̃2).

Choose any point p on the equator t = 0. We may assume that θ(p) = 0 without loss of
generality. Let γ : [0,∞) → M denote a geodesic emanating from p = γ (0) with Clairaut
constant ν ∈ (inf m,m(0)). Notice that γ is uniquely determined up to the reflection with
respect to t = 0. The geodesic γ (s) = (t (s), θ(s)) is tangent to the parallel t = ξ(ν) (if
(t ◦ γ )′(0) > 0 ) or t = −ξ(ν) ( if (t ◦ γ )′(0) < 0 ), where ξ(ν) > 0 denotes the least positive
solution of m(ξ(ν)) = ν, that is,

ξ(ν) := min{u > 0 | m(u) = ν} .

After γ is tangent to the parallel t = ξ(ν) or −ξ(ν), γ intersects the equator t = 0 again.
Thus, after γ̃ is tangent to the parallel arc t̃ = ξ(ν) or −ξ(ν), γ̃ intersect t̃ = 0 again. Here
γ̃ denotes a geodesic on M̃ satisfying γ = π ◦ γ̃ .

From (3.5), we obtain,

θ̃ (s0) − θ̃ (0) =
∫ 0

−ξ(ν)

ν

m
√

m2 − ν2
dt =

∫ ξ(ν)

0

ν

m
√

m2 − ν2
dt ,
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and

θ̃ (s1) − θ̃ (s0) =
∫ 0

−ξ(ν)

ν

m
√

m2 − ν2
dt =

∫ ξ(ν)

0

ν

m
√

m2 − ν2
dt ,

where s0 := min{s > 0 | m(t̃(s)) = ν}, s1 := min{s > 0 | t̃ (s) = 0}.
By summing up the argument above, we have,

LEMMA 3.1. Let γ̃ (s) = (t̃ (s), θ̃ (s)) denote a geodesic emanating from the point

p̃ := (t̃ , θ̃ )−1(0, 0) with Clairaut constant ν ∈ (inf m,m(0)). Then γ̃ intersects t̃ = 0 again

at the point (t̃ , θ̃ )−1(0, ϕ(ν)). Here,

ϕ(ν) := 2
∫ 0

−ξ(ν)

ν

m
√

m2 − ν2
dt = 2

∫ ξ(ν)

0

ν

m
√

m2 − ν2
dt . (3.7)

LEMMA 3.2. The length l(ν) of the subarc (t̃ (s), θ̃ (s)), 0 ≤ θ̃ (s) ≤ ϕ(ν), of γ̃ (s) is
given by

l(ν) = 2
∫ 0

−ξ(ν)

m√
m2 − ν2

dt = 2
∫ 0

−ξ(ν)

√
m2 − ν2

m
dt + νϕ(ν) , (3.8)

and

∂l

∂ν
(ν) = νϕ′(ν) . (3.9)

PROOF. From (3.6), we obtain,

l(ν) = 2
∫ 0

−ξ(ν)

m√
m2 − ν2

dt .

Since

m√
m2 − ν2

=
√

m2 − ν2

m
+ ν2

m
√

m2 − ν2

holds, we get

l(ν) = 2
∫ 0

−ξ(ν)

√
m2 − ν2

m
dt + 2

∫ 0

−ξ(ν)

ν2

m
√

m2 − ν2
dt .

Hence, by (3.7), we get (3.8). By differentiating l(ν) with respect to ν, we get,

l′(ν) = 2
∫ 0

−ξ(ν)

∂

∂ν

√
m2 − ν2

m
dt + ϕ(ν) + νϕ′(ν) = νϕ′(ν) .

�
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4. The decline of the function ϕ(ν)

Let π : M̃ = (R1 × R1, dt̃2 + m(t̃)2dθ̃2) → M denote the universal covering space of

M. We choose an arbitrary point p̃ of t̃−1(−∞, 0], and we denote the cut locus of p̃ by Cp̃.

Before proving some lemmas on the cut locus, let us review the structure of the cut locus of
M̃. We refer to [ShT] or [SST] on the structure of the cut locus of a 2-dimensional complete
Riemannian manifold.

