A Wiener-Tauberian Type Theorem for Arbitrary Normed Algebras with an Approximate Identity

Tobias BLENDEK

Helmut Schmidt University Hamburg

(Communicated by K. Takemura)

Abstract. For an arbitrary normed algebra with an approximate identity, we introduce some notions of invertibility of a net in this algebra with respect to the given approximate identity. By means of that, we show a Wiener-Tauberian type theorem in that general situation. An application yields an abstract Wiener-Tauberian theorem for a class of commutative Banach algebras, which implies the classical Wiener-Tauberian theorem for locally compact Abelian groups.

1. Introduction

The purpose of this paper is to formulate *Wiener's Tauberian theorem* from abstract harmonic analysis within the general situation of an arbitrary normed algebra with an approximate identity, see also [2]. In order to repeat the classical case, let G be a locally compact Abelian group with its dual group Γ of G. The set of all Fourier transforms \hat{f} of functions $f \in L^1(G)$ such that, for all $\gamma \in \Gamma$,

$$\hat{f}(\gamma) := \int_G f(s)\overline{\gamma(s)} \, ds$$

is denoted by $A(\Gamma)$, and it is a commutative Banach algebra. Then the following result is known as Wiener's Tauberian theorem, see e.g. [1, Theorem 1.1.3]: If a function $\hat{\psi} \in A(\Gamma)$ never vanishes on Γ , then Γ is σ -compact, and for every $\hat{\vartheta} \in A(\Gamma)$ and $\varepsilon > 0$, there are complex numbers $c_1, \ldots, c_n \in \mathbf{C}$ as well as $x_1, \ldots, x_n \in G$ such that

$$\left\|\hat{\vartheta}(\cdot)-\sum_{i=1}^n c_i\,\hat{\psi}(\cdot)(\cdot,x_i)\right\|_{A(\Gamma)}<\varepsilon\,.$$

Received February 25, 2013; revised June 3, 2013

²⁰¹⁰ Mathematics Subject Classification: 46H05 (Primary), 43A25, 43A45, 46H10, 46J20 (Secondary)

Key words and phrases: Normed algebra, approximate identity, Fourier transform, Wiener's Tauberian theorem, commutative Banach algebra

TOBIAS BLENDEK

In the following, let *A* be an arbitrary normed algebra, and let (Λ, \leq) be a directed index set. Then a net $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in *A* is called a *left (right) approximate identity* if, for all $a \in A$,

$$\|a - e_{\lambda}a\|_A \to 0 \quad (\|a - ae_{\lambda}\|_A \to 0).$$

A net $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is called a *two-sided approximate identity* if $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is both a left and a right approximate identity. Furthermore, $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is called *bounded* if there is a constant K > 0 such that $||e_{\lambda}||_{\Lambda} \leq K$ for all $\lambda \in \Lambda$. A left (right, two-sided) approximate identity $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is called *sequential* if $\Lambda = \mathbf{N}$.

Now, regarding [3, Proposition 12.2], we replace the concept of σ -compactness in [1, Theorem 1.1.3] by the concept of an approximate identity. Whereas in case of $L^1(G)$ such an approximate identity can be constructed, we have to assume its existence in an arbitrary normed algebra. The condition in [1, Theorem 1.1.3], i.e. that a given $\hat{\psi} \in A(\Gamma)$ never vanishes on Γ , leads us to our notions of invertibility of a net in that normed algebra with respect to the given approximate identity, which yields the announced Wiener-Tauberian type theorem. In fact, we show that to each $\hat{\psi} \in A(\Gamma)$ never vanishing on Γ , there corresponds such a net in $A(\Gamma)$.

Moreover, we can apply our Wiener-Tauberian type theorem for arbitrary normed algebras with an approximate identity to the situation of completely regular, semi-simple, commutative Banach algebras A with an approximate identity $\{e_{\lambda}\}_{\lambda \in A}$ in A such that each Gelfand transform \widehat{e}_{λ} of e_{λ} has compact support in the maximal ideal space Φ_A of A. For definitions, we refer to [4]. More precisely, we get an abstract Wiener-Tauberian theorem by proving that the principal ideal $aA := \{ax : x \in A\}$ generated by $a \in A$ is dense in A if the Gelfand transform \widehat{a} of a never vanishes on the maximal ideal space Φ_A of A. As a consequence, we obtain the classical Wiener-Tauberian theorem for $A(\Gamma)$ again.

