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Abstract. We study the Iwasawa modules related to certain tamely ramified extensions (tamely ramified Iwa-
sawa modules). Let p be an odd prime number, and k an imaginary quadratic field. In the present paper, we shall
give some results concerning the μ-invariant of tamely ramified Iwasawa modules for Zp-extensions of k.

1. Introduction

Let p be an odd prime number, and k an imaginary quadratic field. We denote by Zp the
ring of p-adic integers. Moreover, let K be a Zp-extension of k. That is, K/k is an infinite
Galois extension and Gal(K/k) is (topologically) isomorphic to the additive group of Zp .

In the present paper, we shall treat “tamely ramified” Iwasawa modules for Zp-
extensions. However, we firstly state some basic facts about “unramified” (usual) Iwasawa
modules. Let L(K) be the maximal unramified abelian pro-p extension of K . It is known
that the unramified Iwasawa module X(K) := Gal(L(K)/K) is a finitely generated torsion
module over the completed group ring Zp[[Gal(K/k)]]. Then the λ-invariant λ = λ(K/k)

and the μ-invariant μ = μ(K/k) are defined from the structure of X(K) (see Section 2.1).
We note that μ = 0 if and only if X(K) is finitely generated as a Zp-module. Hence, to study
the structure of X(K), it is important to know whether μ = 0 or not. (We assumed that k is
an imaginary quadratic field, but these facts hold when the base field is an arbitrary algebraic
number field.)

We shall state some known results about this “unramified” μ-invariant (for the case when
k is an imaginary quadratic field). Let Kc/k be the cyclotomic Zp-extension. We see that
μ(Kc/k) = 0 by Ferrero-Washington’s theorem [6]. Gillard [10], [11], Schneps [26] (and
recently Oukhaba-Viguié [20]) showed μ = 0 for certain non-cyclotomic Zp-extensions.
Bloom-Gerth [1] gave an upper bound of the number of Zp-extensions satisfying μ > 0 for a
fixed k (see Section 3.2). Note that Iwasawa [16] gave a method to construct a Zp-extension
(over a certain algebraic number field) which satisfies μ > 0 (see also Ozaki [21]). However,
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it seems hard to apply this method to construct a Zp-extension satisfying μ > 0 over an
imaginary quadratic field.

Next, we shall introduce the Iwasawa module relating to certain tamely ramified exten-
sions. (This object was already studied by several authors. See, e.g., Salle [24], Mizusawa-
Ozaki [18], Itoh-Mizusawa-Ozaki [14].) Take a non-empty finite set S of (finite) primes of k

not lying above p. For a Zp-extension K/k, we denote by MS(K) the maximal abelian pro-p
extension of K unramified outside S (i.e., unramified outside the primes of K lying above the
primes of S). We put XS(K) = Gal(MS(K)/K). This is an analog of the unramified Iwasawa
module X(K), and called the “S-ramified (or tamely ramified) Iwasawa module”. It can be
shown that XS(K) is also a finitely generated torsion module over Zp[[Gal(K/k)]]. Similar
to X(K), the λ-invariant λS and the μ-invariant μS for XS(K) can be defined.

We shall consider about the invariant μS in the present paper. In Section 2, we will state
basic facts about the theory of Zp-extensions and the tamely ramified Iwasawa modules. In
Section 3, we consider the Zp-extensions whose μS-invariant is positive. In particular, there
exists a Zp-extension K/k and a set S which satisfy μS > 0 (this seems essentially shown by
Iwasawa). We also give an upper bound of the number of Zp-extensions satisfying μS > 0
for given k and S (this follows as a corollary of Bloom-Gerth’s result [1]). In Section 4, we
introduce a question (Question 4.1) about the vanishing of μS . We will give some sufficient
conditions such that this question has an affirmative answer in Sections 4 and 5. Especially,
Proposition 4.8 seems a non-trivial result on this question. We also give calculation examples
in Section 5.

2. Notation and basic facts

2.1. Notation. In the present paper, we always assume that p is an odd prime number

and k is an imaginary quadratic field. (Moreover, we suppose that p > 3 when k = Q(
√−3)

in Section 5.)
For a finite set S, we denote by |S| the number of elements of S. For an algebraic

number field F (a finite extension of Q), let OF be the ring of integers in F , E(F) the group
of units in F , and h(F ) the class number of F (i.e., the order of the ideal class group of F ).
In the present paper, a prime of an algebraic number field always denotes a finite prime (and
we will identify it with the corresponding prime ideal of the ring of integers). For an integral
ideal a of an algebraic number field, we denote by N(a) the absolute norm of a. For a finitely
generated Zp-module N , we call dimFp N/p the p-rank of N (we abbreviate N/pN to N/p),
and dimQp N ⊗Zp Qp the Zp-rank of N .

Let F be a Zp-extension of an algebraic number field F , and γ a fixed topological gen-
erator of Gal(F/F ). We put Λ = Zp[[T ]] (the ring of formal power series of T ). Then
there exists an isomorphism Zp[[Gal(F/F )]] � Λ with γ �→ 1 + T . We shall regard a
Zp[[Gal(F/F )]]-module also as a Λ-module. For non-negative integers m > n, we put

ωn = (1 + T )p
n − 1 and νm,n = ωm/ωn. We denote by Fn the nth layer of F/F (note

that F0 = F ).
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We briefly recall the definition of the λ-, μ-invariants, and the characteristic polynomial
(for the details, see, e.g., [15], [19], [28]). Let X be a finitely generated torsion Λ-module.
Then there exists a pseudo-isomorphism from X to an elementary torsion Λ-module

E = Λ/(f
m1
1 )⊕ · · · ⊕Λ/(f mr

r )⊕Λ/(pn1 )⊕ · · · ⊕Λ/(pns ) ,

where f1, . . . , fr are irreducible distinguished polynomials of Λ. (It can be occurred that
E does not contain a factor of the form Λ/(f m) or Λ/(pn). In particular, X is pseudo-
isomorphic to E = 0 when the order of X is finite.) By using this pseudo-isomorphism,
we define the λ-invariant of X as

∑r
i=1 mi deg(fi), and the μ-invariant of X as

∑s
j=1 nj .

When E does not contain a factor of the form Λ/(f m) (resp. Λ/(pn)), the λ-invariant (resp.
μ-invariant) of X is defined to be 0. We note that the μ-invariant of X is 0 if and only if
X is finitely generated as a Zp-module. We also define the characteristic polynomial of X

as pn1+···+ns f
m1
1 . . . f

mr
r . (These invariants and the characteristic polynomial are determined

uniquely.)

2.2. S-ramified Iwasawa modules. Recall that k is an imaginary quadratic field. Let
S be a non-empty finite set of primes of k not lying above p, and K a (finite or infinite) abelian
extension of k. We denote by MS(K) the maximal abelian pro-p extension of K unramified
outside S. We also denote by L(K) the maximal unramified abelian pro-p extension of K. Put
XS(K) = Gal(MS(K)/K) and X(K) = Gal(L(K)/K). Let K/k be a Zp-extension and N/k

a finite abelian extension. Then N := NK is a Zp-extension of N . It is well known that X(N)

is a finitely generated torsion Zp[[Gal(N/N)]](� Λ)-module. Since S is a set of primes of
k, we can see that Λ also acts on XS(N). We denote by M ′S(N) the maximal abelian pro-p
extension of N unramified outside S in which all primes ramifying in N/N split completely.
(In the present paper, we mainly treat the case when all primes lying above p ramify in N/N .)
We put X′S(N) = Gal(M ′S(N)/N). For n ≥ 0, we define M ′S(Nn), and X′S(Nn) similarly (see
also [24]).