It is known that the cut locus has a local tree structure. Since M̃ is simply connected, the
cut locus has no circle. If two cut points x and y are in a common connected component of
the cut locus, then x and y are connected by a unique rectifiable arc in the cut locus.

Since M̃ is homeomorphic to R2, we may define a global sector at each cut point. For
general surfaces, only local sectors are defined (see [ShT], or [SST]). A global sector at each
cut point x of the point p̃ is by definition a connected component of M̃ \Γx, where Γx denotes
the set of all points lying on a minimal geodesic segment joining p̃ to x. Let c : [0, a] → Cp̃

denote a rectifiable arc in the cut locus. Then for each cut point c(t), t ∈ (0, a), c bisects the
sector at c(t) containing c[0, t) (respectively c(t, a]) . For each sector of the point p̃ on M̃,

there exists an end point of Cp̃, since Cp̃ has no circle. Here, a cut point q of p̃ is called an
end point if q admits exactly one sector.

In this section, we assume that the Gaussian curvature G of M is increasing on the half

meridian t−1(−∞, 0] ∩ θ−1(0) and that M has a reflective symmetry with respect to t = 0.

Hence the Gaussian curvature of M̃ is increasing on the lower half meridian t̃−1(−∞, 0] ∩
θ̃−1(0) and M̃ has a reflective symmetry with respect to t̃ = 0.

LEMMA 4.1. Suppose that there exists a cut point of the point p̃ in t̃−1(−∞, 0). Then
there exist two minimal geodesic segments α and β joining p̃ to a cut point y of p̃ such
that the global sector D(α, β) bounded by α and β has an end point of Cp̃ and D(α, β) ⊂
t̃−1(−∞, 0).

PROOF. Since the subset of cut points admitting at least two minimal geodesics is dense
in the cut locus, the existence of two minimal geodesics α and β is clear (see [Bh]). Since M̃

has a reflective symmetry with respective to t̃ = 0, it is trivial that D(α, β) ⊂ t̃−1(−∞, 0).

Let y denote the end point of α distinct from p̃. Since the proof is complete in the case where
the cut point y is not an end point of the cut locus, we assume that y is an end point. Then, we
get an arc c in the cut locus emanating from y. Any interior point y1 on c is not an end point
of the cut locus. It is clear that there exist two minimal geodesic segments joining p̃ and y1

which bound a sector containing y as an end point of the cut locus. �

LEMMA 4.2. For any unit speed minimal geodesic segment γ : [0, L(γ )] → M̃ join-
ing p̃ to any end point x of Cp̃ in the domain D(α, β), x is conjugate to p̃ along γ and γ is
shorter than α and β.

PROOF. Note that for any end point x of the cut locus, the set of all minimal geodesic
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segments joining p̃ to x is connected. Therefore, x is conjugate to p̃ along any minimal
geodesic segments joining p̃ to the end point of the cut locus. Let γ : [0, L(γ )] → M̃ denote
any minimal geodesic segment p̃ to an end point x of Cp̃ ∩ D(α, β). We will prove that γ is
shorter than α and β. It follows from Theorem B in [ShT] or [IT] that there exists a unit speed
arc c : [0, l] → Cp̃ joining the end point x to y, where y denotes the end point of α distinct
from p̃. Since the function d(p̃, c(τ )) is a Lipschitz function, it follows from Lemma 7.29 in
[WZ] that the function is differentiable for almost all τ and

d(p̃, c(l)) − d(p̃, y) =
∫ l

0

d

dτ
d(p̃, c(τ ))dτ (4.1)

holds. From the Clairaut relation (3.2), the inner angle θ(τ ) at c(τ ) of the sector containing
c[0, τ ) is less than π. Hence, by the first variation formula, we get

d

dτ
d(p̃, c(τ )) = cos

θ(τ )

2
> 0

for almost all τ. Notice that for each τ ∈ (0, l), the curve c bisects the sector at c(τ ) containing
c[0, τ ). Therefore, from (4.1),

L(α) = L(β) = d(p̃, c(l)) > d(p̃, y) = L(γ ) .

