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Abstract. We study regularizations of Schwartz distributions on a complete Riemannian manifold M. These
approximations are based on families of smoothing operators obtained from the solution operator to the wave equation
on M derived from the metric Laplacian. The resulting global regularization processes are optimal in the sense that
they preserve the microlocal structure of distributions, commute with isometries and provide sheaf embeddings into
algebras of generalized functions on M.

1. Introduction

In this paper we introduce a method of regularizing distributions on a smooth manifold
by nets of smooth functions such that the approximating nets themselves retain a maximal
amount of information about the distribution. In particular, the analytical properties of in-
terest include the support of the distribution, its microlocal singularities (wavefront set), its
Sobolev regularity and its behavior (pull-back) under certain diffeomorphisms. We shall first
abstractly describe what properties such an approximation should have and then construct
such approximations by a suitable choice of smoothing process. The latter is obtained using
functional calculus for the solution operator of the wave equation for the metric Laplacian (we
note that the set of analytical properties to be preserved excludes, e.g., smoothing via the heat
kernel as a possible approximation procedure).

We will give a precise formulation of the requirements to be imposed on our smoothing
processes. In order to achieve this we need a conceptual framework that allows to assign geo-
metrical and analytical properties like those mentioned above to regularizations, that is, to nets
of smooth functions. Such a framework is in fact available in the theory of algebras of gener-
alized functions ([4, 5, 31, 29, 17]), which therefore will provide the underlying language for
our approach. The basic idea in this theory is to express analytical properties of distributions
as asymptotic estimates in terms of a regularization parameter ε. Up to now, there is a certain
dichotomy in the theory of algebras of generalized functions. On the one hand, so-called full
Colombeau algebras allow a canonical embedding of the space of Schwartz distributions on
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differentiable manifolds ([16, 18]), but their elements do not depend on a single real regular-
ization parameter ε. Instead, such generalized functions are smooth maps on certain spaces
of test functions and require a rather involved asymptotic. So-called special Colombeau alge-
bras, on the other hand, are modelled directly as quotients of certain powers of the space of
smooth functions, hence allow for a more straightforward modelling of singularities. A rich
geometric (e.g., [9, 26, 27, 28, 36]) and analytic (e.g., [31, 29, 6, 15, 22, 23, 14]) theory is
available for such algebras. The drawback here is that there is no canonical embedding of
distributions into such algebras. Up to recently, only ‘non-geometric’ embeddings, based e.g.
on de Rham regularizations (basically through convolution with a mollifier in charts) were
available, cf. [9, 17]. In [7], however, a new approach to embedding distributions into spe-
cial Colombeau algebras was put forward, namely a geometric embedding of distributions
on compact manifolds without boundary based on functional calculus of the Laplacian. In
the present paper we follow this general philosophy to produce geometrical embeddings for
general complete Riemannian manifolds. A main new ingredient here is that we employ the
solution operator for a certain initial value problem of the wave equation for our regulariza-
tion processes. We obtain a set of optimal properties for such embeddings. In particular, they
commute with isometries, respect the functional calculus of the Laplacian, and preserve the
microlocal structure of distributions.

The paper is organized as follows: in the remainder of this introduction we fix some nota-
tions and terminology. Section 2 collects a number of results on wave equations on complete
Riemannian manifolds. These preparations are then used in section 3 to construct optimal
regularization processes and use these to obtain geometrical embeddings of Schwartz distri-
butions into special Colombeau algebras. Finally, section 4 shows how to extend our approach
in various directions. On the one hand, we demonstrate how to adapt the construction to ob-
tain embeddings for distributional sections of vector bundles. On the other hand, we specify
the main properties of the Laplacian that were used to obtain optimal regularization processes
in section 3 and show that a wide class of differential operators allows to obtain analogous
regularization processes.

Throughout this paperM will denote an orientable complete Riemannian manifold of di-
mension nwith Riemannian metric g . The space D′(M) of Schwartz distributions onM is de-
fined as the dual of the space �nc(M) of compactly supported n-forms onM . We write D(M)
for the space of smooth compactly supported functions on M . Since M is orientable and
Riemannian, we may identify D(M) with �nc(M) via f �→ f · dg , with dg the Riemannian
volume form induced by g . In this sense, D′(M) is in fact the dual space of D(M). We con-

sider L1
loc(M) (hence in particular C∞(M)) a subspace of D′(M) via f �→ [ϕ �→ ∫

M fϕdg].
If E is a vector bundle over M then D′(M : E), the space of E-valued distributions on M is
given by D′(M : E) = D′(M) ⊗C∞(M) Γ∞(M : E), with Γ∞(M : E) the space of smooth
sections of E (cf., e.g., [17], 3.1 for details). The wavefront set of a distribution w ∈ D′(M)
is denoted by WF(w).

