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Abstract. In this paper, we will study Earle slices of quasi-fuchsian space for once punctured torus associated
with involutions of its fundamental group induced by orientation reversing diffeomorphism of this surface. First we
classify Earle slices into two types: rhombic Earle slices and rectangular Earle slices. The main purpose of this paper
is to study the configuration of Earle slices. Especially, we obtain a necessary and sufficient condition for two Earle
slices to intersect each other. We also show that the union of all Earle slices is connected. In the end, we describe
Earle slices by using trace coordinates of quasi-fuchsian space.

1. Introduction

Earle slices, which are holomorphic slices of quasi-fuchsian spaces, were first introduced
by Earle [2] in 1983. Actually Earle considered in [2] the case of closed Riemann surface of
genus≥ 2. Later Komori and Series [6] studied the case of once punctured torus. In this paper,
we consider all of the Earle slices for once punctured torus S associated with involutions of
the fundamental group π1(S) induced by orientation reversing diffeomorphism of S. We will
classify these Earle slices into two types: rhombic Earle slices and rectangular Earle slices.
Here rhombic Earle slices are associated with involutions exchanging some pair (α, β) of
generators of π1(S), while rectangular Earle slices are associated with involutions which take

α to α and β to β−1 for some pair (α, β) of generators of π1(S). Komori and Series [6]
studied rhombic Earle slices, and Komori [7] studied rectangular Earle slices.

In this paper, we study the configuration of Earle slices in QF(S) of once punctured
torus. The paper is organized as follows. In Section 2, we set up notations and recall some
definitions we will use later. In Section 3, we give the classification of Earle slices. In Section
4, we consider the action of mapping class group on the quasi-fuchsian space and determine
the stabilizer subgroup of each Earle slice.

The main results appear in Section 5. We give a necessary and sufficient condition for
two Earle slices to intersect each other. More precisely, we first obtain a necessary and suf-
ficient condition for two rhombic Earle slices to intersect each other. We next show that two
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rectangular Earle slices do not intersect. Finally we obtain a necessary and sufficient condition
for one rhombic Earle slice and one rectangular Earle slice to intersect each other.

Besides, we show that for any Earle slice, there exists a unique Earle slice of different
kind that intersects it. We also show that for any rhombic Earle slice, there exist exactly four
distinct rhombic Earle slices that intersect it. In the end of Section 5, we show that the union
of all rhombic Earle slices is connected. As a consequence, the union of all Earle slices is also
connected.

Finally in Section 6, we describe Earle slices using trace coordinates of the quasi-
fuchsian space.

2. Preliminary

2.1. Teichmüller space. Let S be an oriented once punctured torus and let π1(S) be
its fundamental group. An ordered pair (α, β) of generators of π1(S) is called canonical if the
algebraic intersection number i(α, β) is equal to+1 with respect to the given orientation of S.
The Teichmüller space T (S) is defined to be the set of equivalence classes of (X, f ), where
X is a hyperbolic Riemann surface of finite hyperbolic area and f : π1(S)→ π1(X) is a type-
preserving isomorphism which is induced by orientation preserving homeomorphism from S

to X. Here type-preserving means f maps the homotopy class of loops around the puncture
of S to the same homotopy class of loops around the puncture of X. (X, f ) is equivalent to
(Y, g) if and only if there exists a conformal map h fromX to Y that induces an isomorphism

h∗ : π1(X) → π1(Y ) such that g−1h∗f is an inner automorphism of π1(S). We denote the
equivalence class of (X, f ) by [X, f ]. For short, let X denote [X, f ] ∈ T (S).

By fixing a pair (α, β) of canonical generators of π1(S), the Teichmüller space T (S) can
be naturally identified with the upper half plane H = {z ∈ C|�z > 0} as follows: for any
point τ ∈ H, we associate it with the point [X, f ] ∈ T (S) where X is equal to C/(Z⊕ Zτ )

with one point removed, and f : π1(S)→ π1(X) is a type-preserving isomorphism that sends
α and β to the images of segments [0, 1] and [0, τ ] in X, respectively.

2.2. Extended mapping class group. The extended mapping class group Mod(S) is
the group of isotopy classes of (not necessarily orientation preserving) homeomorphisms of
S onto itself. The outer automorphism of π1(S) is Out(π1(S)) = Aut(π1(S))/Inn(π1(S)),
where Aut(π1(S)) and Inn(π1(S)) denote the automorphism group and the inner automor-
phism group of π1(S), respectively.

