The Structure Theorem for the Cut Locus of a Certain Class of Cylinders of Revolution I

Pakkinee CHITSAKUL

King Mongkut's Institute of Technlogy Ladkrabang
(Communicated by Y. Komori-Furuya)

Abstract

The aim of this paper is to determine the structure of the cut locus for a class of surfaces of revolution homeomorphic to a cylinder. Let M denote a cylinder of revolution which admits a reflective symmetry fixing a parallel called the equator of M. It will be proved that the cut locus of a point p of M is a subset of the union of the meridian and the parallel opposite to p respectively, if the Gaussian curvature of M is decreasing on each upper half meridian.

1. Introduction

It is a very difficult problem to determine the structure of the cut locus of a Riemannian manifold and it was difficult even for a quadric surface.

Since Elerath ([E]) succeeded in specifying the structure of the cut locus for paraboloids of revolution and (2-sheeted) hyperboloids of revolution, the structures of the cut locus for quadric surfaces of revolution have been studied. After his work, Sinclair and Tanaka ([ST]) determined the structure of the cut locus for a class of surfaces of revolution containing the ellipsoids. Notice that the structures of the cut locus for triaxial ellipsoids with unequal axes were also determined by Itoh and Kiyohara ([IK]).

On the structure of the cut locus for a cylinder of revolution $\left(R^{1} \times S^{1}, d t^{2}+m(t)^{2} d \theta^{2}\right)$, Tsuji ([Ts]) first determined the cut locus of a point on the equator $t=0$ if the cylinder is symmetric with respect to the equator and the Gaussian curvature is decreasing on the upper half meridian $t>0, \theta=0$. In 2003, Tamura ([Ta]) determined the structure of the cut locus by adding an assumption $m^{\prime} \neq 0$ except $t=0$. In this paper, we determine the structure of the cut locus without this assumption.

Here, let us review the notion of a cut point and the cut locus of a point. Let $\gamma:[0, a] \rightarrow$ M be a minimal geodesic segment in a complete Riemannian manifold M. The end point of $\gamma(a)$ is called a cut point of $\gamma(0)$ along γ, if any geodesic extension of γ is not minimal anymore. The cut locus C_{p} of a point p of M is by definition the set of the cut points along all minimal geodesic segments emanating from p.

[^0]Key words and phrases: cut point, cut locus, cylinder of revolution

In this paper we will prove the following theorem.
MAin Theorem. Let $\left(M, d s^{2}\right)$ be a complete Riemannian manifold $R^{1} \times S^{1}$ with a warped product metric $d s^{2}=d t^{2}+m(t)^{2} d \theta^{2}$ of the real line $\left(R^{1}, d t^{2}\right)$ and the unit circle $\left(S^{1}, d \theta^{2}\right)$. Suppose that the warping function m is a positive-valued even function and the Gaussian curvature of M is decreasing along the half meridian $t^{-1}[0, \infty) \cap \theta^{-1}(0)$. If the Gaussian curvature of M is positive on $t=0$, then the structure of the cut locus C_{q} of a point $q \in \theta^{-1}(0)$ in M is given as follows:

1. The cut locus C_{q} is the union of a subarc of the parallel $t=-t(q)$ opposite to q and the meridian opposite to q if $|t(q)|<t_{0}:=\sup \left\{t>0 \mid m^{\prime}(t)<0\right\}$ and $\varphi(m(t(q)))<\pi$. More precisely,

$$
C_{q}=\theta^{-1}(\pi) \cup\left(t^{-1}(-t(q)) \cap \theta^{-1}[\varphi(m(t(q))), 2 \pi-\varphi(m(t(q)))]\right) .
$$

2. The cut locus C_{q} is the meridian $\theta^{-1}(\pi)$ opposite to q if $\varphi(m(t(q))) \geq \pi$ or if $|t(q)| \geq t_{0}$.
Here, the function $\varphi(\nu)$ on $(\inf m, m(0))$ is defined as

$$
\varphi(\nu):=2 \int_{-\xi(\nu)}^{0} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t=2 \int_{0}^{\xi(v)} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t
$$

where $\xi(\nu):=\min \{t>0 \mid m(t)=v\}$. Notice that the point q is an arbitrarily given point if the coordinates (t, θ) are chosen so as to satisfy $\theta(q)=0$.

REMARK 1.1. If the Gaussian curvature of a cylinder of revolution is nonpositive everywhere, then any geodesic has no conjugate point. Therefore, it is clear to see that the cut locus of a point on the manifold is the meridian opposite to the point.

2. Preliminaries

Let f be the solution of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+K f=0 \tag{2.1}
\end{equation*}
$$

with initial conditions $f(0)=c$ and $f^{\prime}(0)=0$. Here c denotes a fixed positive number and $K:[0, \infty) \rightarrow R$ denotes a continuous function.

Lemma 2.1. If $K(0)>0$ and $f^{\prime}(t) \neq 0$ for any $t>0$, then $f^{\prime}(t)<0$ on $(0, \infty)$. Furthermore, if $f>0$ on $[0, \infty)$, then $K(t)<0$ for some $t>0$.

Proof. Since $f^{\prime \prime}(0)=-K(0) f(0)<0$ by $(2.1), f^{\prime}(t)$ is strictly decreasing on $(0, \delta)$ for some $\delta>0$. This implies that $0=f^{\prime}(0)>f^{\prime}(t)$ for any $t \in(0, \delta)$. Since $f^{\prime} \neq 0$ on $[0, \infty), f^{\prime}(t)<0$ on $(0, \infty)$. Furthermore, we assume that $f>0$ on $[0, \infty)$. Supposing that $K \geq 0$ on $[0, \infty)$, we will get a contradiction. By (2.1),

$$
f^{\prime \prime}(t)=-K(t) f(t) \leq 0
$$

on $[0, \infty)$. Hence $f^{\prime}(t)$ is decreasing on $[0, \infty)$. In particular, $0=f^{\prime}(0)>f^{\prime}(\delta) \geq f^{\prime}(t)$ for any $t \geq \delta$. This contradicts the assumption $f>0$.