2. A Wiener-Tauberian Type Theorem

DEFINITION 2.1. Let A be a normed algebra with a left (right) approximate identity $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in A.

(*a*) We call a net $\{a_{\lambda}\}_{\lambda \in \Lambda}$ in A right (left) invertible in A if there is a net $\{b_{\lambda}\}_{\lambda \in \Lambda}$ in A such that, for all $\lambda \in \Lambda$,

$$a_{\lambda}b_{\lambda}=e_{\lambda}$$
 $(b_{\lambda}a_{\lambda}=e_{\lambda}).$

If $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is a two-sided approximate identity in *A*, we say that $\{a_{\lambda}\}_{\lambda \in \Lambda}$ is *invertible* in *A* if it is both left and right invertible.

(b) We call a net $\{a_{\lambda}\}_{\lambda \in \Lambda}$ in A right-extended (left-extended) invertible in A if there is a net $\{b_{\lambda}\}_{\lambda \in \Lambda}$ in A such that, for all $\lambda \in \Lambda$,

$$a_{\lambda}b_{\lambda}e_{\lambda}=e_{\lambda}$$
 $(e_{\lambda}b_{\lambda}a_{\lambda}=e_{\lambda})$.

If $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is a two-sided approximate identity in *A*, we say that $\{a_{\lambda}\}_{\lambda \in \Lambda}$ is *extended invertible* in *A* if it is both left-extended and right-extended invertible.

(c) We call a net {a_λ}_{λ∈Λ} in A right-centered (left-centered) invertible in A if there is a net {b_λ}_{λ∈Λ} in A such that, for all λ ∈ Λ,

$$a_{\lambda}e_{\lambda}b_{\lambda}=e_{\lambda}$$
 $(b_{\lambda}e_{\lambda}a_{\lambda}=e_{\lambda}).$

If $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is a two-sided approximate identity in *A*, we say that $\{a_{\lambda}\}_{\lambda \in \Lambda}$ is *centered invertible* in *A* if it is both left-centered and right-centered invertible.

THEOREM 2.2. Let A be a normed algebra with a left (right) approximate identity $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in A. Let $\{a_{\lambda}\}_{\lambda \in \Lambda}$ be a net in A such that it is

- (a) right (left) invertible in A or
- (b) right-extended (left-extended) invertible in A or
- (c) right-centered (left-centered) invertible in A.

Then, in each of these cases, for every $c \in A$, there is a net $\{f_{\lambda}\}_{\lambda \in A}$ in A such that

 $\|c - a_{\lambda} f_{\lambda}\|_A \to 0 \quad (\|c - f_{\lambda} a_{\lambda}\|_A \to 0).$

PROOF. (a) Let $\{a_{\lambda}\}_{\lambda \in \Lambda}$ be a right (left) invertible net in A. Then there is a net $\{b_{\lambda}\}_{\lambda \in \Lambda}$ in A such that $a_{\lambda}b_{\lambda} = e_{\lambda}$ ($b_{\lambda}a_{\lambda} = e_{\lambda}$) for all $\lambda \in \Lambda$. Let c be an arbitrary element of A. For each $\lambda \in \Lambda$, we set

$$f_{\lambda} := b_{\lambda} c \in A \quad (f_{\lambda} := cb_{\lambda} \in A)$$

Hence, we get

$$\|c - a_{\lambda} f_{\lambda}\|_{A} = \|c - a_{\lambda} b_{\lambda} c\|_{A} = \|c - e_{\lambda} c\|_{A} \to 0$$
$$(\|c - f_{\lambda} a_{\lambda}\|_{A} = \|c - cb_{\lambda} a_{\lambda}\|_{A} = \|c - ce_{\lambda}\|_{A} \to 0).$$

(b) Similar to (a), the assertion follows by setting, for each $\lambda \in \Lambda$,

$$f_{\lambda} := b_{\lambda} e_{\lambda} c \in A \quad (f_{\lambda} := c e_{\lambda} b_{\lambda} \in A) .$$