We can identify Mod(S) with Out(π1(S)). In fact, for an arbitrary homeomorphism h

of S onto itself, and for any path δ connecting the base point p ∈ S to h(p), we have an

automorphism (hδ)∗ ∈ Aut(π1(S)) which is defined by (hδ)∗(γ ) = δ−1(h ◦ γ )δ. When we

choose another path δ′ which connects p to h(p), then (hδ)∗ is conjugate to (hδ′)∗ by δ−1δ′.
The outer automorphism h∗ ∈ Out(π1(S)) is thus well defined independently of the choice of
the path δ. Furthermore h is homotopic to the identity if and only if it acts trivially on π1(S).
Therefore the map Mod(S)→ Out(π1(S)) defined as above is a homomorphism (see chapter
8 in [3] for more details).
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By fixing a basis ofH1(S,Z) ≈ Z2, we can also identify Mod(S) withGL(2,Z) (see for
example [3] P.231). In fact, when we fix a pair (α, β) of generators of H1(S,Z), we identify

h ∈ Mod(S) with

(
a b

c d

)
∈ GL(2,Z) if h induces an isomorphism h∗ : H1(S,Z) →

H1(S,Z) such that h∗(α) = aα + cβ and h∗(β) = bα + dβ. Then we often identify the
following three groups:

Out(π1(S)) ∼= Mod(S) ∼= GL(2,Z) .
Let Mod+(S) (resp. Mod−(S)) denote the subset of Mod(S) consisting of isotopy classes

of orientation preserving (resp. reversing) homeomorphisms from S to itself. In particular,
we can identify Mod+(S) with SL(2,Z). An element ϕ ∈ Mod+(S) induces a map T (S)→
T (S) given by sendingX = [X, f ] to ϕ ·X := [X, f ◦ϕ−1∗ ], where ϕ∗ ∈ Out(π1(S)) denotes

the element corresponding to ϕ by the above identification. Let S̄ be S with its orientation

reversed. Then ϕ ∈ Mod−(S) induces a map T (S)→ T (S̄) in a similar way.

2.3. Action of Mod+(S) on T (S). The action of Mod+(S) on T (S) can be identified
with the action of SL(2,Z) on H by Möbius transformation (see [3], P.346):(

a b

c d

)
�→ f (z) = az− b

−cz+ d .

Note that ϕ ∈ Mod+(S) acts on T (S) trivially if and only if it corresponds to ±I under the
identification Mod+(S) ∼= SL(2,Z). A fundamental domain for the action of SL(2,Z) on H

is

K =
{
z ∈ H : −1

2
≤ �z ≤ 1

2
, |z| ≥ 1

}
.

InK , there are only three points i, eiπ/3 and e2iπ/3 that are fixed by some element of SL(2,Z).

2.4. Quasi-fuchsian space and Earle slices. The quasi-fuchsian space QF(S) of
S is defined to be the set of conjugacy classes of faithful and discrete representations ρ :
π1(S) → PSL(2,C) such that the image of the loop around the puncture is parabolic and
that the image Γ := ρ(π1(S)) is quasi-fuchsian. The region of discontinuity Ω of Γ has
exactly two simply connected invariant componentsΩ±. We choose the labeling ± in such a
way that the homotopy basis of Ω+/Γ induced by the ordered pair (ρ(α), ρ(β)) is canonical
with respect to the orientation of Ω+.

Earle slices for once punctured torus are defined by the following theorem.

THEOREM 2.1 ([2], [6]). Let S be a once punctured torus, and T (S) the Teichmüller
space of S. Then for any X ∈ T (S) and an automorphism θ of π1(S) induced by an orien-
tation reversing diffeomorphism of S, there exists a unique representation ρ : π1(S)→ Γ in
the quasi-fuchsian space QF(S), such that

1. Ω+/Γ = X in T (S), where the marking of Ω+/Γ is induced from ρ, and
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2. there exists a conformal map F : Ω+ → Ω− such that F ◦ ρ(γ ) = ρ(θ(γ )) ◦ F for all
γ ∈ π1(S).

Furthermore, if θ2 = id , then F is a Möbius transformation of order two.

We denote the representation ρ obtained in Theorem 2.1 by ρθ,X. For a given automor-
phism θ of π1(S) induced by an orientation reversing diffeomorphism of S, the Earle slice Eθ
of QF(S) is defined to be the subset

Eθ := {ρθ,X|X ∈ T (S)}
of QF(S).

3. Classification of Earle slices associated with involutions

Let ρ ∈ QF(S) and Γ = ρ(π1(S)). The Kleinian manifold M̄ = (H3 ∪ Ω)/Γ is
bounded by a pair of Riemann surfaces denoted by X and Y . The orientations of X and Y
are induced from that of Ω . There is a homeomorphism ψ : S × [0, 1] → M̄ such that

ψ∗ = ρ. After equipping X and Y with markings ψ|S×{0} : S → X and ψ|S×{1} : S̄ → Y ,

respectively, we can regard X ∈ T (S) and Y ∈ T (S̄). The map QF(S) → T (S) × T (S̄),
ρ �→ (X, Y ) defined as above has been proved to be a homeomorphism by Bers. So we denote
by Q(X, Y ) := ρ ∈ QF(S) the preimage of (X, Y ).

Next we use this fact to interpret the definition of Earle slices.