Lemma 2.2. Suppose that $K(0)>0$ and $f>0$ on $[0, \infty)$. If $f^{\prime}(t)=0$ for some $t>0$ and K is decreasing, then there exist a unique solution $t=t_{0} \in(0, \infty)$ of $f^{\prime}(t)=0$ such that $f^{\prime}(t)<0$ on $\left(0, t_{0}\right)$ and $f^{\prime}(t)>0$ on $\left(t_{0}, \infty\right)$ and there exists $t_{1} \in\left(0, t_{0}\right)$ satisfying $K\left(t_{1}\right)=0$. Hence $K \geq 0$ on $\left[0, t_{1}\right]$ and $K \leq 0$ on $\left[t_{1}, \infty\right)$.

Proof. Let $a>0$ denote the minimum positive solution $t=a$ of $f^{\prime}(t)=0$. Suppose that there exist another solution $b(>a)$ satisfying $f^{\prime}(b)=0$. By the mean value theorem, there exist $t_{1} \in(0, a)$ and $s_{1} \in(a, b)$ satisfying $f^{\prime \prime}\left(t_{1}\right)=f^{\prime \prime}\left(s_{1}\right)=0$. Hence $K\left(t_{1}\right)=$ $K\left(s_{1}\right)=0$ by (2.1). Since K is decreasing, $K=0$ on $\left[t_{1}, s_{1}\right]$. Therefore, by (2.1), $f^{\prime \prime}(t)=0$ on $\left[t_{1}, s_{1}\right]$. In particular, $f^{\prime}(a)=f^{\prime}\left(t_{1}\right)=0$. Since $0<t_{1}<a, t_{1}$ is a positive solution t of $f^{\prime}(t)=0$, which is less than a. This is a contradiction. Therefore, there exists a unique positive solution $t=t_{0}$ of $f^{\prime}(t)=0$. From the mean value theorem and (2.1), there exists $t_{1} \in\left(0, t_{0}\right)$ satisfying $K\left(t_{1}\right)=0$. Since $K(t)$ is decreasing, $K \geq 0$ on $\left[0, t_{1}\right]$ and $K \leq 0$ on $\left[t_{1}, \infty\right)$. Hence by (2.1), $f^{\prime \prime}(t)=-K(t) f(t) \geq 0$ on $\left[t_{1}, \infty\right)$ and $f^{\prime}(t) \geq f^{\prime}\left(t_{0}\right)=0$ for any $t>t_{0}$. Since f^{\prime} has a unique positive zero, $f^{\prime}>0$ on $\left(t_{0}, \infty\right)$. It is clear from the proof of Lemma 2.1 that $f^{\prime}<0$ on $\left(0, t_{0}\right)$.

3. Review of the behavior of geodesics

From now on, M denotes a complete Riemannian manifold $R^{1} \times S^{1}$ with a warped product Riemannian metric $d s^{2}=d t^{2}+m(t)^{2} d \theta^{2}$ of the real line $\left(R^{1}, d t^{2}\right)$ and the unit circle $\left(S^{1}, d \theta^{2}\right)$. Let us review the behavior of a geodesic $\gamma(s)=(t(s), \theta(s))$ on the manifold M. For each unit speed geodesic $\gamma(s)=(t(s), \theta(s))$, there exists a constant v satisfying

$$
\begin{equation*}
m(t(s))^{2} \theta^{\prime}(s)=v \tag{3.1}
\end{equation*}
$$

Hence, if $\eta(s)$ denotes the angle made by the velocity vector $\gamma^{\prime}(s)$ of the geodesic $\gamma(s)$ and the tangent vector $(\partial / \partial \theta)_{\gamma(s)}$, then

$$
\begin{equation*}
m(t(s)) \cos \eta(s)=v \tag{3.2}
\end{equation*}
$$

for any s. The constant v is called the Clairaut constant of γ. The reader should refer to Chapter 7 in [SST] for the Clairaut relation. Since $\gamma(s)$ is unit speed,

$$
\begin{equation*}
t^{\prime}(s)^{2}+m(t(s))^{2} \theta^{\prime}(s)^{2}=1 \tag{3.3}
\end{equation*}
$$

holds. By (3.1) and (3.3), it follows that

$$
\begin{align*}
t^{\prime}(s) & = \pm \frac{\sqrt{m(t(s))^{2}-v^{2}}}{m(t(s))} \tag{3.4}\\
\theta\left(s_{2}\right)-\theta\left(s_{1}\right) & =\varepsilon\left(t^{\prime}(s)\right) \int_{t\left(s_{1}\right)}^{t\left(s_{2}\right)} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t \tag{3.5}
\end{align*}
$$

holds, if $t^{\prime}(s) \neq 0$ on $\left(s_{1}, s_{2}\right)$ and $\varepsilon\left(t^{\prime}(s)\right)$ denotes the sign of $t^{\prime}(s)$.
The length $L(\gamma)$ of a geodesic segment $\gamma(s)=(t(s), \theta(s)), s_{1} \leq s \leq s_{2}$ is

$$
\begin{equation*}
L(\gamma)=\varepsilon\left(t^{\prime}(s)\right) \int_{t\left(s_{1}\right)}^{t\left(s_{2}\right)} \frac{m(t)}{\sqrt{m(t)^{2}-v^{2}}} d t \tag{3.6}
\end{equation*}
$$

if $t^{\prime}(s) \neq 0$ on $\left(s_{1}, s_{2}\right)$.
From a direct computation, the Gaussian curvature G of M is given by

$$
G(q)=-\frac{m^{\prime \prime}}{m}(t(q))
$$

at each point $q \in M$. Since G is constant on $t^{-1}(a)$ for each $a \in R$, a smooth function K on R is defined by

$$
K(u):=G(q)
$$

for $q \in t^{-1}(u)$. Therefore m satisfies the following differential equation

$$
m^{\prime \prime}+K m=0
$$

with $m^{\prime}(0)=0$.
From now on, we assume that the Gaussian curvature G of M is positive on $t^{-1}(0)$, and $m(t)=m(-t)$ holds for any $t \in R$. Hence, M is symmetric with respect to the equator $t=0$ and if K is decreasing on $[0, \infty)$, then by Lemma $2.2, m^{\prime}(t)<0$ for all $t>0$ or there exists a unique positive solution $t=t_{0}$ of $m^{\prime}(t)=0$ such that $m^{\prime}<0$ on $\left(0, t_{0}\right)$ and $m^{\prime}>0$ on $\left(t_{0}, \infty\right)$. Furthermore, if the latter case happens, there exists $t_{1} \in\left(0, t_{0}\right)$ such that $K \geq 0$ on $\left[0, t_{1}\right]$ and $K \leq 0$ on $\left[t_{1}, \infty\right)$.