PROPOSITION 2.1. Let the notation be as above, and choose e ≥ 0 such that all
primes which ramify in N/N are totally ramified in N/Ne. Let S be a finite set of primes of
k.

(1) There exists a finite index submodule ZS of XS(N) such that

XS(N)/νn,eZS � XS(Nn) f or n ≥ e .

(2) There exists a finite index submodule Z′S of X′S(N) such that

X′S(N)/νn,eZ
′
S � X′S(Nn) f or n ≥ e .

PROOF. The proof is essentially the same as that of a similar result for the unramified
Iwasawa module X(N). See, e.g., [28, Chapter 13], [19, Chapter XI]. �
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In particular, if N/N is a Zp-extension in which exactly one prime of N is ramified and
it is totally ramified, we can obtain the following:

XS(N)/ωnXS(N) � XS(Nn) and X′S(N)/ωnX
′
S(N) � X′S(Nn) for n ≥ 0 .

Note that both of XS(Nn) and X′S(Nn) are finite because all primes of S do not divide

p. Hence we can see that XS(N) and X′S(N) are finitely generated torsion Λ-modules (by
using Proposition 2.1 and the same method given in, e.g., [28, Chapter 13]). We denote by
λS = λS(N/N) (resp. μS = μS(N/N)) the λ-invariant (resp. μ-invariant) of XS(N) as a
finitely generated torsion Λ-module. We also denote by λ = λ(N/N) (resp. μ = μ(N/N))
the λ-invariant (resp. μ-invariant) of X(N).

2.3. Multiplicative groups of residue classes. For this subsection, see also [21],
[24], [18], [14], [13], etc. Let K be a Zp-extension of an imaginary quadratic field k, and
Kn the nth layer of K/k for n ≥ 0 (recall that K0 = k). For a prime q of k which does not
divide p, we put

Rq,n = (OKn/q)
× ⊗Z Zp .

We remark that Rq,n is non-trivial for all n if and only if Rq,0 is non-trivial because Kn/k

is a cyclic extension of degree pn. Moreover Rq,0 is non-trivial if and only if p divides
N(q) − 1. We also put Rq = lim←−Rq,n, where the projective limit is taken with respect to the

mappings induced from the norm mapping. Since the mapping Rq,m → Rq,n induced from
the norm mapping is surjective for all m > n ≥ 0, we note that Rq is non-trivial if and only if
p | N(q) − 1. When q does not split completely in K , we see that Rq is a finitely generated
Zp-module. However, when q splits completely in K , we see that Rq is not finitely generated
over Zp if it is not trivial. (For example, we consider the case that |Rq,0| = p and q splits
completely in K/k. In this case, we can show that Rq,n is isomorphic to Z/pZ[Gal(Kn/k)],
and then Rq is isomorphic to Λ/(p). See also p.790 and p.797 of [21].)

Let S be a finite set of primes of k not lying above p. We put YS(Kn) =
Gal(MS(Kn)/L(Kn)) for n ≥ 0, and YS(K) = Gal(MS(K)/L(K)). We can obtain the
following exact sequences:

0→ YS(Kn)→ XS(Kn)→ X(Kn)→ 0

E(Kn)⊗Z Zp →
⊕

q∈S
Rq,n → YS(Kn)→ 0 .

(The second exact sequence follows from class field theory.) We put E∞ = lim←−E(Kn) ⊗Z

Zp , where the projective limit is taken with respect to the mappings induced from the norm
mapping. Then we also obtain the following exact sequences:

0→ YS(K)→ XS(K)→ X(K)→ 0
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E∞ →
⊕

q∈S
Rq → YS(K)→ 0 .

In the rest of the present paper, we mainly treat a finite set S of primes of k satisfying the
following condition.

(N) S is not empty, every prime q of S does not divide p and satisfies p | N(q)− 1 .

For a finite set S of primes of k not lying above p, let S0 be the maximal subset of S

which satisfies (N). Then we obtain that XS(K) ∼= XS0(K). (Recall that Rq is trivial when
p does not divide N(q) − 1. If S0 is empty, then XS(K) ∼= X(K).) Hence, it is sufficient to
consider only for the case that S satisfies (N).

2.4. Decomposition of primes in a Zp-extension. Let Kc/k be the cyclotomic Zp-
extension, and Ka/k the anti-cyclotomicZp-extension. Kc is the unique Zp-extension which
is abelian over Q. Ka is a Galois extension over Q, and ι acts on Gal(Ka/k) by inversion,
where ι is the generator of Gal(k/Q). We note that Ka is uniquely determined because k is
an imaginary quadratic field. We shall state some basic (known) results.

LEMMA 2.2. Let q be a prime of k not lying above p. Then there is a unique Zp-
extension of k in which q splits completely.

PROOF. The authors could not find a literature which states the assertion explicitly.
However, this assertion is contained in Theorem (11) of [4] when the prime number q lying
below q does not split in k, and the rest case (when q splits in k) also can be shown by using
the facts given in the proof of that theorem. We will state here briefly. Let k̃ be the composite

of all Zp-extensions of k, then Gal(̃k/k) is isomorphic to Z
⊕2
p because k is an imaginary

quadratic field (see, e.g., [4], [15], [19], [28]). We recall the fact that every finite prime does
not split completely in Kc/k. Hence the Zp-rank of the decomposition subgroup of Gal(̃k/k)

for q is just 1 (note that the Zp-rank of this decomposition subgroup is at most 1 because q

does not divide p). From this, the assertion follows. �

LEMMA 2.3. Let q be a prime number which is not equal to p.
(1) Suppose that q does not split in k, and let q be the unique prime of k lying above q .

Then q splits completely in Ka .
(2) Suppose that q splits in k, and let q be a prime of k lying above q . Then q does not

split completely in Ka .

PROOF. (1) This is well known ([4, Theorem (11)], [3, p.2132], etc.). (2) For exam-
ple, see [3]. �

3. Zp-extension having a positive μS-invariant

3.1. Sufficient condition. The following proposition gives a sufficient condition for
being μS > 0. It seems that this is essentially shown by Iwasawa in his work [16] on giving
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examples of Zp-extensions having a positive unramified μ-invariant (see also Ozaki [21]).

PROPOSITION 3.1. Let S be a finite set of primes of k satisfying (N), and K a Zp-
extension of k. If S contains at least two primes which split completely in K , then μS(K/k) >

0.

PROOF. When S ⊆ S′, there is a surjection XS ′(K)→ XS(K), and then we obtain an
inequality μS ′(K/k) ≥ μS(K/k). Hence it suffices to prove for the case that S = {q1, q2}
and both of q1, q2 split completely in K .

We note that μS(K/k) > 0 if and only if the p-rank of XS(Kn) is unbounded as n→∞.
(This follows from the argument given in the proof of [28, Proposition 13.23].) We shall
consider the following exact sequence:

E(Kn)/p→ Rq1,n/p ⊕ Rq2,n/p→ YS(Kn)/p→ 0 .

Since k is an imaginary quadratic field, we have

dimFp E(Kn)/p ≤ pn

by Dirichlet’s unit theorem. On the other hand, since both of q1 and q2 split completely in
Kn,

dimFp (Rq1,n/p ⊕ Rq2,n/p) = 2pn .

Therefore, the p-rank of YS(Kn) is unbounded as n→∞, and that of XS(Kn) is also. �

3.2. Analog of Bloom-Gerth’s result. Bloom-Gerth [1] gave an upper bound for
the number of Zp-extensions having a positive unramified μ-invariant of a fixed imaginary
quadratic field k. We can give a similar result for the μS-invariant.

Put

δ =
{

1 if p splits in k/Q ,

0 otherwise.