We now turn to notations from the theory of algebras of generalized functions, where we
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basically adopt the terminology from [17, 13]. Given E a locally convex (Hausdorff) topo-
logical vector space, one can associate to E a space GE of generalized functions as follows.
Let I be the interval (0, 1]. Define the smooth moderate nets in E to be smooth maps (in the
sense of [25])

I → E ε �→ uε

such that for all continuous semi-norms ρ on E there exists a (negative) integer N such that

|ρ(uε)| = O(εN) as ε → 0 .(1)

Here as usual by f (ε) = O(g(ε)) as ε → 0 we mean there exists an ε0 > 0 and a constant
C > 0 such that f (ε) < Cg(ε) for ε < ε0. We denote the set of all moderate smooth nets in
E by ME . Similarly we can define the negligible nets to be the smooth maps uε such that (1)
holds for all continuous seminorms ρ on E and all N . We shall denote the set of all smooth
negligible nets by NE .

The space of generalized functions based on E is then defined to be the quotient,

GE := ME/NE .

If E is a locally convex algebra then GE is an algebra as well. One notes that in defining
ME and NE it suffices to restrict to any family of seminorms that generate the locally convex
topology on E. If (uε) is a moderate net in ME then the element which it represents in the
quotient GE will be written as [(uε)].

When E = C∞(M) is the algebra of smooth functions on a manifold M then we write
MC∞(M) = EM(M), NC∞(M) = N (M), and G(M) := GC∞(M). G(M) is the standard
(special) Colombeau algebra of generalized functions on M ([4, 9, 17]). For E = C the
space GC inherits a ring structure from C and we call it the space of generalized numbers and

denote it by C̃. Every space GE is naturally a C̃-module, and hence is often referred to as the

C̃-module associated with E ([13]).
We recall the functoriality of the above construction. If φ : E → F is a continuous linear

map between locally convex spaces E and F then there is a natural induced map φ∗ : GE →
GF defined on the representatives as φ∗([(uε)]) = [(φ(uε))]. For example any smooth map
between two manifolds f : M → N gives rise to a pullback map f ∗ : G(N) → G(M). As a
consequence we can define a presheaf of algebras on M by assigning to any open set U ⊆ M

the space G(U). The restriction maps are given by the pull back under inclusions, that is if
i : U ↪→ V is an inclusion of open sets then i∗ : G(V ) → G(U) is the restriction map. This
presheaf is in fact a fine sheaf. Thus in particular we can define the support of a global section
u ∈ G(M) as usual to be the complement of the biggest open subset ofM on which u restricts
to 0. In a similar fashion if E → M is a (complex) vector bundle then we obtain a sheaf of

C̃-modules defined as G(M : E) := GΓ∞(M:E) ∼= G(M)⊗C∞(M) Γ∞(M : E).
For any locally convex space E we can also define a subspace G∞

E of regular elements
of GE . These are all elements in GE such that there exists an integer N so that (1) holds
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independently of the seminorm ρ chosen. Again we shall denote by G∞(M) the algebra
G∞
C∞(M). The algebra G∞(M) provides the regularity features for the analysis of generalized

functions in G(M) in the same way that C∞(M) provides these features in D′(M) ([31, 21, 6,
15]). For instance:

(a) Singular support: For u ∈ G(M) the singular support is defined as the complement
of the largest open set U on which the restriction u|U is in G∞(U).

(b) Wavefront set: Let � ⊆ Rn be open. A generalized function u ∈ G(�) is called
G∞-microlocally regular at (x0, ξ0) ∈ T ∗� \ 0 if there exists some ϕ ∈ D(�)
with ϕ(x0) = 1 and a conic neighborhood Γ ⊆ Rn \ 0 of ξ0 such that the Fourier
transform F(ϕu) is rapidly decreasing in Γ , i.e., there exists N such that for all l,

(2) sup
ξ∈Γ

(1 + |ξ |)l|(ϕuε)∧(ξ)| = O(ε−N) (ε → 0) .