For technical reasons, we treat both geodesics on M and its universal covering space $\pi: \tilde{M} \rightarrow M$, where $\tilde{M}:=\left(R^{1} \times R^{1}, d \tilde{t}^{2}+m(\tilde{t})^{2} d \tilde{\theta}^{2}\right)$.

Choose any point p on the equator $t=0$. We may assume that $\theta(p)=0$ without loss of generality. Let $\gamma:[0, \infty) \rightarrow M$ denote a geodesic emanating from $p=\gamma(0)$ with Clairaut constant $\nu \in(\inf m, m(0))$. Notice that γ is uniquely determined up to the reflection with respect to $t=0$. The geodesic $\gamma(s)=(t(s), \theta(s))$ is tangent to the parallel $t=\xi(\nu)$ (if $\left.(t \circ \gamma)^{\prime}(0)>0\right)$ or $t=-\xi(\nu)\left(\right.$ if $\left.(t \circ \gamma)^{\prime}(0)<0\right)$, where $\xi(\nu)>0$ denotes the least positive solution of $m(\xi(\nu))=v$, that is,

$$
\xi(v):=\min \{u>0 \mid m(u)=v\}
$$

After γ is tangent to the parallel $t=\xi(\nu)$ or $-\xi(\nu), \gamma$ intersects the equator $t=0$ again. Thus, after $\tilde{\gamma}$ is tangent to the parallel $\operatorname{arc} \tilde{t}=\xi(v)$ or $-\xi(v), \tilde{\gamma}$ intersect $\tilde{t}=0$ again. Here $\tilde{\gamma}$ denotes a geodesic on \tilde{M} satisfying $\gamma=\pi \circ \tilde{\gamma}$.

From (3.5), we obtain,

$$
\tilde{\theta}\left(s_{0}\right)-\tilde{\theta}(0)=\int_{-\xi(\nu)}^{0} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t=\int_{0}^{\xi(\nu)} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t
$$

and

$$
\tilde{\theta}\left(s_{1}\right)-\tilde{\theta}\left(s_{0}\right)=\int_{-\xi(v)}^{0} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t=\int_{0}^{\xi(v)} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t
$$

where $s_{0}:=\min \{s>0 \mid m(\tilde{t}(s))=v\}, s_{1}:=\min \{s>0 \mid \tilde{t}(s)=0\}$.
By summing up the argument above, we have,
Lemma 3.1. Let $\tilde{\gamma}(s)=(\tilde{t}(s), \tilde{\theta}(s))$ denote a geodesic emanating from the point $\tilde{p}:=(\tilde{t}, \tilde{\theta})^{-1}(0,0)$ with Clairaut constant $v \in(\inf m, m(0))$. Then $\tilde{\gamma}$ intersects $\tilde{t}=0$ again at the point $(\tilde{t}, \tilde{\theta})^{-1}(0, \varphi(\nu))$. Here,

$$
\begin{equation*}
\varphi(\nu):=2 \int_{-\xi(\nu)}^{0} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t=2 \int_{0}^{\xi(\nu)} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t \tag{3.7}
\end{equation*}
$$

Lemma 3.2. The length $l(\nu)$ of the $\operatorname{subarc}(\tilde{t}(s), \tilde{\theta}(s)), 0 \leq \tilde{\theta}(s) \leq \varphi(\nu)$, of $\tilde{\gamma}(s)$ is given by

$$
\begin{equation*}
l(\nu)=2 \int_{-\xi(\nu)}^{0} \frac{m}{\sqrt{m^{2}-v^{2}}} d t=2 \int_{-\xi(\nu)}^{0} \frac{\sqrt{m^{2}-v^{2}}}{m} d t+v \varphi(\nu), \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial l}{\partial v}(\nu)=v \varphi^{\prime}(\nu) \tag{3.9}
\end{equation*}
$$

Proof. From (3.6), we obtain,

$$
l(v)=2 \int_{-\xi(\nu)}^{0} \frac{m}{\sqrt{m^{2}-v^{2}}} d t
$$

Since

$$
\frac{m}{\sqrt{m^{2}-v^{2}}}=\frac{\sqrt{m^{2}-v^{2}}}{m}+\frac{v^{2}}{m \sqrt{m^{2}-v^{2}}}
$$

holds, we get

$$
l(v)=2 \int_{-\xi(v)}^{0} \frac{\sqrt{m^{2}-v^{2}}}{m} d t+2 \int_{-\xi(v)}^{0} \frac{v^{2}}{m \sqrt{m^{2}-v^{2}}} d t
$$

Hence, by (3.7), we get (3.8). By differentiating $l(\nu)$ with respect to v, we get,

$$
l^{\prime}(\nu)=2 \int_{-\xi(\nu)}^{0} \frac{\partial}{\partial \nu} \frac{\sqrt{m^{2}-v^{2}}}{m} d t+\varphi(\nu)+\nu \varphi^{\prime}(\nu)=\nu \varphi^{\prime}(\nu) .
$$

4. The decline of the function $\varphi(\nu)$

Let $\pi: \tilde{M}=\left(R^{1} \times R^{1}, d \tilde{t}^{2}+m(\tilde{t})^{2} d \tilde{\theta}^{2}\right) \rightarrow M$ denote the universal covering space of M. We choose an arbitrary point \tilde{p} of $\tilde{t}^{-1}(-\infty, 0]$, and we denote the cut locus of \tilde{p} by $C_{\tilde{p}}$. Before proving some lemmas on the cut locus, let us review the structure of the cut locus of \tilde{M}. We refer to [ShT] or [SST] on the structure of the cut locus of a 2 -dimensional complete Riemannian manifold.