Recall that λ(Kc/k) is the unramified λ-invariant of the cyclotomic Zp-extension Kc/k. The
following result is known.

THEOREM A (Corollary 1 of [1]). The number of Zp-extensions of k having positive
unramified μ-invariant is at most λ(Kc/k)− δ.

Note that the number of Zp-extensions having positive unramified μ-invariant can be
smaller than λ(Kc/k) − δ (see, e.g., Sands [25], Fujii [8]). By using Theorem A, we can
obtain the following:
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PROPOSITION 3.2. Let S be a finite set of primes of k satisfying (N). Denote by ι the
generator of Gal(k/Q), and put

S1 = {q ∈ S | q �= qι} , S2 = {q ∈ S | q = qι} .
Let d (resp. dS) be the number of Zp-extensions satisfying μ > 0 (resp. μS > 0). Then we
have the following inequalities.

dS ≤ |S1| +min{1, |S2|} + d ≤ |S| + λ(Kc/k)− δ .

PROOF. For a Zp-extension K/k, we recall the following exact sequence:

E∞ →
⊕

q∈S
Rq → XS(K)→ X(K)→ 0 .

From this, we can conclude that μS(K/k) > 0 only if
(a) the unramified μ-invariant is positive, or
(b) Rq is not finitely generated as a Zp-module (i.e., q splits completely in K/k).

For each q ∈ S, there is a unique Zp-extension such that q splits completely by Lemma 2.2.
We also note that every prime of S2 splits completely in Ka/k by Lemma 2.3 (1). From these
facts, we can obtain the left inequality. The right inequality follows from Theorem A. �

EXAMPLE 3.3. Assume that μ = 0 for all Zp-extensions of k. Let q1, q2 ( �= p) be
prime numbers which are inert in k. We denote by q1, q2 the prime ideals of k lying above
q1, q2, respectively. We put S = {q1, q2}. Assume also that S satisfies (N). Then we see that
dS ≤ 1 by Proposition 3.2. On the other hand, both of q1 and q2 split completely in Ka/k by
Lemma 2.3 (1), and hence μS(Ka/k) > 0 by Proposition 3.1. In this case, there is exactly
one Zp-extension of k satisfying μS > 0.

4. Sufficient conditions for satisfying μS = 0

4.1. Our question. Let S be a finite set of primes of an imaginary quadratic field k

satisfying (N). We showed in Proposition 3.1 that if at least two primes of S split completely
in K/k then μS(K/k) > 0. On the other hand, if no prime of S splits completely in K/k, we
can see that μS(K/k) = μ(K/k). (In particular, μS(Kc/k) = 0. This is known. See, e.g.,
[14].) Relating these facts, the following question arises.

QUESTION 4.1. Let K/k be a Zp-extension such that only one prime of S splits com-
pletely. Assume that μ(K/k) = 0. Then, is μS(K/k) also zero?

Considering this question, it is sufficient to treat the case that S consists of one prime
(which splits completely in K/k) by the following proposition.

PROPOSITION 4.2. Let K/k be a Zp-extension, and S = {q1, . . . , qr } a finite set of
primes of k satisfying (N). Assume that q1 is the only prime of S which splits completely in
K/k, and put S1 = {q1}. Then, μS1(K/k) = 0 if and only if μS(K/k) = 0.
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PROOF. Note that μS(K/k) = 0 implies μS1(K/k) = 0 because μS1(K/k) ≤
μS(K/k). We shall show the converse.

Our proof uses the idea given in, e.g., [21, p. 799], [18], [14]. We note that the unramified
μ-invariant of K/k is zero since μS1(K/k) is zero. This implies that the p-rank of X(Kn) is
bounded as n→∞. Then, to see the assertion, it suffices to prove that the p-rank of YS(Kn)

is bounded. We consider the following exact sequence:

E(Kn)/p
φn−−−−→

r⊕

i=1

Rqi ,n/p −−−−→ YS(Kn)/p −−−−→ 0 .

At first, we shall prove that the p-rank of Ker φn (the kernel of φn) is bounded as n→∞. To
show this, we consider the following exact sequence:

E(Kn)/p
φ′n−−−−→ Rq1,n/p −−−−→ YS1(Kn)/p −−−−→ 0 .

By the assumption, the p-rank of YS1(Kn) is bounded as n → ∞. From this, there exists a
constant a such that dimFp YS1(Kn)/p ≤ a for n ≥ 0. Moreover, since q1 splits completely

in K/k, we see that dimFp Rq1,n/p = pn. By Dirichlet’s unit theorem, we obtain

pn − 1 ≤ dimFp E(Kn)/p ≤ pn

for n ≥ 0 (recall that k is an imaginary quadratic field). From these facts,

dimFp Ker φ′n + pn = dimFp E(Kn)/p + dimFp YS1(Kn)/p ≤ pn + a ,

and hence dimFp Ker φ′n is bounded as n → ∞. We consider the following commutative
diagram with exact rows:

0 −−−−→ Ker φn −−−−→ E(Kn)/p
φn−−−−→

r⊕

i=1

Rqi ,n/p

⏐
⏐
�

∥
∥
∥

⏐
⏐
�

0 −−−−→ Ker φ′n −−−−→ E(Kn)/p
φ′n−−−−→ Rq1,n/p ,

where the right vertical mapping is the natural projection. By the above diagram, we can
obtain that Ker φn ⊆ Ker φ′n, then dimFp Ker φn is bounded as n→∞. Hence, there exists a
constant b such that dimFp Ker φn ≤ b for n ≥ 0. Moreover, since qi does not split completely

in K/k for i �= 1, there exists a constant c such that dimFp

⊕r
i=1 Rqi ,n/p ≤ pn+c for n ≥ 0.

Therefore,

(pn − 1)+ dimFp YS(Kn)/p ≤ dimFp E(Kn)/p + dimFp YS(Kn)/p

= dimFp Ker φn + dimFp

r⊕

i=1

Rqi ,n/p
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≤ b + (pn + c) ,

and we can prove the p-rank of YS(Kn) is bounded as n→∞. �

We also remark the relation between the μS-invariant and the unramified μ-invariant of
a certain p-extension.

PROPOSITION 4.3. Let q be a prime of k not lying above p, and K a Zp-extension of k
such that q splits completely in K . Assume that there exists a cyclic extension M/k of degree
p which is unramified outside q and totally ramified at q. Put S = {q}. Then, μS(K/k) = 0
if and only if μ(MK/M) = 0.

PROOF. (see also [16], [21].) We note that M ∩ K = k since q is ramified in M/k.
Put Mn = MKn for all n ≥ 0, then MK = ⋃

Mn. Let Le(Mn) be the maximal unramified
elementary abelian p-extension of Mn, and L′n the maximal abelian extension of Kn contained
in Le(Mn). Let σ be a generator of Gal(Mn/Kn). Then we can see that

Gal(L′n/Mn) � Gal(Le(Mn)/Mn)/(σ − 1)Gal(Le(Mn)/Mn) .

We note that L′n ⊆MS(Kn) since L′n/Kn is unramified outside primes of Kn lying above q.
Suppose that μS(K/k) = 0, then the p-rank of XS(Kn) is bounded as n→∞, and that

of Gal(L′n/Mn) is also. We can obtain the following (see, e.g., [16, p. 6]):

dimFp Gal(Le(Mn)/Mn) ≤ p × dimFp Gal(Le(Mn)/Mn)/(σ − 1)Gal(Le(Mn)/Mn)

= p × dimFp Gal(L′n/Mn) .

Hence the p-rank of Gal(Le(Mn)/Mn) is bounded as n → ∞. We note that X(Mn)/p �
Gal(Le(Mn)/Mn). Therefore, the p-rank of X(Mn) is bounded, that is, μ(MK/M) = 0.