�

LEMMA 4.3. Let q be a point on θ̃−1(0) and u0 any real number. Then d(q, c(θ)) is
strictly increasing on [0,∞). Here c : [0,∞) → M̃ denotes c(θ) = (u0, θ) in the coordinates

(t̃ , θ̃ ) and d(·, ·) denotes the Riemannian distance function on M̃.

PROOF. Choose any positive numbers θ1 < θ2. Let αi, i = 1, 2, denote minimal ge-
odesic segments joining the point q to c(θi) respectively. Since θ2 > θ1, there exists an

intersection α2(t2) of α2 and the meridian θ̃ = θ1. The point c(θ1) is the unique nearest point
on t̃ = u0 from α2(t2). Hence,

d(α2(t2), c(θ1)) < d(α2(t2), c(θ2)) .

Therefore, by the triangle inequality, we get

d(q, c(θ2)) = d(q, α2(t2)) + d(α2(t2), c(θ2)) > d(q, α2(t2))

+ d(α2(t2), c(θ1)) ≥ d(q, c(θ1)) .

This implies that d(q, c(θ)) is strictly increasing on [0,∞). �

LEMMA 4.4. Suppose that γ : [0, L(γ )] → M̃ is a minimal geodesic segment
joining p̃ to an end point x ∈ Cp̃, which is a point in the sector D(α, β) bounded by
two minimal geodesic segments α and β emanating from p̃. Then, for any s ∈ [0, L(γ )],
t̃ (α(s)) ≥ t̃ (γ (s)) ≥ t̃ (β(s)) holds. Here we assume that

� (α′(0), (∂/∂t̃)p̃) < � (γ ′(0), (∂/∂t̃)p̃) < � (β ′(0), (∂/∂t̃)p̃) ,
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where � (·, ·) denotes the angle made by two tangent vectors.

PROOF. From (3.4), it follows that for sufficiently small s > 0, t̃ (α(s)) > t̃(γ (s)) >

t̃(β(s)) holds. Hence the set A := {s ∈ (0, L(γ )) | t̃ (α(s)) > t̃(γ (s)) > t̃(β(s))} is a
nonempty open subset of (0, L(γ )). Let (0, s0) denote the connected component of A. It is
sufficient to prove that s0 = L(γ ). Suppose that s0 < L(γ ). Thus, t̃ (α(s0)) = t̃ (γ (s0)) or
t̃ (γ (s0)) = t̃ (β(s0)) holds, since A is open. By applying Lemma 4.3 for u0 := t̃ (α(s0)) and
t̃ (β(s0)), we get α(s0) = γ (s0) or γ (s0) = β(s0), which is a contradiction. �

LEMMA 4.5. For any point p̃ ∈ t̃−1(−∞, 0], there does not exist a cut point of p̃

in t̃−1(−∞, 0). In particular, the cut locus of p̃ is a subset of t̃−1(0) if t̃ (p̃) = 0. This
implies that the cut locus Cp of a point p ∈ t−1(0) is a subset of θ−1(π) ∪ t−1(0). Here the
coordinates (t, θ) are chosen so as to satisfy θ(p) = 0.

PROOF. Suppose that there exist a cut point of p̃ in t̃−1(−∞, 0). By Lemma 4.1, there
exist two minimal geodesic segments α and β joining a cut point y of p̃ which bound a sector
D(α, β) containing an end point x of Cp̃. Let γ : [0, L(γ )] → M̃ be a unit speed geodesic
segment joining p̃ to the end point x. From Lemmas 4.1 and 4.4, it follows that for any
s ∈ [0, L(γ )],

0 ≥ t̃ (α(s)) ≥ t̃ (γ (s)) ≥ t̃ (β(s))

holds. Since the Gaussian curvature G is increasing on each lower half meridian, we obtain

G(α(s)) ≥ G(γ (s)) ≥ G(β(s)) .