It is known that the cut locus has a local tree structure. Since \tilde{M} is simply connected, the cut locus has no circle. If two cut points x and y are in a common connected component of the cut locus, then x and y are connected by a unique rectifiable arc in the cut locus.

Since \tilde{M} is homeomorphic to R^{2}, we may define a global sector at each cut point. For general surfaces, only local sectors are defined (see [ShT], or [SST]). A global sector at each cut point x of the point \tilde{p} is by definition a connected component of $\tilde{M} \backslash \Gamma_{x}$, where Γ_{x} denotes the set of all points lying on a minimal geodesic segment joining \tilde{p} to x. Let $c:[0, a] \rightarrow C_{\tilde{p}}$ denote a rectifiable arc in the cut locus. Then for each cut point $c(t), t \in(0, a), c$ bisects the sector at $c(t)$ containing $c[0, t)$ (respectively $c(t, a])$. For each sector of the point \tilde{p} on \tilde{M}, there exists an end point of $C_{\tilde{p}}$, since $C_{\tilde{p}}$ has no circle. Here, a cut point q of \tilde{p} is called an end point if q admits exactly one sector.

In this section, we assume that the Gaussian curvature G of M is increasing on the half meridian $t^{-1}(-\infty, 0] \cap \theta^{-1}(0)$ and that M has a reflective symmetry with respect to $t=0$. Hence the Gaussian curvature of \widetilde{M} is increasing on the lower half meridian $\tilde{t}^{-1}(-\infty, 0] \cap$ $\tilde{\theta}^{-1}(0)$ and \tilde{M} has a reflective symmetry with respect to $\tilde{t}=0$.

Lemma 4.1. Suppose that there exists a cut point of the point \tilde{p} in $\tilde{t}^{-1}(-\infty, 0)$. Then there exist two minimal geodesic segments α and β joining \tilde{p} to a cut point y of \tilde{p} such that the global sector $D(\alpha, \beta)$ bounded by α and β has an end point of $C_{\tilde{p}}$ and $D(\alpha, \beta) \subset$ $\tilde{t}^{-1}(-\infty, 0)$.

Proof. Since the subset of cut points admitting at least two minimal geodesics is dense in the cut locus, the existence of two minimal geodesics α and β is clear (see [Bh]). Since \tilde{M} has a reflective symmetry with respective to $\tilde{t}=0$, it is trivial that $D(\alpha, \beta) \subset \tilde{t}^{-1}(-\infty, 0)$. Let y denote the end point of α distinct from \tilde{p}. Since the proof is complete in the case where the cut point y is not an end point of the cut locus, we assume that y is an end point. Then, we get an arc c in the cut locus emanating from y. Any interior point y_{1} on c is not an end point of the cut locus. It is clear that there exist two minimal geodesic segments joining \tilde{p} and y_{1} which bound a sector containing y as an end point of the cut locus.

Lemma 4.2. For any unit speed minimal geodesic segment $\gamma:[0, L(\gamma)] \rightarrow \tilde{M}$ joining \tilde{p} to any end point x of $C_{\tilde{p}}$ in the domain $D(\alpha, \beta), x$ is conjugate to \tilde{p} along γ and γ is shorter than α and β.

Proof. Note that for any end point x of the cut locus, the set of all minimal geodesic
segments joining \tilde{p} to x is connected. Therefore, x is conjugate to \tilde{p} along any minimal geodesic segments joining \tilde{p} to the end point of the cut locus. Let $\gamma:[0, L(\gamma)] \rightarrow \tilde{M}$ denote any minimal geodesic segment \tilde{p} to an end point x of $C_{\tilde{p}} \cap D(\alpha, \beta)$. We will prove that γ is shorter than α and β. It follows from Theorem B in [ShT] or [IT] that there exists a unit speed $\operatorname{arc} c:[0, l] \rightarrow C_{\tilde{p}}$ joining the end point x to y, where y denotes the end point of α distinct from \tilde{p}. Since the function $d(\tilde{p}, c(\tau))$ is a Lipschitz function, it follows from Lemma 7.29 in [WZ] that the function is differentiable for almost all τ and

$$
\begin{equation*}
d(\tilde{p}, c(l))-d(\tilde{p}, y)=\int_{0}^{l} \frac{d}{d \tau} d(\tilde{p}, c(\tau)) d \tau \tag{4.1}
\end{equation*}
$$

holds. From the Clairaut relation (3.2), the inner angle $\theta(\tau)$ at $c(\tau)$ of the sector containing $c[0, \tau)$ is less than π. Hence, by the first variation formula, we get

$$
\frac{d}{d \tau} d(\tilde{p}, c(\tau))=\cos \frac{\theta(\tau)}{2}>0
$$

for almost all τ. Notice that for each $\tau \in(0, l)$, the curve c bisects the sector at $c(\tau)$ containing $c[0, \tau)$. Therefore, from (4.1),

$$
L(\alpha)=L(\beta)=d(\tilde{p}, c(l))>d(\tilde{p}, y)=L(\gamma) .
$$

Lemma 4.3. Let q be a point on $\tilde{\theta}^{-1}(0)$ and u_{0} any real number. Then $d(q, c(\theta))$ is strictly increasing on $[0, \infty)$. Here $c:[0, \infty) \rightarrow \widetilde{M}$ denotes $c(\theta)=\left(u_{0}, \theta\right)$ in the coordinates $(\tilde{t}, \tilde{\theta})$ and $d(\cdot, \cdot)$ denotes the Riemannian distance function on \tilde{M}.