THEOREM 3.1. For every automorphism θ of π1(S) induced by an orientation revers-
ing diffeomorphism of S, the Earle slice Eθ can be written as

Eθ = {Q(X, θ ·X)|X ∈ T (S)} .
Recall that θ induces a map T (S) → T (S̄) given by sending X = [X, f ] to θ · X =

[X, f ◦ θ−1].
PROOF. Let ρ ∈ Eθ . By Theorem 2.1, there exists a conformal map F : Ω+ → Ω−,

such that F ◦ ρ(γ ) = ρ(θ(γ )) ◦ F for all γ ∈ π1(S). The conformal map F induces an ori-
entation preserving conformal map F : Ω+/Γ → Ω−/Γ such that F∗(ρ(γ )) = ρ(θ(γ )). We
equip Ω+/Γ and Ω−/Γ with markings induced by ρ. We regard the marking ρ : π1(S) →
Γ = π1(Ω+/Γ ) of Ω+/Γ as induced from an orientation preserving homeomorphism S →
Ω+/Γ . On the other hand, we regard the marking ρ : π1(S) = π1(S̄) → Γ = π1(Ω−/Γ )
ofΩ−/Γ as induced from an orientation preserving homeomorphism S̄ → Ω−/Γ . Thus one
can see that X = (Ω+/Γ, ρ) ∈ T (S) and Y = (Ω−/Γ, ρ) ∈ T (S̄).

From the definition of Teichmüller space, we haveX = [Ω+/Γ, ρ] = [Ω−/Γ,F∗ ◦ρ] =
[Ω−/Γ, ρ ◦ θ ]. So

θ ·X = θ · [Ω−/Γ, ρ ◦ θ ] = [Ω−/Γ, ρ ◦ θ ◦ θ−1] = [Ω−/Γ, ρ] = Y .
Thus we obtain ρ = Q(X, Y ) = Q(X, θ ·X). �
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Let

Inv−(S) := {ϕ ∈ Mod−(S)|ϕ2 = id}
and

Inv−(S)∗ := {ϕ∗ ∈ Out(π1(S))|ϕ ∈ Inv−(S)} .
Under the identification Out(π1(S)) ∼= GL(2,Z), we have the following bijective correspon-
dence:

Inv−(S)∗ ←→
{(

a b

c −a
)
∈ GL(2,Z) : a2 + bc = 1

}
.

In this paper, we focus on Earle slices Eθ associated with θ ∈ Inv−(S)∗.
We have the following classification of elements of Inv−(S)∗, which is deduced from

Theorem 3.4 below.

THEOREM 3.2. Let θ ∈ Inv−(S)∗, then exactly one of the following is satisfied:

1. There exists a pair (α, β) of canonical generators of π1(S) such that θ(α) = α,
θ(β) = β−1.

2. There exists a pair (α, β) of canonical generators of π1(S) such that θ(α) = β,
θ(β) = α.

DEFINITION 3.3 ([5], [6], [7]). We say that θ is rectangular, if θ satisfies condition 1
of Theorem 3.2. The corresponding Earle slice Eθ is called rectangular Earle slice. We say
θ is rhombic if θ satisfies condition 2 of Theorem 3.2. The corresponding Earle slice Eθ is
called rhombic Earle slice.

An ordered pair (ω1, ω2) of Z2 is canonical if det(ω1, ω2) = 1. We obtain Theorem 3.2
from the bijective correspondence Out(π1(S)) ∼= GL(2,Z) and the following theorem.

THEOREM 3.4 ([4] P.166, Lemma 5.5). For A ∈ GL(2,Z) with det(A) = −1 and
A2 = E, exactly one of the following is satisfied:

1. There exists a pair (ω1, ω2) of canonical generators of Z2 such that Aω1 = ω1 and
Aω2 = −ω2.

2. There exists a pair (ω1, ω2) of canonical generators of Z2 such that Aω1 = ω2 and
Aω2 = ω1 .

REMARK. In Theorem 3.4, A is conjugate to

(
1 0
0 −1

)
in Case 1, and is conjugate to(

0 1
1 0

)
in Case 2.

Throughout this paper, we denote θ1 =
(

1 0
0 −1

)
and θ2 =

(
0 1
1 0

)
.
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LEMMA 3.5. Let A =
(
a b

c d

)
∈ GL(2,Z) be as in Theorem 3.4. Then A is conju-

gate to θ1 by some element of SL(2,Z) if and only if both b and c are even.

PROOF. Let B =
(
p q

r s

)
∈ SL(2,Z). Since we have

Bθ1B
−1 =

( ∗ −2pq
−2rs ∗

)
,

Bθ2B
−1 =

( ∗ p2 − q2

s2 − r2 ∗
)
,

the “only if” part is trivial.