By applying the Rauch comparison theorem for the pair of geodesic segments α|[0,L(γ )] and
γ, p̃ admits a conjugate point on α|[0,L(γ )] along α.

This contradicts the fact that α is minimal. Since M̃ is symmetric with respect to t̃ = 0,

the cut locus of p̃ is a subset of t̃−1(0), if t̃ (p̃) = 0. This implies that Cp ⊂ θ−1(π) ∪ t−1(0)

for the point p = t−1(0) ∩ θ−1(0). �

PROPOSITION 4.6. Let M be a complete Riemannian manifold R1 ×S1 with a warped

product metric ds2 = dt2 + m(t)2dθ2 of the real line (R1, dt2) and the unit circle (S1, dθ2).
Here the warping function m : R → (0,∞) is a smooth even function. If the Gaussian

curvature is positive on the equator and decreasing on the upper half meridian t−1(0,∞) ∩
θ−1(0), then the function ϕ(ν) is decreasing on (inf m,m(0)).

PROOF. Let M̃ := (R1 × R1, dt̃2 + m(t̃)2dθ̃2) denote the universal covering space

of M. Choose any point p̃ on t̃−1(0). For each ν ∈ (inf m,m(0)), let αν : [0,∞) → M̃

denote the geodesic emanating from the point p̃ = αν(0) with Clairaut constant ν and with

(t̃ ◦ αν)
′(0) < 0. From the Clairaut relation, we get � ((∂/∂θ̃)p̃, α′

ν (0)) = cos−1 ν/m(0).
Choose any ν1 < ν2 with ν1, ν2 ∈ (inf m,m(0)). Since

cos−1 ν2

m(0)
< cos−1 ν1

m(0)
,
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it follows from Lemma 4.5 that αν1 does not cross the domain bounded by the subarc of αν2

and t̃−1(0) ∩ θ̃−1[θ̃ (p̃), θ̃ (p̃) + ϕ(ν2)]. This implies that ϕ(ν1) ≥ ϕ(ν2). Therefore, ϕ(ν) is
decreasing on (inf m,m(0)). �

5. The cut locus of a point on M̃

Choose any point q on M̃ with −t0 < t̃(q) < 0, where t0 := sup{ t > 0 | m′(t) < 0}.
Without loss of generality, we may assume that θ̃ (q) = 0. We consider two geodesics αν and
βν emanating from the point q = αν(0) = βν(0) with Clairaut constant ν > 0. Here we
assume that

� ((∂/∂t̃)q, α′
ν (0)) > � ((∂/∂t̃)q, β ′

ν(0)) .

LEMMA 5.1. The two geodesics αν and βν intersect again at the point

(t̃ , θ̃ )−1(u, ϕ(ν)) if ν ∈ (inf m,m(0)), where u := −t̃ (q).

PROOF. Suppose that ν ∈ (inf m,m(0)). Since αν is tangent to the parallel arc t̃ =
−ξ(ν), it follows from (3.5) that

θ̃ (αν(s1)) − θ̃ (αν(0)) =
∫ −u

−ξ(ν)

ν

m
√

m2 − ν2
dt ,

where s1 := min{s > 0 | t̃ (αν(s)) = −ξ(ν)}, and

θ̃ (αν(s2)) − θ̃ (αν(s1)) =
∫ u

−ξ(ν)

ν

m
√

m2 − ν2
dt ,

where s2 := min{s > 0 | t̃ (αν(s)) = u}. Hence, we obtain,

θ̃ (αν(s2)) − θ̃ (αν(0)) =
∫ u

−ξ(ν)

ν

m
√

m2 − ν2
dt +

∫ −u

−ξ(ν)

ν

m
√

m2 − ν2
dt . (5.1)

Since m is an even function,
∫ u

−ξ(ν)

ν

m
√

m2 − ν2
dt =

∫ 0

−ξ(ν)

ν

m
√

m2 − ν2
dt +

∫ 0

−u

ν

m
√

m2 − ν2
dt

holds. Therefore, by (5.1),

θ̃ (αν(s2)) − θ̃ (αν(0)) = 2
∫ 0

−ξ(ν)

ν√
m2 − ν2

dt = ϕ(ν) .