Proof. Choose any positive numbers $\theta_{1}<\theta_{2}$. Let $\alpha_{i}, i=1,2$, denote minimal geodesic segments joining the point q to $c\left(\theta_{i}\right)$ respectively. Since $\theta_{2}>\theta_{1}$, there exists an intersection $\alpha_{2}\left(t_{2}\right)$ of α_{2} and the meridian $\tilde{\theta}=\theta_{1}$. The point $c\left(\theta_{1}\right)$ is the unique nearest point on $\tilde{t}=u_{0}$ from $\alpha_{2}\left(t_{2}\right)$. Hence,

$$
d\left(\alpha_{2}\left(t_{2}\right), c\left(\theta_{1}\right)\right)<d\left(\alpha_{2}\left(t_{2}\right), c\left(\theta_{2}\right)\right)
$$

Therefore, by the triangle inequality, we get

$$
\begin{aligned}
d\left(q, c\left(\theta_{2}\right)\right)= & d\left(q, \alpha_{2}\left(t_{2}\right)\right)+d\left(\alpha_{2}\left(t_{2}\right), c\left(\theta_{2}\right)\right)>d\left(q, \alpha_{2}\left(t_{2}\right)\right) \\
& +d\left(\alpha_{2}\left(t_{2}\right), c\left(\theta_{1}\right)\right) \geq d\left(q, c\left(\theta_{1}\right)\right) .
\end{aligned}
$$

This implies that $d(q, c(\theta))$ is strictly increasing on $[0, \infty)$.
Lemma 4.4. Suppose that $\gamma:[0, L(\gamma)] \rightarrow \tilde{M}$ is a minimal geodesic segment joining \tilde{p} to an end point $x \in C_{\tilde{p}}$, which is a point in the sector $D(\alpha, \beta)$ bounded by two minimal geodesic segments α and β emanating from \tilde{p}. Then, for any $s \in[0, L(\gamma)]$, $\tilde{t}(\alpha(s)) \geq \tilde{t}(\gamma(s)) \geq \tilde{t}(\beta(s))$ holds. Here we assume that

$$
\angle\left(\alpha^{\prime}(0),(\partial / \partial \tilde{t})_{\tilde{p}}\right)<\angle\left(\gamma^{\prime}(0),(\partial / \partial \tilde{t})_{\tilde{p}}\right)<L\left(\beta^{\prime}(0),(\partial / \partial \tilde{t})_{\tilde{p}}\right),
$$

where $L(\cdot, \cdot)$ denotes the angle made by two tangent vectors.
Proof. From (3.4), it follows that for sufficiently small $s>0, \tilde{t}(\alpha(s))>\tilde{t}(\gamma(s))>$ $\tilde{t}(\beta(s))$ holds. Hence the set $A:=\{s \in(0, L(\gamma)) \mid \tilde{t}(\alpha(s))>\tilde{t}(\gamma(s))>\tilde{t}(\beta(s))\}$ is a nonempty open subset of $(0, L(\gamma))$. Let $\left(0, s_{0}\right)$ denote the connected component of A. It is sufficient to prove that $s_{0}=L(\gamma)$. Suppose that $s_{0}<L(\gamma)$. Thus, $\tilde{t}\left(\alpha\left(s_{0}\right)\right)=\tilde{t}\left(\gamma\left(s_{0}\right)\right)$ or $\tilde{t}\left(\gamma\left(s_{0}\right)\right)=\tilde{t}\left(\beta\left(s_{0}\right)\right)$ holds, since A is open. By applying Lemma 4.3 for $u_{0}:=\tilde{t}\left(\alpha\left(s_{0}\right)\right)$ and $\tilde{t}\left(\beta\left(s_{0}\right)\right)$, we get $\alpha\left(s_{0}\right)=\gamma\left(s_{0}\right)$ or $\gamma\left(s_{0}\right)=\beta\left(s_{0}\right)$, which is a contradiction.

LEMMA 4.5. For any point $\tilde{p} \in \tilde{t}^{-1}(-\infty, 0]$, there does not exist a cut point of \tilde{p} in $\tilde{t}^{-1}(-\infty, 0)$. In particular, the cut locus of \tilde{p} is a subset of $\tilde{t}^{-1}(0)$ if $\tilde{t}(\tilde{p})=0$. This implies that the cut locus C_{p} of a point $p \in t^{-1}(0)$ is a subset of $\theta^{-1}(\pi) \cup t^{-1}(0)$. Here the coordinates (t, θ) are chosen so as to satisfy $\theta(p)=0$.

Proof. Suppose that there exist a cut point of \tilde{p} in $\tilde{t}^{-1}(-\infty, 0)$. By Lemma 4.1, there exist two minimal geodesic segments α and β joining a cut point y of \tilde{p} which bound a sector $D(\alpha, \beta)$ containing an end point x of $C_{\tilde{p}}$. Let $\gamma:[0, L(\gamma)] \rightarrow \widetilde{M}$ be a unit speed geodesic segment joining \tilde{p} to the end point x. From Lemmas 4.1 and 4.4, it follows that for any $s \in[0, L(\gamma)]$,

$$
0 \geq \tilde{t}(\alpha(s)) \geq \tilde{t}(\gamma(s)) \geq \tilde{t}(\beta(s))
$$

holds. Since the Gaussian curvature G is increasing on each lower half meridian, we obtain

$$
G(\alpha(s)) \geq G(\gamma(s)) \geq G(\beta(s))
$$

By applying the Rauch comparison theorem for the pair of geodesic segments $\left.\alpha\right|_{[0, L(\gamma)]}$ and γ, \tilde{p} admits a conjugate point on $\left.\alpha\right|_{[0, L(\gamma)]}$ along α.

This contradicts the fact that α is minimal. Since \tilde{M} is symmetric with respect to $\tilde{t}=0$, the cut locus of \tilde{p} is a subset of $\tilde{t}^{-1}(0)$, if $\tilde{t}(\tilde{p})=0$. This implies that $C_{p} \subset \theta^{-1}(\pi) \cup t^{-1}(0)$ for the point $p=t^{-1}(0) \cap \theta^{-1}(0)$.

PROPOSITION 4.6. Let M be a complete Riemannian manifold $R^{1} \times S^{1}$ with a warped product metric $d s^{2}=d t^{2}+m(t)^{2} d \theta^{2}$ of the real line $\left(R^{1}, d t^{2}\right)$ and the unit circle $\left(S^{1}, d \theta^{2}\right)$. Here the warping function $m: R \rightarrow(0, \infty)$ is a smooth even function. If the Gaussian curvature is positive on the equator and decreasing on the upper half meridian $t^{-1}(0, \infty) \cap$ $\theta^{-1}(0)$, then the function $\varphi(v)$ is decreasing on $(\inf m, m(0))$.