Conversely, we assume that μS(K/k) > 0. Let Me
S(Kn) be the maximal elementary

abelian p-extension of Kn contained in MS(Kn). Then the p-rank of XS(Kn) is equal to
that of Gal(Me

S(Kn)/Kn). Since Mn/Kn is a cyclic extension of degree p unramified outside
S, we see that Mn ⊆ Me

S(Kn). Let Q be a prime of Kn lying above q. Since Q is tamely
ramified in Me

S(Kn)/Kn, the inertia subgroup of Gal(Me
S(Kn)/Kn) for Q is cyclic. Moreover,

all primes of Kn lying above q are totally ramified in Mn. From these facts, we can conclude
that Me

S(Kn)/Mn is an unramified extension. By the assumption that μS(K/k) > 0, the p-
rank of Gal(Me

S(Kn)/Kn) is unbounded as n→∞, and then the p-rank of Gal(Me
S(Kn)/Mn)

is also unbounded. Consequently, the p-rank of X(Mn) is unbounded because Me
S(Kn) is an

intermediate field of L(Mn)/Mn. Therefore, μ(MK/M) > 0. �

4.2. Sufficient conditions. We shall give some sufficient conditions for the vanishing
of μS . At first, we treat the “exceptional case”.

PROPOSITION 4.4. We put p = 3 and k = Q(
√−3). Let q be a prime of k which

satisfies the following conditions:

3 | N(q)− 1 and 9 � N(q)− 1 .
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(Under the conditions, q does not divide 3.) Put S = {q}. Then XS(K) is trivial for every
Z3-extension K of k.

PROOF. By the assumptions, (Ok/q)
× ⊗Z Z3 is a cyclic group of order 3, and E(k)

contains a primitive third root of unity. These facts imply that the natural mapping E(k) ⊗Z

Z3 → (Ok/q)
× ⊗Z Z3 is surjective (cf. [14]). Hence YS(k) is trivial, and then XS(k) is also

trivial because h(k) = 1. Let K/k be an arbitrary Z3-extension. Since K/k is totally ramified
at the unique prime lying above 3, we see XS(K)/ω0XS(K) � XS(k). (See the paragraph
after Proposition 2.1.) Hence by using a well known argument (see, e.g., [28, Proposition
13.22]), we can obtain the assertion. �

Next, we state a sufficient condition which can be obtained easily. (Similar arguments
and results can be found in other papers.)

PROPOSITION 4.5 (cf. p. 799 of [21], Theorem 3.1 of [13], for example). Assume
that p does not split in k/Q. Let q be a prime of k not dividing p and satisfying p | N(q)− 1.
We put S = {q}. Let K/k be a Zp-extension. If the (unique) prime of k lying above p does
not split in MS(k)/k, then XS(K) � XS(k). In particular, XS(K) is a finite cyclic p-group.

PROOF. We denote by p the unique prime of k lying above p. Then the order of the
ideal class containing p is 1 or 2 because p does not split in k/Q. If p divides h(k), then p

splits in L(k)/k, and hence it also splits in MS(k)/k. Thus, under the assumptions of this
proposition, we see that p � h(k). Put M = MS(k). Since X(k) is trivial, we see that
XS(k) is cyclic. From this, we can show that XS(M) is trivial. We also see that X(M)

is trivial, and hence the Zp-extension MK/M is totally ramified at the unique prime ly-
ing above p. In this case, as noted in the paragraph after Proposition 2.1, the isomorphism
XS(MK)/ω0XS(MK) � XS(M) holds. Then we can obtain that XS(MK) is trivial because
XS(M) is trivial. Consequently, we see MK = MS(K), and XS(K) � XS(k) which is a
finite cyclic p-group. �

EXAMPLE 4.6. Assume that p is inert in k/Q and p does not divide h(k). Let q be a
prime number satisfying the following conditions:

p | q − 1 , and q is inert in k/Q .

Put p = pOk , q = qOk, and S = {q}. In this case, |(Ok/q)
×| = q2− 1 and p does not divide

q + 1. Let d be the largest integer such that pd | q − 1. We can see that

XS(k) � (Ok/q)
× ⊗Z Zp � Z/pd

Z .

If p
q2−1

p �≡ 1 (mod q), then the class of (a certain power of) p generates the p-Sylow sub-
group of (Ok/q)

×, and this implies that p does not split in MS(k)/k. Moreover, we can obtain
the following:

p
q2−1

p ≡ 1 (mod q)⇔ p
q2−1

p ≡ 1 (mod q)
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⇔ p
q−1
p ≡ 1 (mod q) .

Hence by Proposition 4.5, if p
q−1
p �≡ 1 (mod q) then XS(K) � Z/pd

Z for every Zp-
extension K/k. (See also, e.g., [13] for the case of the cyclotomic Zp-extension of Q.)

REMARK 4.7. Assume that p is inert in k/Q and p does not divide h(k). Let q be a
prime number satisfying the following condition (slightly different from Example 4.6):

p | q + 1 , and q is inert in k/Q .

Put p = pOk , q = qOk, and S = {q}. We note that S satisfies (N). In this case, we can see

that p
q2−1

p ≡ 1 (mod q). This implies that p always splits in MS(k)/k. Hence q does not
satisfy the assumption of Proposition 4.5.

We can also give a sufficient condition when p splits in k.

PROPOSITION 4.8. Let q be a prime number which is inert in k/Q. Put q = qOk and
S = {q}. Moreover, we assume that p and q satisfy all of the following conditions:

(i) p splits in k/Q, p does not divide h(k), and λ(Kc/k) = 1,
(ii) p divides q + 1,

(iii) q does not split in Kc/k,
(iv) both primes of k lying above p do not split in MS(k)/k.

Then XS(Ka) is isomorphic to Zp ⊕ Z/pZ as a Zp-module. In particular, μS(Ka/k) = 0.

We note that S satisfies (N). We also remark that q splits completely in Ka/k by Lemma
2.3 (1). We denote by p, pι the primes of k lying above p. Put M = MS(k). We note that

p2 does not divide q2 − 1 by the assumption (iii). Hence M/k is a cyclic extension of degree
p, and totally ramified at q because p � h(k). Recall that Ka

1 (resp. Kc
1) is the initial layer of

Ka/k (resp. Kc/k). From the assumption that p � h(k), both of p and pι are totally ramified
in Ka/k (see, e.g., [25, p. 680]). We also note that Ka

1 Kc
1/Ka

1 is an unramified extension

(see, e.g., [25, pp. 680–681]). Put K = MKa
1 Kc

1 , then Gal(K/k) � (Z/pZ)⊕3 and K/k is
unramified outside {q, p, pι}. The following is the “key lemma” of our proof of Proposition
4.8.

LEMMA 4.9. Assume that k, p, and q satisfy the conditions of Proposition 4.8, and
keep the notation as above. Then p does not divide h(K).

PROOF OF LEMMA 4.9. Our proof uses the central class field (see, e.g., [5], [23], [27],
[29]). Let Kg be the genus field of K/k, that is, the maximal unramified abelian extension
of K which is also an abelian extension over k. Let Kz be the central class field of K/k, that
is, the maximal unramified abelian extension of K which is a Galois extension over k and
Gal(Kz/K) is contained in the center of Gal(Kz/k). We note that Kg ⊆ Kz. It is well known
that p � h(K) if and only if p does not divide [Kz : K]. Hence we shall show that p does not
divide [Kz : K].
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We shall consider [Kg : K] at first. We see that q is unramified in Kc
1Ka

1 /k. On the
other hand, q is totally ramified in M/k. Hence the ramification index of q in K/k is p. For
the prime p, it is unramified in M/k. Since the ramification index of p in Ka

1 Kc
1/k is p (see,

e.g., [25, pp. 680–681]), that of in K/k is also p. Similarly, we can see that the ramification
index of pι in K/k is p. If p divides [Kg : K], then there must be a non-trivial unramified
abelian p-extension over k because the ramification indices of q, p, and pι are equal to p. This
contradicts to the fact that p � h(k). Hence we see that p does not divide [Kg : K].