We only need to show that either p2 − q2 or s2 − r2 is odd. Suppose for contradiction

that both p2 − q2 and s2 − r2 are even. Then p and q have the same parity, and so do s and
r . Then ps and qr have the same parity. This contradicts ps − qr = 1. �

4. Stabilizers of Earle slices

A mapping class ϕ ∈ Mod+(S) acts on QF(S) by sending a representation Q(X, Y ) to

ϕ ·Q(X, Y ) := Q(X, Y ) ◦ ϕ−1∗ . This action is compatible with the actions of Mod+(S) on

T (S) and T (S̄); that is

ϕ ·Q(X, Y ) = Q(ϕ ·X,ϕ · Y ) .
In this chapter, we will study the action of Mod+(S) on the set of Earle slices of QF(S).
Especially, we will give the stabilizer subgroup of each Earle slice in Mod+(S) ∼= SL(2,Z).

LEMMA 4.1. Let θ, θ ′ ∈ Inv−(S)∗. Then Eθ = Eθ ′ if and only if θ = ±θ ′ inGL(2,Z).
PROOF. Suppose that Eθ = Eθ ′ . Then Q(X, θ · X) = Q(X, θ ′ · X) for all X ∈ T (S).

Then we have θ ·X = θ ′ ·X and hence X = θ−1 · θ ′ ·X for all X ∈ T (S). From subsection
2.3, we know that an element in Mod+(S) acts on T (S) trivially if and only if it corresponds

to ±I . Thus θ−1 ◦ θ ′ = ±I in SL(2,Z). That means θ = ±θ ′ in GL(2,Z).
The converse is trivial. �

THEOREM 4.2. Let θ ∈ Inv−(S)∗ and r ∈ Mod+(S). Then we have the following:

(a) The set r(Eθ ) = {ρ ◦ r−1∗ |ρ ∈ Eθ } is equal to Eθ ′ where θ ′ = r∗ ◦ θ ◦ r−1∗ .
(b) Eθ is rhombic (resp. rectangular) if and only if r(Eθ ) is rhombic (resp. rectangular).

PROOF. (a) By Theorem 3.1, we have

r(Eθ ) = {Q(r ·X, r · θ ·X)|X ∈ T (S)} .
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Since r induces an automorphism of T (S), we obtain

{Q(r ·X, r · θ ·X)|X ∈ T (S)} = {Q(X, r · θ · r−1 ·X)|X ∈ T (S)} .
For all X = [X, f ] ∈ T (S), we have

r · θ · r−1 ·X = [X, f ◦ r∗ ◦ θ−1 ◦ r−1∗ ] = [X, f ◦ (r∗ ◦ θ ◦ r−1∗ )−1]
= θ ′ ·X ,

thus r(Eθ ) = Eθ ′ .
(b) It follows from (a) and the definitions of the two kinds of Earle slices. �

By Theorem 3.4, θ ∈ Inv−(S)∗ is conjugate to θ1 or θ2 in GL(2,Z) by some element in
SL(2,Z). Therefore we have the following corollary.

COROLLARY 4.3. For any θ ∈ Inv−(S)∗, there exists r ∈ Mod+(S) such that Eθ =
r(Eθ1) or Eθ = r(Eθ2).

THEOREM 4.4. For every Earle slice Eθ , we have

StabMod+(S)Eθ =
{
±I,±g

(
0 1
−1 0

)
g−1

}
,

where g is an element of SL(2,Z) such that θ = gθ1g
−1 if θ is rectangular, or θ = gθ2g

−1

if θ is rhombic.

PROOF. If Eθ = r(Eθ ), it follows from Theorem 4.2 that r(Eθ ) = E
r∗◦θ◦r−1∗ . Then by

Lemma 4.1, we have θ = ±r∗ ◦ θ ◦ r−1∗ in GL(2,Z).

We first assume that θ = θ1. Let r∗ =
(
a b

c d

)
∈ SL(2,Z). By a calculation, we obtain

from θ = ±r∗ ◦ θ ◦ r−1∗ that r∗ = ±I,±
(

0 1
−1 0

)
. Similarly, when θ = θ2, we obtain the

same result r∗ = ±I,±
(

0 1
−1 0

)
.

In general, by Theorem 3.4, θ is conjugate to θ1 or θ2 by some element of SL(2,Z).

Suppose θ = gθig
−1 for some g ∈ SL(2,Z), where i = 1 or 2. Combining with r∗θr−1∗ =

±θ , we obtain

(g−1r∗g)θi(g−1r∗g)−1 = ±θi .

It follows from the discussion above that g−1r∗g = ±I,±
(

0 1
−1 0

)
. Thus we obtain

r∗ = ±I,±g
(

0 1
−1 0

)
g−1 .

�
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5. Intersection of two Earle slices

Recall that the Teichmüller space T (S) of once punctured torus S can be identified with
the upper half space H after fixing a pair of generators of π1(S). Let Sz denote the element in
T (S) corresponding to z ∈ H. Let

C =
(

0 1
−1 0

)
,D =

(
1 −1
1 0

)
∈ SL(2,Z) .