Proof. Let $\tilde{M}:=\left(R^{1} \times R^{1}, d \tilde{t}^{2}+m(\tilde{t})^{2} d \tilde{\theta}^{2}\right)$ denote the universal covering space of M. Choose any point \tilde{p} on $\tilde{t}^{-1}(0)$. For each $v \in(\inf m, m(0))$, let $\alpha_{\nu}:[0, \infty) \rightarrow \tilde{M}$ denote the geodesic emanating from the point $\tilde{p}=\alpha_{\nu}(0)$ with Clairaut constant v and with $\left(\tilde{t} \circ \alpha_{\nu}\right)^{\prime}(0)<0$. From the Clairaut relation, we get $\angle\left((\partial / \partial \tilde{\theta})_{\tilde{p}}, \alpha_{\nu}^{\prime}(0)\right)=\cos ^{-1} \nu / m(0)$. Choose any $\nu_{1}<\nu_{2}$ with $\nu_{1}, \nu_{2} \in(\inf m, m(0))$. Since

$$
\cos ^{-1} \frac{\nu_{2}}{m(0)}<\cos ^{-1} \frac{\nu_{1}}{m(0)}
$$

it follows from Lemma 4.5 that $\alpha_{\nu_{1}}$ does not cross the domain bounded by the subarc of $\alpha_{\nu_{2}}$ and $\tilde{t}^{-1}(0) \cap \tilde{\theta}^{-1}\left[\tilde{\theta}(\tilde{p}), \tilde{\theta}(\tilde{p})+\varphi\left(\nu_{2}\right)\right]$. This implies that $\varphi\left(\nu_{1}\right) \geq \varphi\left(\nu_{2}\right)$. Therefore, $\varphi(\nu)$ is decreasing on $(\inf m, m(0))$.

5. The cut locus of a point on \tilde{M}

Choose any point q on \tilde{M} with $-t_{0}<\tilde{t}(q)<0$, where $t_{0}:=\sup \left\{t>0 \mid m^{\prime}(t)<0\right\}$. Without loss of generality, we may assume that $\tilde{\theta}(q)=0$. We consider two geodesics α_{ν} and β_{ν} emanating from the point $q=\alpha_{\nu}(0)=\beta_{\nu}(0)$ with Clairaut constant $v>0$. Here we assume that

$$
\angle\left((\partial / \partial \tilde{t})_{q}, \alpha_{v}^{\prime}(0)\right)>\angle\left((\partial / \partial \tilde{t})_{q}, \beta_{v}^{\prime}(0)\right) .
$$

Lemma 5.1. The two geodesics α_{ν} and β_{v} intersect again at the point $(\tilde{t}, \tilde{\theta})^{-1}(u, \varphi(\nu))$ if $\nu \in(\inf m, m(0))$, where $u:=-\tilde{t}(q)$.

Proof. Suppose that $v \in(\inf m, m(0))$. Since α_{v} is tangent to the parallel arc $\tilde{t}=$ $-\xi(\nu)$, it follows from (3.5) that

$$
\tilde{\theta}\left(\alpha_{\nu}\left(s_{1}\right)\right)-\tilde{\theta}\left(\alpha_{\nu}(0)\right)=\int_{-\xi(\nu)}^{-u} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t
$$

where $s_{1}:=\min \left\{s>0 \mid \tilde{t}\left(\alpha_{\nu}(s)\right)=-\xi(\nu)\right\}$, and

$$
\tilde{\theta}\left(\alpha_{\nu}\left(s_{2}\right)\right)-\tilde{\theta}\left(\alpha_{\nu}\left(s_{1}\right)\right)=\int_{-\xi(\nu)}^{u} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t
$$

where $s_{2}:=\min \left\{s>0 \mid \tilde{t}\left(\alpha_{v}(s)\right)=u\right\}$. Hence, we obtain,

$$
\begin{equation*}
\tilde{\theta}\left(\alpha_{\nu}\left(s_{2}\right)\right)-\tilde{\theta}\left(\alpha_{\nu}(0)\right)=\int_{-\xi(\nu)}^{u} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t+\int_{-\xi(\nu)}^{-u} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t . \tag{5.1}
\end{equation*}
$$

Since m is an even function,

$$
\int_{-\xi(\nu)}^{u} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t=\int_{-\xi(\nu)}^{0} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t+\int_{-u}^{0} \frac{v}{m \sqrt{m^{2}-v^{2}}} d t
$$

holds. Therefore, by (5.1),

$$
\tilde{\theta}\left(\alpha_{\nu}\left(s_{2}\right)\right)-\tilde{\theta}\left(\alpha_{\nu}(0)\right)=2 \int_{-\xi(\nu)}^{0} \frac{\nu}{\sqrt{m^{2}-v^{2}}} d t=\varphi(\nu) .
$$

This implies that α_{ν} passes through the point $(\tilde{t}, \tilde{\theta})^{-1}(u, \varphi(\nu))$. On the other hand, after β_{v} is tangent to $\tilde{t}=\xi(\nu)$ at $\beta_{\nu}\left(s_{1}^{+}\right)$, where $s_{1}^{+}:=\min \left\{s>0 \mid \tilde{t}\left(\beta_{\nu}(s)\right)=\xi(\nu)\right\}$, the geodesic intersects $\tilde{t}=u$ again at $\beta_{v}\left(s_{2}^{+}\right)$, where $s_{2}^{+}:=\min \left\{s>s_{1}^{+} \mid \tilde{t}\left(\beta_{v}(s)\right)=u\right\}$. By the similar
computation as above, we get

$$
\tilde{\theta}\left(\beta_{v}\left(s_{2}^{+}\right)\right)-\tilde{\theta}\left(\beta_{v}(0)\right)=\varphi(v)
$$

This implies that α_{ν} and β_{ν} pass through the common point $(\tilde{t}, \tilde{\theta})^{-1}(u, \varphi(\nu))$.
LEmmA 5.2. The two geodesic segments $\left.\alpha_{\nu}\right|_{\left[0, s_{2}\right]}$ and $\left.\beta_{v}\right|_{\left[0, s_{2}^{+}\right]}$have the same length and its length equals $l(\nu)$, which is defined in Lemma 3.2. In particular, $s_{2}=s_{2}^{+}$. Here, s_{2} and s_{2}^{+}denote the numbers defined in the proof of Lemma 5.1.