(c) Similar to (a), the assertion follows by setting, for each $\lambda \in \Lambda$,

$$f_{\lambda} := e_{\lambda} b_{\lambda} c \in A \quad (f_{\lambda} := c b_{\lambda} e_{\lambda} \in A)$$

DEFINITION 2.3. Let A be a normed algebra with a bounded two-sided approximate identity $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in A. We call a net $\{a_{\lambda}\}_{\lambda \in \Lambda}$ in A quadratically invertible in A if there is a net $\{b_{\lambda}\}_{\lambda \in \Lambda}$ in A such that, for all $\lambda \in \Lambda$,

$$a_{\lambda}e_{\lambda}b_{\lambda}e_{\lambda}=e_{\lambda}^{2}$$
.

THEOREM 2.4. Let A be a normed algebra with a bounded two-sided approximate identity $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in A. If $\{a_{\lambda}\}_{\lambda \in \Lambda}$ is a quadratically invertible net in A, then for every $c \in A$, there is a net $\{f_{\lambda}\}_{\lambda \in \Lambda}$ in A such that

$$\|c-a_{\lambda}f_{\lambda}\|_{A}\to 0.$$

PROOF. Let $\{a_{\lambda}\}_{\lambda \in \Lambda}$ be a quadratically invertible net in A. Then there is a net $\{b_{\lambda}\}_{\lambda \in \Lambda}$ in A such that $a_{\lambda}e_{\lambda}b_{\lambda}e_{\lambda} = e_{\lambda}^{2}$ for all $\lambda \in \Lambda$. Let c be an arbitrary element of A. For each $\lambda \in \Lambda$, we set

$$f_{\lambda} := e_{\lambda} b_{\lambda} e_{\lambda} c e_{\lambda} \in A$$
.

Hence, since the net $\{e_{\lambda}^2\}_{\lambda \in \Lambda}$ is a bounded two-sided approximate identity in A, too, we get

$$\begin{split} \|c - a_{\lambda} f_{\lambda}\|_{A} &\leq \|c - ce_{\lambda}\|_{A} + \|ce_{\lambda} - a_{\lambda} f_{\lambda}\|_{A} \\ &= \|c - ce_{\lambda}\|_{A} + \|ce_{\lambda} - (a_{\lambda}e_{\lambda}b_{\lambda}e_{\lambda})ce_{\lambda}\|_{A} \\ &= \|c - ce_{\lambda}\|_{A} + \|(c - e_{\lambda}^{2}c)e_{\lambda}\|_{A} \\ &\leq \|c - ce_{\lambda}\|_{A} + \|c - e_{\lambda}^{2}c\|_{A}\|e_{\lambda}\|_{A} \\ &\leq \|c - ce_{\lambda}\|_{A} + K\|c - e_{\lambda}^{2}c\|_{A} \\ &\to 0 \,. \end{split}$$

COROLLARY 2.5. Let A be a normed algebra with a bounded two-sided approximate identity (left approximate identity) $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in A, and let I be a closed two-sided ideal in A. In addition, one of the following two conditions should hold:

- (a) There is a net $\{a_{\lambda}\}_{\lambda \in \Lambda}$ in A such that it is quadratically invertible (right invertible, right-extended invertible, right-centered invertible) in *I*.
- (b) There is a net $\{a_{\lambda}\}_{\lambda \in \Lambda}$ in I such that it is quadratically invertible (right invertible, right-extended invertible, right-centered invertible) in A.

Then we have I = A.

PROOF. (a) If $\{a_{\lambda}\}_{\lambda \in A}$ is a net in A such that it is quadratically invertible (right invertible, right-extended invertible, right-centered invertible) in I, then, according to Theorem 2.4 (Theorem 2.2(a), (b), (c)), for every $c \in A$, there is a net $\{f_{\lambda}\}_{\lambda \in A}$ in I such that

$$\|c-a_{\lambda}f_{\lambda}\|_{A} \to 0.$$

Since *I* is a two-sided ideal in *A*, we have $a_{\lambda} f_{\lambda} \in I$ for all $\lambda \in A$. Since *I* is closed, we conclude that $c \in I$, i.e. we get I = A.