Note that C2 = D3 = I in SL(2,Z)/{±I }. Since SL(2,Z) act on H, we have C(i) = i,
D±1(eiπ/3) = eiπ/3. So if we regard C and D±1 as elements of Mod+(S) acting on T (S),
we can say that C fixes Si ∈ T (S) and D±1 fixes Seiπ/3 ∈ T (S). Conversely ϕ ∈ Mod+S ∼=
SL(2,Z) has a fixed point in T (S), then ϕ is conjugate to ±C or ±D or ±D−1. In what
follows, we will always let C andD be as above.

We first give a necessary and sufficient condition for Eθ ∩ Eθ ′ �= ∅.
THEOREM 5.1. Let θ, θ ′ ∈ Inv−(S)∗ with θ �= ±θ ′. Then Eθ ∩ Eθ ′ �= ∅ if and only if

θ−1θ ′ is conjugate in SL(2,Z) to ±C or ±D or ±D−1. Moreover, if θ−1θ ′ = ±gCg−1 for
some g ∈ SL(2,Z), then

Eθ ∩ Eθ ′ = {Q(Sg(i), θ · Sg(i))}
and if θ−1θ ′ is equal to ± gDg−1 or ± gD−1g−1, then

Eθ ∩ Eθ ′ = {Q(Sg(eiπ/3), θ · Sg(eiπ/3))} .
PROOF. If Eθ ∩ Eθ ′ �= ∅, then there exists X = [X, f ] ∈ T (S) such that θ ·X = θ ′ ·X

and hence that X = θ−1 · θ ′ · X. So θ−1θ ′ fixes the point [X, f ]. By identifying Mod+(S)
with SL(2,Z), we have that θ−1θ ′ is conjugate to ±C or ±D or ±D−1 in SL(2,Z).

When θ−1θ ′ = ±gCg−1 for some g ∈ SL(2,Z), θ−1θ ′ fixes Sg(i). Therefore Eθ ∩Eθ ′ =
{Q(Sg(i), θ · Sg(i))}. Similarly, if θ−1θ ′ = ±gDg−1 or ± gD−1g−1, we have Eθ ∩ Eθ ′ =
{Q(Sg(eiπ/3), θ · Sg(eiπ/3))}. �

EXAMPLES. (1) Since θ2
−1θ1 = C, we have Eθ1 ∩ Eθ2 = {Q(Si, θ1 · Si)}.

(2) Since θ2D is conjugate to θ2 by

(
1 1
0 1

)
∈ SL(2,Z), we know that θ2D is in Inv−1(S)∗

and is rhombic. We have Eθ2 ∩ Eθ2D = {Q(Seiπ/3 , θ2 · Seiπ/3 )} since θ2
−1(θ2D) = D.

Similarly, we have Eθ2 ∩ Eθ2D
−1 = {Q(Seiπ/3 , θ2 · Seiπ/3 )}. Therefore,

Eθ2 ∩ Eθ2D ∩ Eθ2D
−1 = {Q(Seiπ/3 , θ2 · Seiπ/3 )} .

THEOREM 5.2. Let θ, θ ′ ∈ Inv−(S)∗ with θ �= ±θ ′ and assume that Eθ ∩ Eθ ′ �= ∅.
Then θ−1θ ′ is conjugate to±D or±D−1 in SL(2,Z) if and only if both θ and θ ′ are rhombic.
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PROOF. First, we assume that θ−1θ ′ is conjugate to ±D in SL(2,Z). The proof for

±D−1 is similar. Since θ ∈ Inv−(S)∗, we can let θ =
(
a b

c −a
)
∈ GL(2,Z) with a2+bc =

1.

Suppose first that θ−1θ ′ = ±D. Then we have θ ′ = ±θD = ±
(
a + b −a
c − a −c

)
. Since

θ ′ ∈ Inv−(S)∗, we obtain a + b − c = 0. Suppose for contradiction that θ is rectangular. It
follows immediately from Lemma 3.5, both b and c are even. By a + b − c = 0, a is also

even. Hence a2 + bc �= 1, which is a contradiction. Thus θ is rhombic. The proof for θ ′ is
parallel.

In general, θ ′ = ±θgDg−1 for some g ∈ SL(2,Z). Then we have g−1θ ′g = ±g−1θgD.

One can see that g−1θg and g−1θ ′g are rhombic from the discussion for θ−1θ ′ = ±D.
Therefore, both θ and θ ′ are rhombic.

Next we will show the necessity. By Theorem 5.1, Eθ ∩ Eθ ′ �= ∅ implies that θ−1θ ′
is conjugate to ±C or ±D or ±D−1. Since θ and θ ′ are rhombic, by taking a conjugation

if necessary, we may assume θ = θ2 and θ ′ =
(
a b

c −a
)

with a2 + bc = 1. Then we

have θ−1
2 θ ′ =

(
c −a
a b

)
. Suppose for contradiction that θ−1

2 θ ′ is conjugate to ±C. Then

Tr θ−1
2 θ ′ = b + c = 0. Then from a2 + bc = 1 we have a2 − b2 = 1. Therefore a = ±1

and b = c = 0. So θ ′ = ±θ1. It contradicts the assumption that θ ′ is rhombic. Thus θ−1θ ′ is
conjugate to ±D or ±D−1. �

Next we will study the case that both θ and θ ′ are rectangular.