Proof. From (3.6), we have

$$
\begin{equation*}
L\left(\left.\alpha_{v}\right|_{\left[0, s_{1}\right]}\right)=\int_{-\xi(\nu)}^{-u} \frac{m}{\sqrt{m^{2}-v^{2}}} d t \tag{5.2}
\end{equation*}
$$

and

$$
L\left(\left.\alpha_{\nu}\right|_{\left[s_{1}, s_{2}\right]}\right)=\int_{-\xi(\nu)}^{u} \frac{m}{\sqrt{m^{2}-v^{2}}} d t=\int_{-\xi(\nu)}^{0} \frac{m}{\sqrt{m^{2}-v^{2}}} d t+\int_{0}^{u} \frac{m}{\sqrt{m^{2}-v^{2}}} d t
$$

where s_{1} denotes the number defined in the proof of Lemma 5.1. Since m is even

$$
\begin{equation*}
L\left(\left.\alpha_{\nu}\right|_{\left[s_{1}, s_{2}\right]}\right)=\int_{-\xi(\nu)}^{0} \frac{m}{\sqrt{m^{2}-v^{2}}} d t+\int_{-u}^{0} \frac{m}{\sqrt{m^{2}-v^{2}}} d t \tag{5.3}
\end{equation*}
$$

Therefore, we get, by (3.8), (5.2) and (5.3),

$$
L\left(\left.\alpha_{\nu}\right|_{\left[0, s_{2}\right]}\right)=2 \int_{-\xi(v)}^{0} \frac{m}{\sqrt{m^{2}-v^{2}}} d t=l(\nu) .
$$

Analogously we have,

$$
L\left(\left.\beta_{v}\right|_{\left[0, s_{2}^{+}\right]}\right)=l(\nu) .
$$

Lemma 5.3. Let q be a point on \tilde{M} with $|\tilde{t}(q)| \in\left(0, t_{0}\right)$. Then, for any $v \in$ $(\inf m, m(u)]$, where $u=-\tilde{t}(q),\left.\alpha_{\nu}\right|_{\left[0, s_{2}(\nu)\right]}$ and $\left.\beta_{\nu}\right|_{\left[0, s_{2}(\nu)\right]}$ are minimal geodesic segments joining q to the point $(\tilde{t}, \tilde{\theta})^{-1}(u, \tilde{\theta}(q)+\varphi(\nu))$, and in particular, $\{(\tilde{t}, \tilde{\theta}) \mid \tilde{t}=u, \tilde{\theta} \geq$ $\varphi(m(u))+\tilde{\theta}(q)\}$ is a subset of the cut locus of the point q. Here, $s_{2}(v):=\min \{s>$ $\left.0 \mid \tilde{t}\left(\alpha_{v}(s)\right)=u\right\}$ for each $v \in(\inf m, m(0))$.

Proof. Without loss of generality, we may assume that $\tilde{\theta}(q)=0$. We will prove that $\left.\alpha_{\nu}\right|_{\left[0, s_{2}(\nu)\right]}$ is a minimal geodesic segment joining q to the point $\alpha_{\nu}\left(s_{2}(\nu)\right)=$ $(\tilde{t}, \tilde{\theta})^{-1}(u, \varphi(\nu))$. Suppose that $\left.\alpha_{\nu_{0}}\right|_{\left[0, s_{2}\left(v_{0}\right)\right]}$ is not minimal for some $\nu_{0} \in(\inf m, m(u)]$. Here we assume that ν_{0} is the minimum solution $\nu=\nu_{0}$ of $\varphi(\nu)=\varphi\left(\nu_{0}\right)$.

Let $\alpha:[0, d(q, x)] \rightarrow M$ be a minimal geodesic segment joining q to $x:=$ $\alpha_{\nu_{0}}\left(s_{2}\left(\nu_{0}\right)\right)=(\tilde{t}, \tilde{\theta})^{-1}\left(u, \varphi\left(\nu_{0}\right)\right)$. Hence, $\varphi\left(\nu_{1}\right)=\varphi\left(\nu_{0}\right)=\tilde{\theta}(x)$ and α equals $\left.\alpha_{v_{1}}\right|_{\left[0, s_{2}\left(\nu_{1}\right)\right]}$ or $\left.\beta_{\nu_{1}}\right|_{\left[0, s_{2}\left(\nu_{1}\right)\right]}$, where $\nu_{1} \in(\inf m, m(0))$ denotes the Clairaut constant of α. By Proposition 4.6, $\varphi(\nu)=\varphi\left(\nu_{0}\right)$ for any $v \in\left[\nu_{0}, \nu_{1}\right]$. Hence, by Lemmas 3.2 and 5.2 we get,

$$
s_{2}\left(v_{1}\right)=L(\alpha)=L\left(\left.\alpha_{\nu_{1}}\right|_{\left[0, s_{2}\left(\nu_{1}\right)\right]}\right)=L\left(\left.\alpha_{\nu_{0}}\right|_{\left[0, s_{2}\left(\nu_{0}\right)\right]}\right)=s_{2}\left(\nu_{0}\right) .
$$

This implies that $\alpha_{\nu_{0}}\left[_{\left[0, s_{2}\left(v_{0}\right)\right]}\right.$ is minimal, which is a contradiction, since we assumed that $\left.\alpha_{\nu_{0}}\right|_{\left[0, s_{2}\left(\nu_{0}\right)\right]}$ is not minimal. Therefore, by Lemma 5.2, for any $v \in(\inf m, m(u)]$, the geodesic segments $\left.\alpha_{\nu}\right|_{\left[0, s_{2}(\nu)\right]}$ and $\left.\beta_{\nu}\right|_{\left[0, s_{2}(\nu)\right]}$ are minimal geodesic segments joining q to the point $(\tilde{t}, \tilde{\theta})^{-1}(u, \varphi(\nu))=\alpha_{\nu}\left(s_{2}(\nu)\right)$. In particular, the point $\alpha_{\nu}\left(s_{2}(\nu)\right)=\beta_{v}\left(s_{2}(\nu)\right)$ is a cut point of q.