Therefore, to see the assertion of this lemma, it suffices to prove that p does not divide
[Kz : Kg ]. Note that Gal(Kz/Kg ) is an abelian p-group in our situation (see, e.g., [23], [27]),
thus we will show that Kz = Kg . Put G = Gal(K/k) and V = {q, p, pι}. For r ∈ V , we
denote by Gr the decomposition subgroup of G for r, and Dr the decomposition field for r in
K/k.

Similar to [5], we can show that Kz = Kg if both of the following conditions are satisfied.

(a) |Gr| = p2 for each r ∈ V , and Gr �= Gr′ for r �= r′,
(b) Gq ∩Gp,Gq ∩Gpι , and Gp ∩Gpι generate G.

(This follows from, e.g., Theorem 3, Example 2, and the facts stated in pp. 290–291 of [23].
See also [27, p. 423] and [5, p. 458, Lemma].) Moreover, they are also equivalent to the
following conditions:

(a′) [Dr : k] = p for each r ∈ V , and Dr �= Dr′ for r �= r′,
(b′) DqDpDpι = K.

(This follows from the argument given in the proof of [5, Theorem 2].) Hence it suffices to
prove (a′) and (b′). (See also [29], etc., for the case when the base field is Q.)

Firstly, we shall prove (a′). Since q is inert in k/Q, q splits completely in Ka
1 /k by

Lemma 2.3 (1). By the assumption (iii), all primes of Ka
1 lying above q are inert in Ka

1 Kc
1/Ka

1 .
Moreover, since q is totally ramified in M/k, all primes of Ka

1 Kc
1 lying above q are totally

ramified in K/Ka
1 Kc

1 . Hence it follows that Dq = Ka
1 and [Dq : k] = p. We already noted

that both of p and pι are ramified in Dq/k. Let k(pι) be the inertia field of p in Ka
1 Kc

1/k.
We note the fact that Ka

1 Kc
1 coincides with L1 which is defined in [12, p. 371, Lemma]

(see [25, pp. 680–681]). Then we can see that [k(pι) : k] = p ([12, p. 371]), and p is
inert in k(pι)/k ([12, Theorem 3]). By the assumption (iv), p is also inert in M/k. We see
that the decomposition field D′p for p in Mk(pι)/k is a cyclic extension over k of degree

p, and D′p �= k(pι),M . All primes of D′p lying above p are inert in Mk(pι)/D′p. Since

the ramification index of p in K/k is p, the primes of Mk(pι) lying above p are ramified in
K/Mk(pι). Hence it follows that Dp = D′p and [Dp : k] = p. We note that both of pι and q

are ramified in Dp/k because Dp �= k(pι),M . Similarly, we can obtain that [Dpι : k] = p,
and both of p and q are ramified in Dpι /k. From these facts, we can also see that Dv �= Dv′

for v �= v′.
Secondly, we shall prove (b′). Put D′ = DqDpDpι . Suppose that D′ � K. We note that

Dv �= Dv′ for v �= v′, hence it follows that [D′ : k] = p2. We note that M = MS(k) is a
Galois extension over Q because q is inert in k. From this, we see that K/Q is also a Galois
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extension. Put G′ = Gal(K/D′). Since Dq = Ka
1 and DpDpι are Galois extensions over Q,

and D′/Q is also. Hence Gal(k/Q) = 〈ι〉 acts on G, and G′ is closed under this action. Put

G± = {τ ∈ G|ι(τ ) = τ±1}, then G � G+ ⊕ G−. Let KG+ and KG− be the fixed fields

of G+ and G− in K/k, respectively. We can see that Kc
1 ⊆ KG− since ι acts on Gal(Kc

1/k)

trivially. Moreover, we see that Ka
1 ⊆ KG+ since ι acts on Gal(Ka

1 /k) by inversion. We shall

prove M ⊆ KG+ . Recall that M/Q is a Galois extension, and hence ι acts on Gal(M/k). We

put Gal(M/k) = 〈σ 〉(� Z/pZ). Then ι(σ ) is equal to either σ or σ−1. If ι(σ ) = σ , then M

is an abelian extension over Q. In this case, we can see that

Gal(M/k) � Gal(M{q}(Q)/Q) � (Z/qZ)× ⊗Z Zp ,

where M{q}(Q) is the maximal abelian p-extension of Q unramified outside q . Since p divides
q+1, we conclude that Gal(M/Q) is trivial. This is a contradiction. Consequently, ι must acts

on Gal(M/k) by inversion, and hence M ⊆ KG+ . Therefore KG− = Kc
1 and KG+ = MKa

1 ,

i.e., |G+| = p and |G−| = p2. Put G′ = 〈τ 〉(� Z/pZ). Since G′ is closed under the
action of ι, we see that ι(τ ) equals either τ or τ−1. If ι(τ ) = τ−1, then G′ ⊆ G−, and hence

Kc
1 ⊆ D′. Moreover, by the facts that Dq = Ka

1 ⊆ D′ and [D′ : k] = p2, we can obtain

D′ = Ka
1 Kc

1 . However, since p does not split in Ka
1 Kc

1 , it is a contradiction. Next, we assume

ι(τ ) = τ . Then we see that G′ = G+ (i.e., D′ = MKa
1 ). However, since p does not split in

MKa
1 , it is a contradiction. Hence D′ = K. Therefore, we have shown that Kz = Kg , and

then we can obtain our assertion. �

REMARK 4.10. It seems that one can also obtain this lemma by using [27, (2,4) The-
orem].

PROOF OF PROPOSITION 4.8. By Lemma 4.9, it follows that L(Ka
1 ) = Ka

1 Kc
1 . We

also note that X(Ka) � Zp (as a Zp-module) in this case (see, e.g., [8, p. 297]).
Since K/Ka

1 is an abelian p-extension unramified outside the primes of Ka
1 lying above

q, it follows that K ⊆ MS(Ka
1 ). Suppose that K � MS(Ka

1 ). Since q splits completely
in Ka

1 /k, we denote by q1, q2, . . . , qp the primes of Ka
1 lying above q. We consider the

following exact sequence:

p⊕

i=1

(OKa
1
/qi )
× ⊗Z Zp → XS(Ka

1 )→ X(Ka
1 )→ 0 .

We note that Ker(XS(Ka
1 ) → X(Ka

1 )) = Gal(MS(Ka
1 )/L(Ka

1 )). Thus MS(Ka
1 )/L(Ka

1 ) is

an elementary abelian p-extension because |(OKa
1
/qi )
× ⊗Z Zp | = p for all i. Since the

primes of L(Ka
1 ) lying above q are tamely ramified in MS(Ka

1 )/L(Ka
1 ), the inertia subgroup

of Gal(MS(Ka
1 )/L(Ka

1 )) for every prime lying above q is cyclic. Furthermore, since q is
totally ramified in MS(k)/k and unramified in L(Ka

1 )/k, all primes lying above q are ac-
tually ramified in K/L(Ka

1 ). We can see that MS(Ka
1 )/K is non-trivial unramified abelian
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p-extension because of the cyclicity of inertia subgroups. This contradicts to Lemma 4.9.
Therefore, we can obtain MS(Ka

1 ) = K.
We denote by P (resp. Pι) the unique prime of Ka

1 lying above p (resp. pι). For
v ∈ {P,Pι}, let Gv be the decomposition subgroup of Gal(K/Ka

1 ) for v, and Dv the de-
composition field for v in K/Ka

1 . We shall use the notations and results given in the proof of
Lemma 4.9. Since Dq = Ka

1 , we see that DP = DqDp, and DPι = DqDpι . We already
showed that K = DqDpDpι . Hence, we can obtain

DPDPι = K and DP ∩DPι = Ka
1 .