THEOREM 5.3. If θ, θ ′ ∈ Inv−(S)∗ are rectangular and θ �= ±θ ′, then Eθ ∩ Eθ ′ = ∅.
PROOF. Suppose that Eθ ∩ Eθ ′ �= ∅, θ �= ±θ ′, and θ is rectangular. We will show that

θ ′ is not rectangular.

By Theorem 5.1 and Theorem 5.2, we know that θ−1θ ′ is conjugate to ±C in SL(2,Z).

Let θ−1θ ′ = gCg−1, where g =
(
a b

c d

)
∈ SL(2,Z). We first suppose that θ = θ1. Then

θ ′ = ±θ1gCg
−1 = ±

(−bd − ac b2 + a2

d2 + c2 −bd − ac
)

. By Lemma 3.5, one can see that θ ′ is not

rectangular. In fact, if both b2 + a2 and d2 + c2 are even, then a and b have the same parity,
so do d and c. Therefore ad and bc have the same parity. Thus ad − bc is even. It contradicts
the fact that g ∈ SL(2,Z).

In general, θ = hθ1h
−1 for some h ∈ SL(2,Z). Then we have θ ′ = ±hθ1h

−1gCg−1,

that is h−1θ ′h = ±θ1(h
−1g)C(h−1g)−1. From the discussion above, h−1θ ′h is not rectangu-

lar and hence θ ′ is not rectangular. �
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From Theorem 5.1, Theorem 5.2 and Theorem 5.3, we obtain the following corollary.

COROLLARY 5.4. Let θ, θ ′ ∈ Inv−(S)∗ with θ �= ±θ ′ and assume that Eθ ∩ Eθ ′ �= ∅.
Then θ−1θ ′ is conjugate to ±C in SL(2,Z) if and only if one of θ and θ ′ is rectangular and
the other is rhombic.

In the following, we will study for a given Earle slice, how many Earle slices intersect
with it.

THEOREM 5.5. For any rhombic (resp. rectangular) Earle slice Eθ , there exists a
unique rectangular (resp. rhombic) Earle slice Eθ ′ , such that Eθ ∩ Eθ ′ �= ∅.

PROOF. We only consider the case of rhombic Earle slice. The proof for rectangular
Earle slice is similar.

First, we show the existence. From Example (1), we see that for the rhombic Earle slice
Eθ2 , there exists the rectangular Earle slice Eθ1 such that Eθ1 ∩ Eθ2 �= ∅.

In general, for any rhombic Earle slice Ehθ2h
−1 with h ∈ SL(2,Z), there exists a rect-

angular Earle slice Ehθ1h
−1 such that Ehθ2h

−1 ∩ Ehθ1h
−1 �= ∅, since (hθ−1

2 h−1)(hθ1h
−1) =

hCh−1.
Next, we will show the uniqueness. By Corollary 5.4, if one rhombic Earle slice Eθ

intersects with one rectangular Earle slice Eθ ′ , we have θ−1θ ′ = ±gCg−1 for some g ∈
SL(2,Z).

Suppose first that θ = θ2. Let θ ′ =
(
a b

c d

)
. Then a = −d and a2 + bc = 1. We also

have b+ c = Tr(θ−1
2 θ ′) = Tr(±gCg−1) = ±TrC = 0. Thus one can see that a = −d = ±1

and b = c = 0. It follows that θ ′ = ±θ1. Therefore Eθ1 is the unique rectangular Earle slice
which satisfies the condition.

In general, θ = hθ2h
−1 for some h ∈ SL(2,Z). Then we have θ−1θ ′ = hθ2h

−1θ ′ =
gCg−1 and so θ2(h

−1θ ′h) = ±(h−1g)C(h−1g)−1. It follows from the discussion above that
h−1θ ′h = θ1, that is θ ′ = hθ1h

−1. Thus for any rhombic Earle slice Ehθ2h
−1 with h ∈

SL(2,Z), there exists a unique rectangular Earle slice Ehθ1h
−1 such that Ehθ2h

−1 ∩ Ehθ1h
−1 �=

∅. �

THEOREM 5.6. For any rhombic Earle slice Eθ , there exist exactly four distinct rhom-
bic Earle slices Eϕi , i = 1, 2, 3, 4 such that Eϕi ∩ Eθ �= ∅. Furthermore, the four Earle slices
form two pairs, {Eϕ1, Eϕ2} and {Eϕ3, Eϕ4} such that:

Eθ ∩ Eϕ1 = Eθ ∩ Eϕ2 ;

Eθ ∩ Eϕ3 = Eθ ∩ Eϕ4 ;

Eθ ∩ Eϕ1 ∩ Eϕ2 ∩ Eϕ3 ∩ Eϕ4 = ∅ .
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PROOF. By Theorem 5.2, if two rhombic Earle slices Eθ and Eθ ′ intersect, then θ−1θ ′
is conjugate to ±D or ±D−1 in SL(2,Z).