(b) This assertion follows in like manner as (a).

An application of Theorem 2.2(b), (c) and Theorem 2.4, respectively, yields the following Wiener-Tauberian theorem in the classical case of locally compact Abelian groups.

REMARK 2.6. Let G be a locally compact Abelian group with its dual group Γ of G. If $\hat{\psi} \in A(\Gamma)$ never vanishes on Γ , then there is a sequential, bounded approximate identity $\{\widehat{e_n}\}_{n\in\mathbb{N}}$ in $A(\Gamma)$ such that for every $\hat{\vartheta} \in A(\Gamma)$ and $\varepsilon > 0$, there are an $N(\varepsilon)$ and a sequence

182

 $\{\widehat{f}_n\}_{n \in \mathbb{N}}$ in $A(\Gamma)$ such that, for all $n \ge N(\varepsilon)$,

$$\|\hat{\vartheta} - \hat{\psi}\widehat{f}_n\|_{A(\Gamma)} < \varepsilon \,.$$

Hence, the principal ideal $\hat{\psi}A(\Gamma) := \{\hat{\psi}\hat{\varphi} : \hat{\varphi} \in A(\Gamma)\}$ generated by $\hat{\psi}$ is dense in $A(\Gamma)$.

PROOF. Let $\hat{\psi} \in A(\Gamma)$ never vanish, i.e. let the zero set $Z(\hat{\psi})$ be empty. Thus we have supp $\hat{\psi} = \Gamma$, where supp $\hat{\psi}$ denotes the support of $\hat{\psi}$. Then, by [1, Proposition 1.1.2(*b*)], the dual group Γ is σ -compact. Consequently, regarding [1, Theorem 1.2.1], there is a sequential, bounded approximate identity $\{\widehat{e_n}\}_{n \in \mathbb{N}}$ in $A(\Gamma)$ such that, for all $n \in \mathbb{N}$,

$$\|\widehat{e_n}\|_{A(\Gamma)} = 1, \quad \widehat{e_n} \ge 0 \text{ and } \widehat{e_n} \in A_c(\Gamma) := A(\Gamma) \cap C_c(\Gamma),$$

where $C_c(\Gamma)$ denotes the algebra of all continuous, complex-valued functions on Γ with compact support. Let $C_n := \operatorname{supp} \widehat{e_n}$ be the compact support of $\widehat{e_n}$ for all $n \in \mathbb{N}$. Since $\widehat{\psi}(\gamma) \neq 0$ for all $\gamma \in \Gamma$ and since $C_n \subseteq \Gamma$ is compact for all $n \in \mathbb{N}$, there is a $\widehat{\psi_n}' \in A(\Gamma)$ according to Wiener's inversion theorem, see e.g. [1, Proposition 1.1.5(*b*)], such that, for all $\gamma \in C_n$,

$$\widehat{\psi_n}'(\gamma) = 1/\widehat{\psi}(\gamma)$$

Since $A(\Gamma)$ is a commutative Banach algebra, we conclude that, for all $\gamma \in C_n$,

$$\hat{\psi}(\gamma)\widehat{e_n}(\gamma)\widehat{\psi_n}'(\gamma) = \hat{\psi}(\gamma)\widehat{\psi_n}'(\gamma)\widehat{e_n}(\gamma) = \widehat{e_n}(\gamma).$$
(2.1)

For each $\gamma \notin C_n$, we have $\hat{e}_n(\gamma) = 0$, and hence, (2.1) is valid for all $n \in \mathbb{N}$ and for all $\gamma \in \Gamma$. Of course, we also have, for all $n \in \mathbb{N}$ and for all $\gamma \in \Gamma$,

$$\widehat{\psi}(\gamma)\widehat{e_n}(\gamma)\widehat{\psi_n}'(\gamma)\widehat{e_n}(\gamma) = \widehat{e_n}^2(\gamma).$$

So, identifying $\hat{\psi} \in A(\Gamma)$ with the sequence $\{\widehat{\psi}_n\}_{n \in \mathbb{N}}$ defined by $\widehat{\psi}_n := \hat{\psi}$ for all $n \in \mathbb{N}$, we see that $\hat{\psi}$ is quadratically invertible (extended invertible, centered invertible) with respect to the sequential, bounded approximate identity $\{\widehat{e}_n\}_{n \in \mathbb{N}}$ in $A(\Gamma)$. Consequently, the assertion follows from Theorem 2.4 (Theorem 2.2(*b*), (*c*)).