Thus, XS(Ka
1 )(= Gal(K/Ka

1 ) � (Z/pZ)2) is generated by GP and GPι . This implies that

X′S(Ka
1 ) is trivial. (We note that X′S(k) is also trivial.) Since both primes lying above p are

totally ramified in Ka/k, we can obtain that

X′S(Ka)/Z′S � X′S(k) , X′S(Ka)/ν1,0Z
′
S � X′S(Ka

1 )

with a finite index submodule Z′S of X′S(Ka) by Proposition 2.1 (2). From the fact that both of

X′S(Ka)/Z′S and X′S(Ka)/ν1,0Z
′
S are trivial, we can see that X′S(Ka) is also trivial by using

the same argument given in the proof of [9, Theorem 1 (1)] (cf. also [24]).
We also see that X′S(Ka

n ) is trivial for n ≥ 0. Hence XS(Ka
n ) is generated by the decom-

position subgroups for the primes lying above p. (Note that these decomposition subgroups
are cyclic.) We see that the p-rank of XS(Ka

n ) is at most 2 because the number of primes of
Ka

n lying above p is 2. When n ≥ 2, there is a natural surjection XS(Ka
n )→ XS(Ka

1 ). Since
the p-rank of XS(Ka

1 ) is 2, we see that the p-rank of XS(Ka
n ) must be 2 for n ≥ 2. This

implies that the p-rank of XS(Ka) is also 2 (see, e.g., the proof of [9, Theorem 1 (2)]).
We see that Rq � Λ/(p) because |(Ok/q)

× ⊗Z Zp | = p and q splits completely in
Ka/k. Hence we have the following exact sequence:

Λ/(p)→ XS(Ka)→ X(Ka)→ 0 .

Considering this sequence, we can conclude that XS(Ka) � Zp⊕Z/pZ as a Zp-module. �

REMARK 4.11. By Proposition 3.2, we see that the number of Zp-extensions satis-
fying μS > 0 is at most 1 under the assumptions of Proposition 4.8. In this case, Ka/k

is the only Zp-extension which has a possibility of being μS > 0. Hence the assertion of
Proposition 4.8 also implies that μS = 0 for all Zp-extensions of k.

From Propositions 4.3 and 4.8 we can obtain the following:

COROLLARY 4.12. Under the assumptions of Proposition 4.8, the unramified μ-
invariant of a Zp-extension KaMS(k)/MS(k) is zero.

5. Calculation examples

5.1. Criteria. Let K be a Zp-extension of an imaginary quadratic field k. In this
section, for simplicity, we assume that p, k, and K satisfy either of the following (I) or (II).
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(I) p does not split in k/Q, and p does not divide h(k). Moreover, p > 3 if k =
Q(
√−3).

(II) p splits in k/Q, p does not divide h(k), and λ(Kc/k) = 1. Moreover, both primes
of k lying above p are totally ramified in K/k.

REMARK 5.1. For every Zp-extension K/k satisfying (I), the unramified Iwasawa
module X(K) is trivial. For every Zp-extension K/k satisfying (II), the unramified Iwasawa
invariants satisfy λ(K/k) = 1 and μ(K/k) = 0 (see, e.g., [25, Theorem]).

Let q be a prime of k not lying above p, and put S = {q}. Under the assumptions, if q
does not split completely in K/k then we see that μS(K/k) = 0. In the rest of this section,
we assume that q splits completely in K , and satisfies the following:

(H) p | N(q)− 1, p2
� N(q)− 1.

Under the assumptions, we can obtain that |XS(k)| = p. (Recall that p > 3 when

k = Q(
√−3). See also Proposition 4.4.) Since q splits completely in K/k, we see that

Rq � Λ/(p). In the following, we shall give some criteria for the vanishing of μS(K/k).
These criteria need an information on XS(Kn) or X′S(Kn).

We can obtain a lower bound for |XS(Kn)| and |X′S(Kn)| by using properties of finitely
generated Λ-modules. (Similar results for the case of unramified Iwasawa modules are well-
known. See, e.g., [7], [25].) Recall that XS(K) and X′S(K) are finitely generated torsion

Λ-modules. Hence there exists an elementary torsion Λ-module E (resp. E′) and a pseudo-
isomorphism XS(K) → E (resp. X′S(K) → E′). In our situation, all primes which are
ramified in K/k are totally ramified. Hence, by using the method given in the proof of [25,
(2.1) Proposition] (and Proposition 2.1), we can obtain the following estimations for all n ≥ 0:

|XS(Kn)| ≥ |XS(k)| · |E/νn,0E| , |X′S(Kn)| ≥ |X′S(k)| · |E′/νn,0E| .
We mention the fact that if E = Λ/(pm) then |E/νn,0E| = pm(pn−1) for all n ≥ 0 (see,
e.g., [25, (2.2) Proposition], [28, pp. 281–282]). In particular, if the μ-invariant of X′S(K)

is positive, then the elementary torsion Λ-module E′ which is pseudo isomorphic to X′S(K)

contains a factor of the type Λ/(pm) with some m ≥ 1, and hence we obtain that

|X′S(Kn)| ≥ |X′S(k)| · pm(pn−1) ≥ |X′S(k)| · ppn−1

all n ≥ 0. The same type result also holds for XS(K).
We also remark that if the μ-invariant of X′S(K) is 0, then the μ-invariant of XS(K)

is also 0. (Recall that all primes lying above p are totally ramified in K/k. See also [15,
pp. 262–263].)

PROPOSITION 5.2. Assume that p, k, and K satisfy (I). Let q be a prime of k which
splits completely in K and satisfies (H). We put S = {q}. Moreover, we assume that the

unique prime of k lying above p splits in MS(k)/k. Then |X′S(Kn)| < ppn
for some n implies

μS(K/k) = 0.
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REMARK 5.3. For the case that the unique prime of k lying above p does not split in
MS(k)/k, we see that XS(K) is finite by Proposition 4.5.

PROOF OF PROPOSITION 5.2. We note that |X′S(k)| = p by the assumptions. Hence
the assertion follows from the facts stated in the last two paragraphs before the statement of
this proposition. �

PROPOSITION 5.4. Assume that p, k, and K satisfy (II). Let q be a prime of k which

splits completely in K and satisfies (H). We put S = {q}. Then |XS(Kn)| < ppn+n for some
n implies μS(K/k) = 0.

PROOF. Under the assumption (II), we can see that the characteristic polynomial of
X(K) is T by using the fact that L(K) = k̃, where k̃ is the composite of all Zp-extensions
of k. (See, e.g., [8, p. 297]. See also [25].) Since Rq � Λ/(p), we can obtain the following
exact sequence:

Λ/(p)→ XS(K)→ X(K)→ 0 .

Assume that μS(K/k) > 0. Then the characteristic polynomial of XS(K) must be
pT . Put E1 = Λ/(p) and E2 = Λ/(T ). We can see that there is a pseudo-isomorphism
XS(K)→ E1 ⊕ E2. We note that |XS(k)| = p from the assumptions (II) and (H). By using
[25, (2.2) Proposition], we can obtain the following for all n ≥ 0:

|XS(Kn)| = |XS(K)/νn,0ZS |
≥ |XS(k)| · |E1/νn,0E1| · |E2/νn,0E2|
=p · ppn−1 · pn = ppn+n .