Suppose first that θ = θ2. Let Eθ ′ be rhombic Earle slice such that Eθ ∩ Eθ ′ �= ∅. One

may assume that θ ′ =
(
a b

c −a
)

with a2 + bc = 1. Since θ−1
2 θ ′ =

(
c −a
a b

)
is conjugate

to ±D or ±D−1, we have Tr(θ−1
2 θ ′) = b + c = 1 or −1. By substituting this to the equation

a2 + bc = 1, we obtain a2 − b2 + b = 1 or a2 − b2 − b = 1.
Next, we will show how to find all integer solutions to a2 − b2 + b = 1. It is equivalent

to find all integer solutions to the equation x2 − y2 + y = 1. Since the distance between
two different integer numbers cannot be less than 1, one can see that the part of the curve

x2 − y2 + y = 1, which lies between the straight lines y = x and y = x + 1, has no integer
solution(see Figure 1). So does for the part which lies between the straight lines y = −x and

y = −x+ 1. Then one can see from Figure 1 that all integer solutions to x2− y2+ y = 1 are
(x, y) = (1, 0), (−1, 0), (1, 1) and (−1, 1). Therefore, all integer solutions for a2−b2+b = 1
are a = ±1, b = 0 and a = ±1, b = 1. Since b + c = 1 in this case, we obtain that c = 1
when b = 0, and c = 0 when b = 1.

Similarly, we know that all integer solutions to a2 − b2 − b = 1 are a = ±1, b = 0 and
a = ±1, b = −1. By b + c = −1, one can see that c = −1 when b = 0, and c = 0 when
b = −1.

From the above arguments, we obtain eight solutions ±ψi (i = 1, 2, 3, 4) for θ ′, where

ψ1 :=
(

1 0
1 −1

)
, ψ2 :=

(−1 1
0 1

)
, ψ3 :=

(
1 1
0 −1

)
, ψ4 :=

(−1 0
1 1

)
.

Then θ ′ can only be one of±ψi , where i = 1, 2, 3, 4. Since Eφ = E−φ for any φ ∈ Inv−(S)∗,
there exist exactly four distinct rhombic Earle slices intersect with Eθ2 .

Furthermore, we have

θ−1
2 ψ1 = D, θ−1

2 ψ2 = D−1, θ−1
2 ψ3 = CDC−1, θ−1

2 ψ4 = CD−1C−1 .

Therefore, one sees from Theorem 5.1 that they form two pairs, {Eψ1, Eψ2} and {Eψ3, Eψ4}
which satisfy the desired properties.

In general, we suppose that θ = hθ2h
−1 with h ∈ SL(2,Z). Let Eθ ′ be rhombic Earle

slice such that Eθ ∩ Eθ ′ �= ∅. Since θ−1θ ′ = hθ2h
−1θ ′ is conjugate to ±D or ±D−1,

θ2(h
−1θ ′h) is also conjugate to ±D or ±D−1. It follows from the above discussion that

h−1θ ′h = ±ψi , i = 1, 2, 3 or 4. Thus θ ′ = ±hψih−1, i = 1, 2, 3 or 4. So for any rhombic
Earle slice Ehθ2h

−1 , there exist exactly four rhombic Earle slices Ehψih−1 , i = 1, 2, 3, 4 that
satisfy the condition. �

REMARK. In our new notation, Example (2) can be written as

Eθ2 ∩ Eψ1 ∩ Eψ2 = {Q(Seiπ/3 , θ2 · Seiπ/3 )} .
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FIGURE 1. The curves defined by x2 − y2 + y = 1 and the integer points.

Since C(eiπ/3) = e2iπ/3, we have

Eθ2 ∩ Eψ3 ∩ Eψ4 = {Q(Se2iπ/3 , θ2 · Se2iπ/3 )} .
THEOREM 5.7. The union of all rhombic Earle slices is connected.

PROOF. It suffices to show that any rhombic Earle slice Egθ2g−1 , g ∈ SL(2,Z), con-

nects with Eθ2 through a finite sequence of rhombic Earle slices.
From Theorem 5.6, we know that there exist exactly four distinct rhombic Earle slices

Egψig−1 , i = 1, 2, 3, 4 such that Egψig−1 ∩ Egθ2g−1 �= ∅. Let T :=
(

1 1
0 1

)
and S :=(

1 0
1 1

)
. By calculating, we obtain that

ψ1 = T θ2T
−1 , ψ2 = Sθ2S

−1 , ψ3 = S−1θ2S , ψ4 = T −1θ2T .