This implies that αν passes through the point (t̃ , θ̃ )−1(u, ϕ(ν)). On the other hand, after βν

is tangent to t̃ = ξ(ν) at βν(s
+
1 ), where s+

1 := min{s > 0 | t̃ (βν(s)) = ξ(ν)}, the geodesic

intersects t̃ = u again at βν(s
+
2 ), where s+

2 := min{s > s+
1 | t̃ (βν(s)) = u}. By the similar
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computation as above, we get

θ̃ (βν(s
+
2 )) − θ̃ (βν(0)) = ϕ(ν) .

This implies that αν and βν pass through the common point (t̃, θ̃ )−1(u, ϕ(ν)). �

LEMMA 5.2. The two geodesic segments αν |[0,s2] and βν |[0,s+
2 ] have the same length

and its length equals l(ν), which is defined in Lemma 3.2. In particular, s2 = s+
2 . Here, s2

and s+
2 denote the numbers defined in the proof of Lemma 5.1.

PROOF. From (3.6), we have

L(αν |[0,s1]) =
∫ −u

−ξ(ν)

m√
m2 − ν2

dt , (5.2)

and

L(αν |[s1,s2]) =
∫ u

−ξ(ν)

m√
m2 − ν2

dt =
∫ 0

−ξ(ν)

m√
m2 − ν2

dt +
∫ u

0

m√
m2 − ν2

dt ,

where s1 denotes the number defined in the proof of Lemma 5.1. Since m is even

L(αν |[s1,s2]) =
∫ 0

−ξ(ν)

m√
m2 − ν2

dt +
∫ 0

−u

m√
m2 − ν2

dt . (5.3)

Therefore, we get, by (3.8), (5.2) and (5.3),

L(αν |[0,s2]) = 2
∫ 0

−ξ(ν)

m√
m2 − ν2

dt = l(ν) .

Analogously we have,

L(βν |[0,s+
2 ]) = l(ν) .

�

LEMMA 5.3. Let q be a point on M̃ with |t̃ (q)| ∈ (0, t0). Then, for any ν ∈
(inf m,m(u)], where u = −t̃ (q), αν |[0,s2(ν)] and βν |[0,s2(ν)] are minimal geodesic segments

joining q to the point (t̃, θ̃ )−1(u, θ̃(q) + ϕ(ν)), and in particular, {(t̃, θ̃ ) | t̃ = u, θ̃ ≥
ϕ(m(u)) + θ̃ (q)} is a subset of the cut locus of the point q. Here, s2(ν) := min{s >

0 | t̃ (αν(s)) = u} for each ν ∈ (inf m,m(0)).

PROOF. Without loss of generality, we may assume that θ̃ (q) = 0. We will
prove that αν |[0,s2(ν)] is a minimal geodesic segment joining q to the point αν(s2(ν)) =
(t̃ , θ̃ )−1(u, ϕ(ν)). Suppose that αν0 |[0,s2(ν0)] is not minimal for some ν0 ∈ (inf m,m(u)]. Here
we assume that ν0 is the minimum solution ν = ν0 of ϕ(ν) = ϕ(ν0).
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Let α : [0, d(q, x)] → M be a minimal geodesic segment joining q to x :=
αν0(s2(ν0)) = (t̃ , θ̃ )−1(u, ϕ(ν0)). Hence, ϕ(ν1) = ϕ(ν0) = θ̃ (x) and α equals αν1 |[0,s2(ν1)] or
βν1 |[0,s2(ν1)], where ν1 ∈ (inf m,m(0)) denotes the Clairaut constant of α. By Proposition 4.6,
ϕ(ν) = ϕ(ν0) for any ν ∈ [ν0, ν1]. Hence, by Lemmas 3.2 and 5.2 we get,

s2(ν1) = L(α) = L(αν1 |[0,s2(ν1)]) = L(αν0 |[0,s2(ν0)]) = s2(ν0) .