Hence, the assertion follows. �

PROPOSITION 5.5. Assume that p, k, and K satisfy (II). Let q be a prime of k which

splits completely in K and satisfies (H). We put S = {q}. Then |X′S(Kn)| < |X′S(k)|ppn−1 for
some n implies μS(K/k) = 0.

PROOF. This also follows from the arguments given in the paragraphs before Proposi-
tion 5.2. �

We shall apply the above criteria for some imaginary quadratic fields. Recall that K/k

satisfies (I) or (II), and q satisfies (H). We also assumed that q splits completely in K/k. Let
Cq,1 be the ray class group of K1 modulo qOK1 , and Aq,1 the Sylow p-subgroup of Cq,1.
Since the primes lying above q do not divide p, we see that XS(K1) � Aq,1 by class field
theory. We also see that X′S(K1) � Aq,1/(D1 ∩ Aq,1), where D1 is the subgroup of Cq,1

generated by the ray classes containing a prime of K1 lying above p. The second author
calculated |Aq,1| and |Aq,1/(D1 ∩Aq,1)| by using Magma [2]. (PARI/GP [22] was also used
to check a part of calculation results.) Moreover, the defining polynomials of Ka

1 which are
written in Kim-Oh [17, Table I] and Brink [3, p. 2136] were used in these calculations.
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5.2. Calculation for the case (I) with p = 3. We assume that p = 3 and k =
Q(
√−1). In this case, we can apply Proposition 5.2. Let q be a prime number satisfying the

following condition:

q is inert in k/Q and q = qOk satisfies (H) .

Then q splits completely in Ka/k by Lemma 2.3 (1). Put S = {q}. We note that |XS(k)| = 3
because q satisfies (H). We classify q into the following four types:

(1-a) q ≡ 1 (mod 3) and |X′S(k)| = 1,

(1-b) q ≡ 1 (mod 3) and |X′S(k)| = 3,

(2-a) q ≡ 2 (mod 3) and |X′S(k)| = 1,

(2-b) q ≡ 2 (mod 3) and |X′S(k)| = 3.

By Proposition 4.5 and Proposition 5.2, either

|X′S(k)| = 1 or |X′S(Ka
1 )| < 33

implies μS(Ka/k) = 0. Thus, we see that μS(Ka/k) = 0 for the types (1-a) and (2-a).
We note that there is no prime number q satisfying (2-a) by Remark 4.7. For the primes
q < 500000 satisfying the above assumptions, we obtained the following.

p = 3, k = Q(
√−1)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 2320
33 32 0 1495 64.4
33 33 ? 825 35.6

(2-b) 6928
32 31 0 4621 66.7
33 33 ? 2307 33.3

The number of primes q satisfying (1-b) and q < 500000 is 2320, and 1495 of these

primes satisfy |XS(Ka
1 )| = 33, |X′S(Ka

1 )| = 32 (and then μS(Ka/k) = 0 for such primes).
Similarly, we see that μS(Ka/k) = 0 for about 66.7% of 6928 primes satisfying (2-b) and q <

500000. (Note that the percentage is rounded off at the first decimal place.) For both of (1-b)
and (2-b), only two kinds of the pair (|XS(Ka

1 )|, |X′S(Ka
1 )|) were found in our calculation

results. It is a question whether this also holds for q > 500000 or not. (See also the below
data and the other examples.)

By Proposition 3.2 and its proof, μS(Ka/k) = 0 implies that μS = 0 for all Zp-
extensions of k. Moreover, μS(Ka/k) = 0 also implies that μ(MS(k)Ka/MS(k)) = 0 by
Proposition 4.3.

For other fields satisfying (I) with p = 3, we obtained the following (q < 500000).
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p = 3, k = Q(
√−7)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 2341
33 32 0 1577 67.4
33 33 ? 764 32.6

(2-b) 6944
32 31 0 4629 66.7
33 33 ? 2315 33.3

p = 3, k = Q(
√−19)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 2315
33 32 0 1558 67.3
33 33 ? 757 32.7

(2-b) 6959
32 31 0 4636 66.6
33 33 ? 2323 33.4

p = 3, k = Q(
√−43)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 2323
33 32 0 1582 68.1
33 33 ? 741 31.9

(2-b) 6934
32 31 0 4600 66.3
33 33 ? 2334 33.7

p = 3, k = Q(
√−67)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 2326
33 32 0 1580 67.9
33 33 ? 746 32.1

(2-b) 6972
32 31 0 4642 66.6
33 33 ? 2330 33.4
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p = 3, k = Q(
√−163)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 2374
33 32 0 1595 67.2
33 33 ? 779 32.8

(2-b) 6893
32 31 0 4619 67.0
33 33 ? 2274 33.0

5.3. Calculation for the case (I) with p = 5. We assume that p = 5 and k =
Q(
√−2). Assume also that a prime number q is inert in k/Q and q = qOk satisfies (H).

Put S = {q}. Then q splits completely in Ka/k by Lemma 2.3 (1). We classify q into the
following four types:

(1-a) q ≡ 1 (mod 5) and |X′S(k)| = 1,

(1-b) q ≡ 1 (mod 5) and |X′S(k)| = 5,

(4-a) q ≡ 4 (mod 5) and |X′S(k)| = 1,

(4-b) q ≡ 4 (mod 5) and |X′S(k)| = 5.
Either

|X′S(k)| = 1 or |X′S(Ka
1 )| < 55

implies μS(Ka/k) = 0. For the primes q < 500000 satisfying the above assumptions, we
obtained the following.

p = 5, k = Q(
√−2)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 809
53 52 0 657 81.2
55 54 0 125 15.5
55 55 ? 27 3.3

(4-b) 4147
52 51 0 3320 80.1
54 53 0 670 16.2
55 55 ? 157 3.8

For other fields satisfying (I) with p = 5, we obtained the following (q < 500000).
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p = 5, k = Q(
√−3)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 842
53 52 0 670 79.6
55 54 0 137 16.3
55 55 ? 35 4.2

(4-b) 4171
52 51 0 3326 79.7
54 53 0 676 16.2
55 55 ? 169 4.1

p = 5, k = Q(
√−5)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 833
53 52 0 672 80.7
55 54 0 136 16.3
55 55 ? 25 3.0

(4-b) 4165
52 51 0 3317 79.6
54 53 0 670 16.1
55 55 ? 178 4.3

p = 5, k = Q(
√−7)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-b) 801
53 52 0 670 83.6
55 54 0 100 12.5
55 55 ? 31 3.9

(4-b) 4161
52 51 0 3318 79.7
54 53 0 675 16.2
55 55 ? 168 4.0

Since the percentages are rounded off, their sum is not necessarily to be 100%.