It is known that SL(2,Z) is generated by S and T . Therefore g = s1s2 . . . sn for some n ∈ Z+



EARLE SLICES ASSOCIATED WITH INVOLUTIONS 445

with sj ∈ {S, S−1, T , T −1}. Let gk = s1s2 . . . sk for 1 � k � n and g0 = I . Then

gkθ2g
−1
k = gk−1skθ2s

−1
k g−1

k−1 = gk−1ψig
−1
k−1 ,

where i = 1, 2, 3 or 4, which depends on sk . It follows from the proof of Theorem 5.6 that

Egkθ2g
−1
k
∩ Egk−1θ2g

−1
k−1
= Egk−1ψig

−1
k−1
∩ Egk−1θ2g

−1
k−1
= gk−1(Eψi ∩ Eθ2) �= ∅ .

Therefore Egθ2g−1 connects with Eθ2 through a finite sequence of rhombic Earle slices. �

REMARK. From the relationship between ψi and θ2,where i = 1, 2, 3, 4, we have

Eψ1 = T (Eθ2) , Eψ2 = S(Eθ2) , Eψ3 = S−1(Eθ2) , Eψ4 = T −1(Eθ2) .

Combining Theorem 5.4 and Theorem 5.7, we obtain the following.

COROLLARY 5.8. The union of all Earle slices is connected.

6. Trace coordinates

Let Q̃F(S) be the set of conjugacy classes of type-preserving, faithful and irreducible
representations ρ of π1(S) to SL(2,C) such that the images are discrete and quasi-fuchsian

group. Then Q̃F(S) is a natural covering of QF(S). We denote the preimage of Eθ ∈ QF(S)
by in Q̃F(S) by Ẽθ . Fix a pair (α, β) of generators of π1(S) and let μ : Q̃F(S) → C

3 be

the map which sends [ρ] to (Trρ(α),Tr ρ(β),Trρ(αβ)). Then μ is an embedding of Q̃F(S)
into {(x, y, z) ∈ C3 : x2 + y2 + z2 = xyz} − {(0, 0, 0)}(see for example [1]). Thus we often

regard Q̃F(S) as a subset of C3.

For [ρ] ∈ Q̃F(S), let x = Tr(ρ(α)), y = Tr(ρ(β)) and z = Tr(ρ(αβ)). In [7], Komori
has proved that ρ ∈ Eθ1 if and only if Tr(ρ(αβ)) = Tr(ρ(αβ−1)). On the other hand, Komori
and Series have showed in [6] that ρ ∈ Eθ2 if and only if Tr(ρ(α)) = Tr(ρ(β)). We thus have
the following theorem.

THEOREM 6.1 ([6], [7]).

Ẽθ1 = Q̃F(S) ∩ {(x, y, z) ∈ C
3 : xy = 2z} .

Ẽθ2 = Q̃F(S) ∩ {(x, y, z) ∈ C
3 : x = y} .

Therefore, we have

Ẽθ1 ∩ Ẽθ2 = {(2
√

2, 2
√

2, 4), (−2
√

2,−2
√

2, 4)} .
Note that the two points correspond to the same representation into PSL(2,C).

Next, we show that

Ẽψ1 = Q̃F(S) ∩ {(x, y, z) ∈ C
3 : x = z} ,

Ẽψ2 = Q̃F(S) ∩ {(x, y, z) ∈ C
3 : y = z} ,
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where ψ1, ψ2 ∈ Inv−(S)∗ are associated with

(
1 0
1 −1

)
,

(−1 1
0 1

)
∈ GL(2,Z), respec-

tively (see the proof of Theorem 5.6). In fact, recall that θ2 is an automorphism of π1(S) such
that θ2(α) = β and θ2(β) = α. Let τ ∈ Aut(π1(S)) such that τ (α) = α, and τ (β) = αβ.(Note

that the class of Out(π1(S)) represented by τ corresponds to T =
(

1 1
0 1

)
.) Then

τθ2τ
−1 ∈ Aut(π1(S)) satisfies (τθ2τ

−1)(α) = αβ and (τθ2τ
−1)(β) = β−1. One can see

that the class of Out(π1(S)) represented by τθ2τ
−1 corresponds to

(
1 0
1 −1

)
∈ GL(2,Z).

Therefore we can write ψ1 = τθ2τ
−1. For a pair (τ (α), τ (β)) of canonical generators of

π1(S), we have ψ1(τ (α)) = τ (β) and ψ1(τ (β)) = τ (α). From [6], we know that [ρ] ∈ Ẽψ1

if and only if Tr(ρ(τ (α))) = Tr(ρ(τ (β))), which means Tr(ρ(α)) = Tr(ρ(αβ)). Thus we

obtain the expression of Ẽψ1 as above. Similarly, we have the expression of Ẽψ2 .
A little calculation shows that

Ẽθ2 ∩ Ẽψ1 ∩ Ẽψ2 = {(3, 3, 3)} .
In the same way, we can obtain

Ẽψ3 = Q̃F(S) ∩ {(x, y, z) ∈ C
3 : xy = z + x} ,

Ẽψ4 = Q̃F(S) ∩ {(x, y, z) ∈ C
3 : xy = z+ y} .

By a calculation, one can see that

Ẽθ2 ∩ Ẽψ3 ∩ Ẽψ4 = {(3, 3, 6)} .
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