Now, we show an abstract Wiener-Tauberian theorem for a class of commutative Banach algebras by using Theorem 2.2 (b), (c).

THEOREM 2.7. Let A be a completely regular, semi-simple, commutative Banach algebra with an approximate identity $\{e_{\lambda}\}_{\lambda \in \Lambda}$ in A such that each Gelfand transform $\widehat{e_{\lambda}}$ of e_{λ} has compact support in the maximal ideal space Φ_A of A. Let a be an arbitrary element of A. If \widehat{a} never vanishes on Φ_A , then the principal ideal $aA := \{ax : x \in A\}$ generated by a is dense in A.

PROOF. Assume that \hat{a} never vanishes on Φ_A and take $\lambda \in \Lambda$ arbitrarily. Denote by K_{λ} the compact support of \hat{e}_{λ} . By hypothesis, $|\hat{a}(\varphi)| \ge \delta_{\lambda}$ holds for all $\varphi \in K_{\lambda}$ and some $\delta_{\lambda} > 0$. Then, according to [4, Theorem 3.6.15] and [4, Theorem 3.7.1], we can find a $b_{\lambda} \in A$ such

183

TOBIAS BLENDEK

that $\hat{a}(\varphi)\widehat{b_{\lambda}}(\varphi) = 1$ for all $\varphi \in K_{\lambda}$. Therefore, we obtain $\hat{a}\widehat{b_{\lambda}}\widehat{e_{\lambda}} = \widehat{e_{\lambda}}$, and hence $ab_{\lambda}e_{\lambda} = e_{\lambda}$ since A is semi-simple. Put $a_{\lambda} := a$ for each $\lambda \in \Lambda$. Then $\{a_{\lambda}\}_{\lambda \in \Lambda}$ is an extended invertible and, of course, a centered invertible net in A with respect to $\{e_{\lambda}\}_{\lambda \in \Lambda}$. Consequently, it follows from Theorem 2.2(b), (c) that the principal ideal aA is dense in A.

REMARK 2.8. (a) Of course, we also have the converse of Theorem 2.7: Let A be a commutative Banach algebra with maximal ideal space Φ_A , and let a be an arbitrary element of A. If the principal ideal $aA := \{ax : x \in A\}$ generated by a is dense in A, then the Gelfand transform \hat{a} of a never vanishes on Φ_A .

(b) Let G be a locally compact Abelian group, and let $\psi \in L^1(G)$ such that $\hat{\psi} \in A(\Gamma)$ never vanishes on Γ . Since $L^1(G)$ is a completely regular, semi-simple, commutative Banach algebra with the convolution product * and since, according to [1, Theorem 1.2.1], there is a sequential, bounded approximate identity in $A(\Gamma)$ with compact support in Γ , it follows from Theorem 2.7 that the principal ideal $\psi * L^1(G) := \{\psi * \varphi : \varphi \in L^1(G)\}$ generated by ψ is dense in $L^1(G)$, i.e. we obtain the classical Wiener-Tauberian theorem for locally compact Abelian groups, see Remark 2.6.

ACKNOWLEDGMENT. We would like to thank the referee for his useful comments.

References

- [1] J. J. BENEDETTO, Spectral Synthesis, Academic Press, Inc., New York, 1975.
- [2] T. BLENDEK, Normen von Projektionen im Dual einer kompakten Kac-Algebra, Doctoral dissertation, University of Hamburg, Hamburg, 2010.
- [3] R. S. DORAN and J. WICHMANN, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [4] C. E. RICKART, General Theory of Banach Algebras, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960.

Present Address: DEPARTMENT OF MATHEMATICS AND STATISTICS, HELMUT SCHMIDT UNIVERSITY HAMBURG, HOLSTENHOFWEG 85, 22043 HAMBURG, GERMANY. *e-mail*: tobias.blendek@gmx.de