5.4. Other Zp-extensions (case (I)). We put p = 3 and k = Q(
√−1). Here, we

consider the case that q splits in k/Q. We denote by q, qι the primes of k lying above q .
Assume that q satisfies (H). Although q does not split completely in Ka/k by Lemma 2.3 (2),
there exists a unique Z3-extension of k such that q splits completely by Lemma 2.2. (It also
holds for qι.) There are only four fields which can be the initial layer of a Z3-extension of k.
Two of them are Ka

1 and Kc
1 . We denote by F1, F ι

1 the other initial layers of Z3-extensions of
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k (they are conjugate over Q). Since defining polynomials of Ka
1 and Kc

1 are known, we can
obtain a defining polynomial of an intermediate field of Ka

1 Kc
1/k. In this case, we can take

f = x6 − 6x5 − 99x4 + 1354x3 + 5526x2 − 13668x + 237977

as a defining polynomial of F1. (Note that x3 − 3x − 1 was used as a defining polynomial of
the first layer of the cyclotomic Z3-extension.) Let K/k be the unique Z3-extension such that
q splits completely. We note that q does not split in Kc/k by our assumption. Hence we see
that K1 is the unique cubic subextension of Ka

1 Kc
1/k such that q splits completely. (Note that

it can be occurred that K1 = Ka
1 .) Moreover, we may assume that q splits completely in Ka

1
or F1. (If the primes lying above q do not split in Ka

1 /k, just one prime lying above q splits
in F1/k.) Put S = {q}. Note that q does not satisfy (H) when q ≡ 2 (mod 3). Hence we shall
classify q into the following two types:

(a) q ≡ 1 (mod 3) and |X′S(k)| = 1,

(b) q ≡ 1 (mod 3) and |X′S(k)| = 3.
In this case, either

|X′S(k)| = 1 or |X′S(K1)| < 33

implies μS(K/k) = 0. Thus, μS(K/k) = 0 for the type (a). For the type (b), we obtained
the following result for q < 500000.

p = 3, k = Q(
√−1)

K1 total |XS(K1)| |X′S(K1)| μS(K/k) number of q %

F1 1529
32 31 0 1008 65.9
33 32 0 343 22.4
33 33 ? 178 11.6

Ka
1 773

32 31 0 524 67.8
33 32 0 170 22.0
33 33 ? 79 10.2

For other fields satisfying (I) with p = 3, we obtained the following (q < 500000).

p = 3, k = Q(
√−7)

f = x6 − 6x5 + 96x4 − 4637x3 + 516390x2 − 5900613x + 68794273
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K1 total |XS(K1)| |X′S(K1)| μS(K/k) number of q %

F1 1541
32 31 0 1042 67.6
33 32 0 320 20.8
33 33 ? 179 11.6

Ka
1 740

32 31 0 508 68.6
33 32 0 149 20.1
33 33 ? 83 11.2

p = 3, k = Q(
√−19)

f = x6−183x5+59058x4−5638684x3+846963261x2−31483317837x+2880007852283

K1 total |XS(K1)| |X′S(K1)| μS(K/k) number of q %

F1 1548
32 31 0 1050 67.8
33 32 0 332 21.4
33 33 ? 166 10.7

Ka
1 759

32 31 0 515 67.9
33 32 0 171 22.5
33 33 ? 73 9.6

p = 3, k = Q(
√−43)

f =
x6−6x5+337947x4−927794x3+37453878699x2−58156440513x+1371920398285159

K1 total |XS(K1)| |X′S(K1)| μS(K/k) number of q %

F1 1535
32 31 0 1029 67.0
33 32 0 344 22.4
33 33 ? 162 10.6

Ka
1 764

32 31 0 511 66.9
33 32 0 159 20.8
33 33 ? 94 12.3

p = 3, k = Q(
√−67)

f = x6 − 6x5 + 1395234x4− 2718680x3+ 637961231943x2− 801945922254x

+96282167114135501
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K1 total |XS(K1)| |X′S(K1)| μS(K/k) number of q %

F1 1555
32 31 0 1034 66.5
33 32 0 340 21.9
33 33 ? 181 11.6

Ka
1 740

32 31 0 491 66.4
33 32 0 167 22.6
33 33 ? 82 11.1

p = 3, k = Q(
√−163)

f = x6 + 1683x5 + 14095938x4+ 14591467188x3+ 61493922898743x2

+30803779397034963x+ 83715673074662296513
K1 total |XS(K1)| |X′S(K1)| μS(K/k) number of q %

F1 1508
32 31 0 1001 66.4
33 32 0 367 24.3
33 33 ? 140 9.3

Ka
1 740

32 31 0 502 67.8
33 32 0 170 23.0
33 33 ? 68 9.2

5.5. Calculation for the case (II) with p = 3. We assume that p = 3 and k =
Q(
√−2). In this case, we can apply Propositions 5.4 and 5.5. Let q be a prime number

satisfying the following condition:

q is inert in k/Q and q = qOk satisfies (H).

Then q splits completely in Ka/k by Lemma 2.3 (1). Put S = {q}. We classify q into the
following four types:

(1-a) q ≡ 1 (mod 3) and |X′S(k)| = 1,

(1-b) q ≡ 1 (mod 3) and |X′S(k)| = 3,

(2-a) q ≡ 2 (mod 3) and |X′S(k)| = 1,

(2-b) q ≡ 2 (mod 3) and |X′S(k)| = 3.
By Propositions 5.4 and 5.5, either

|XS(Ka
1 )| < 34 or |X′S(Ka

1 )| < |X′S(k)|32

implies μS(Ka/k) = 0. We can see μS(Ka/k) = 0 for the type (2-a) by Proposition 4.8. For
the primes q < 500000 satisfying the above assumptions, we obtained the following.
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p = 3, k = Q(
√−2)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-a) 4606
33 31 0 3018 65.5
34 32 ? 1588 34.5

(1-b) 2324
33 31 0 1552 66.8
34 33 ? 772 33.2

(2-b) 2277
34 32 0 1537 67.5
34 33 ? 740 32.5

For other fields satisfying (II) with p = 3, we obtained the following (q < 500000).

p = 3, k = Q(
√−5)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-a) 4642
33 31 0 3077 66.3
34 32 ? 1565 33.7

(1-b) 2315
33 31 0 1541 66.6
34 33 ? 774 33.4

(2-b) 2345
34 32 0 1539 65.6
34 33 ? 806 34.4

p = 3, k = Q(
√−11)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-a) 4622
33 31 0 3123 67.6
34 32 ? 1499 32.4

(1-b) 2333
33 31 0 1586 68.0
34 33 ? 747 32.0

(2-b) 2317
34 32 0 1566 67.6
34 33 ? 751 32.4

5.6. Calculation for the case (II) with p = 5. We assume that p = 5 and k =
Q(
√−1). Assume also that a prime number q is inert in k/Q and q = qOk satisfies (H).

Put S = {q}. Then q splits completely in Ka/k by Lemma 2.3 (1). We classify q into the
following four types:

(1-a) q ≡ 1 (mod 5) and |X′S(k)| = 1,
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(1-b) q ≡ 1 (mod 5) and |X′S(k)| = 5,

(4-a) q ≡ 4 (mod 5) and |X′S(k)| = 1,

(4-b) q ≡ 4 (mod 5) and |X′S(k)| = 5.
Either

|XS(Ka
1 )| < 56 or |X′S(Ka

1 )| < |X′S(k)|54

implies μS(Ka/k) = 0. We see that μS(Ka/k) = 0 for the type (4-a) by Proposition 4.8.
For the primes q < 500000 satisfying the above assumptions, we obtained the following.

p = 5, k = Q(
√−1)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-a) 3349
53 51 0 2671 79.8
55 53 0 554 16.5
56 54 ? 124 3.7

(1-b) 833
53 51 0 675 81.0
55 53 0 121 14.5
56 55 ? 37 4.4

(4-b) 817
54 52 0 671 82.1
56 54 0 120 14.7
56 55 ? 26 3.2

When k = Q(
√−19) and p = 5, we obtained the following (q < 500000).

p = 5, k = Q(
√−19)

type total |XS(Ka
1 )| |X′S(Ka

1 )| μS(Ka/k) number of q %

(1-a) 3346
53 51 0 2692 80.5
55 53 0 522 15.6
56 54 ? 132 3.9

(1-b) 831
53 51 0 672 80.9
55 53 0 130 15.6
56 55 ? 29 3.5

(4-b) 818
54 52 0 649 79.3
56 54 0 139 17.0
56 55 ? 30 3.7
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