This implies that αν0 |[0,s2(ν0)] is minimal, which is a contradiction, since we assumed that
αν0 |[0,s2(ν0)] is not minimal. Therefore, by Lemma 5.2, for any ν ∈ (inf m,m(u)], the geodesic
segments αν |[0,s2(ν)] and βν |[0,s2(ν)] are minimal geodesic segments joining q to the point

(t̃ , θ̃ )−1(u, ϕ(ν)) = αν(s2(ν)). In particular, the point αν(s2(ν)) = βν(s2(ν)) is a cut point of
q. �

PROPOSITION 5.4. The cut locus of the point q in Lemma 5.3 equals the set

{(t̃ , θ̃ ) | t̃ = u, θ̃ ≥ |ϕ(m(u))|} .

Here the coordinates (t̃, θ̃ ) are chosen so as to satisfy θ̃ (q) = 0.

PROOF. By Lemma 5.3, geodesic segments αν |[0,s2(ν)] and βν |[0,s2(ν)] are minimal ge-

odesic segments for any ν ∈ (inf m,m(u)]. Hence their limit geodesics α− := αinf m and
β+ := βinf m are rays, that is, any their subarcs are minimal.

Since M̃ has a reflective symmetry with respect to θ̃ = 0, it is trivial from Lemma 5.3

that the set {(t̃, θ̃ ) | t̃ = u, θ̃ ≥ |ϕ(m(u))|} is a subset of the cut locus of q. Suppose that there

exists a cut point y /∈ {(t̃ , θ̃ ) | t̃ = u, θ̃ ≥ |ϕ(m(u))|}. Without loss of generality, we may

assume that θ̃ (y) > 0 = θ̃ (q) and t̃ (q) = −u < 0. From Lemma 4.5, t̃ (y) > 0 and y is not a
point in the unbounded domain cut off by two rays α− and β+, and hence the point lies in the

domain D+ cut off by β+ and the submeridian t̃ > −u, θ̃ = θ̃ (q) = 0. Since the cut locus
of Cq has a tree structure, there exists an end point x of the cut locus in the D+. Hence, x

is conjugate to q for any minimal geodesic segment γ joining q to x. Since such a minimal
geodesic γ runs in the domain D+, the Clairaut constant of the segment is positive and less
than inf m. From the Clairaut relation (3.2), any geodesic cannot be tangent to any parallel arc
t̃ = c, if the Clairaut constant is positive and less than inf m. From Corollary 7.2.1 in [SST],
γ has no conjugate point of q, which is a contradiction. �

LEMMA 5.5. Let q be a point on M̃ with |t̃ (q)| ≥ t0. Then the cut locus of q is empty.

PROOF. Suppose that the cut locus of a point q with |t̃ (q)| ≥ t0 is nonempty. Since
M̃ has a reflective symmetry with respect to t̃ = 0, we may assume that t̃ (q) ≤ −t0.

Hence by Lemma 4.5, there exists an end point x of the cut locus Cq in t̃−1(0,∞). Let

γ : [0, d(q, x)] → M̃ denote a minimal geodesic segment joining q to x. Then x is conjugate

to q along γ, since x is an end point of Cq. Since θ̃ (x) > 0 = θ̃ (q), the Clairaut constant ν

of γ is positive, by (3.1). Moreover, from the Clairaut relation (3.2), the Clairaut constant ν
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is less than inf m = m(t0), since γ intersects t̃ = −t0. Therefore, γ cannot be tangent to any
parallel arc t̃ = c. From Corollary 7.2.1 in [SST], γ has no conjugate point of q, which is a
contradiction. �

Now our Main theorem is clear from Proposition 5.4 and Lemma 5.5.
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