Proposition 5.4. The cut locus of the point q in Lemma 5.3 equals the set

$$
\{(\tilde{t}, \tilde{\theta})|\tilde{t}=u, \tilde{\theta} \geq|\varphi(m(u))|\}
$$

Here the coordinates $(\tilde{t}, \tilde{\theta})$ are chosen so as to satisfy $\tilde{\theta}(q)=0$.
Proof. By Lemma 5.3, geodesic segments $\left.\alpha_{v}\right|_{\left[0, s_{2}(v)\right]}$ and $\left.\beta_{v}\right|_{\left[0, s_{2}(v)\right]}$ are minimal geodesic segments for any $v \in(\inf m, m(u)]$. Hence their limit geodesics $\alpha^{-}:=\alpha_{\inf m}$ and $\beta^{+}:=\beta_{\mathrm{inf} m}$ are rays, that is, any their subarcs are minimal.

Since \tilde{M} has a reflective symmetry with respect to $\tilde{\theta}=0$, it is trivial from Lemma 5.3 that the $\operatorname{set}\{(\tilde{t}, \tilde{\theta})|\tilde{t}=u, \tilde{\theta} \geq|\varphi(m(u))|\}$ is a subset of the cut locus of q. Suppose that there exists a cut point $y \notin\{\tilde{t}, \tilde{\theta})|\tilde{t}=u, \tilde{\theta} \geq|\varphi(m(u))|\}$. Without loss of generality, we may assume that $\tilde{\theta}(y)>0=\tilde{\theta}(q)$ and $\tilde{t}(q)=-u<0$. From Lemma 4.5, $\tilde{t}(y)>0$ and y is not a point in the unbounded domain cut off by two rays α^{-}and β^{+}, and hence the point lies in the domain D^{+}cut off by β^{+}and the submeridian $\tilde{t}>-u, \tilde{\theta}=\tilde{\theta}(q)=0$. Since the cut locus of C_{q} has a tree structure, there exists an end point x of the cut locus in the D^{+}. Hence, x is conjugate to q for any minimal geodesic segment γ joining q to x. Since such a minimal geodesic γ runs in the domain D^{+}, the Clairaut constant of the segment is positive and less than $\inf m$. From the Clairaut relation (3.2), any geodesic cannot be tangent to any parallel arc $\tilde{t}=c$, if the Clairaut constant is positive and less than inf m. From Corollary 7.2.1 in [SST], γ has no conjugate point of q, which is a contradiction.

Lemma 5.5. Let q be a point on \tilde{M} with $|\tilde{t}(q)| \geq t_{0}$. Then the cut locus of q is empty.
Proof. Suppose that the cut locus of a point q with $|\tilde{t}(q)| \geq t_{0}$ is nonempty. Since \tilde{M} has a reflective symmetry with respect to $\tilde{t}=0$, we may assume that $\tilde{t}(q) \leq-t_{0}$. Hence by Lemma 4.5, there exists an end point x of the cut locus C_{q} in $\tilde{t}^{-1}(0, \infty)$. Let $\gamma:[0, d(q, x)] \rightarrow \widetilde{M}$ denote a minimal geodesic segment joining q to x. Then x is conjugate to q along γ, since x is an end point of C_{q}. Since $\tilde{\theta}(x)>0=\tilde{\theta}(q)$, the Clairaut constant v of γ is positive, by (3.1). Moreover, from the Clairaut relation (3.2), the Clairaut constant v
is less than $\inf m=m\left(t_{0}\right)$, since γ intersects $\tilde{t}=-t_{0}$. Therefore, γ cannot be tangent to any parallel $\operatorname{arc} \tilde{t}=c$. From Corollary 7.2.1 in [SST], γ has no conjugate point of q, which is a contradiction.

Now our Main theorem is clear from Proposition 5.4 and Lemma 5.5.
Acknowledgments. I would like to express my gratitude to Professor Minoru TANAKA who kindly gave me guidance for the lectures and numerous comments.

References

[Bh] Richard L. Bishop, Decomposition of cut loci, Proc. Amer. Math. Soc. 65 (1) (1977), 133-136.
[E] D. ElERATH, An improved Toponogov comparison theorem for non-negatively curved manifolds, J. Differential Geom. 15 (1980), 187-216.
[IK] J. ITOH and K. KIYOHARA, The cut locui and the conjugate loci on ellipsoids, Manuscripta Math. 114 (2004), 247-264.
[IT] J. Itoh and M. TANAKA, The Lipschitz continuity of the distance function to the cut locus, Trans. of AMS, 353 (1) (2000), 21-40.
[ShT] K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Séminaries \& Congrès, Collection SMF No.1, Actes de la table ronde de Géométrie différentielle en l'honneur Marcel Berger (1996), 531-560.
[SST] K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge tracts in mathematics 159, Cambridge University Press, Cambridge, 2003.
[ST] R. SINCLAIR and M.TANAKA, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J. 59 (2007), 379-399.
[Ta] K. TAMURA, On the cut locus of a complete Riemannian manifold homeomorphic to a cylinder, 2003, Master Thesis, Tokai University.
[Ts] Y. TSUJI, On a cut locus of a complete Riemannian manifold homeomorphic to a cylinder, Proceedings of the school of Science, Tokai University, 32 (1997), 23-34.
[WZ] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, Basel, 1977.

Present Address:

Department of Mathematics,
King Mongkut's Institute of Technology Ladkrabang, LADKRABANG, BANGKOK, 10-520 THAILAND.
e-mail: kcpakkin@kmitl.ac.th

[^0]: Received August 16, 2013
 2010 Mathematics Subject Classification: 53C22