The generalized wave front set of u, WFg(u), is the complement of the set of points
(x0, ξ0) where u is G∞-microlocally regular. It follows from [19] that, based on
this definition, for any u ∈ G(M), WFg (u) can naturally be viewed as a subset of
T ∗M \ 0.

An alternative description of WFg (u) is as follows ([15]): Let P be an order 0
classical pseudodifferential operator and let char(P ) ⊆ T ∗M be the characteristic
set of P , that is the 0-set in T ∗M \ 0 of its principal symbol. Then for u ∈ G(M),

WFg (u) =
⋂

Pu∈G∞(M)
char(P ) P ∈ �0

cl(M) .

(c) Hypoellipticity: An operator P is said to be G∞-hypoelliptic if for every U ⊆ M

open and every u ∈ G(U),
Pu ∈ G∞(U) �⇒ u ∈ G∞(U) .

General references for microlocal analysis in algebras of generalized functions are [29, 6, 21,
22, 14, 15].

2. The wave equation on a complete Riemannian manifold

In our approach, optimal regularization processes on complete Riemannian manifolds
will be based on the solution operator for the wave equation. To allow for a smooth presenta-
tion, in the present section we therefore collect some basic properties of solutions of the wave
equation in this global setting.

Let (M, g) be an oriented, connected complete Riemannian manifold (without boundary)
of dimension n and denote by� the Laplace operator onM . The Riemannian metric g induces

a volume form dg on M , and we will denote the corresponding L2-norm by ‖ ‖L2(M). On

differential forms, the corresponding inner product is given by (α, β) := ∫
α ∗β ≡ ∫

α ∧ ∗β.
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Let d be the exterior differential on the space �∗(M) of differential forms on M and
denote by ∗ the Hodge star operator. Then the codifferential δ on �∗(M) is defined, for any
k-form α, by δα = (−1)nk+n+1 ∗ d ∗α. Finally, the Laplace operator on�∗(M) is defined by

� := (d + δ)2 = d ◦ δ+ δ ◦ d . This sign convention renders� a positive operator on L2(M)

(cf. [12]), and for any smooth function u in particular�u = −divgradu.

The operators d , δ and� are unbounded on the Hilbert spaceL2(M : �∗M). The natural
domain of d is given by Dom(d) := {α ∈ �∗(M) | ‖α‖ , ‖dα‖ < ∞}, and analogously for δ.
This fixes the natural domain of � to be

Dom(�) := {α ∈ Dom(d) | dα ∈ Dom(δ)} ∩ {α ∈ Dom(δ) | δα ∈ Dom(d)} .
We will mainly be interested in the restriction of � to L2(M, dg), which is an unbounded
essentially self-adjoint operator with dense domain (cf. [12]).

We consider the following initial value problem for the wave equation on M (or, strictly
speaking, on R ×M):

(
∂2

∂s2 +�

)
u = 0,(3)

u(0, x) = u0(x) ,
∂

∂s
u(0, x) = 0 .(4)

Since g is complete, the Laplace operator is self-adjoint and the above wave equation has a

unique (mild, hence distributional) solution in C(R, L2(M)) for all u0 in L2(M). By func-

tional calculus this solution can be written as cos(s
√
�)u0.

REMARK 2.1. We briefly sketch a proof to the existence and uniqueness result for the
above wave equation. Since� is a positive self-adjoint operator, we may equivalently rewrite

(3)–(4) as a first order initial value problem on the Hilbert space H := L2(M)⊕ L2(M):

d

ds

(
u

v

)
=

(−i√� I

0 i
√
�

)(
u

v

)
,

u(0, . ) = u0 , v(0, . ) = v0 := i
√
�u0 .

We set

A0 :=
(

0 I

0 0

)
, A1 :=

(−√
� 0

0
√
�

)
, w0 :=

(
u0

v0

)
.

By the theory of unitary semigroups (e.g., [32]), iA1 generates a strongly continuous unitary
group U(s) = exp(isA1). Since A0 is bounded, A := A0 + iA1 also generates a strongly
continuous semigroup. Consequently, the above initial value problem with w0 ∈ Dom(A) is
uniquely solvable. More explicitly, for w0 in the dense subspace D∞ := ⋂∞

k=0 Dom(Ak),

the power series expansion of exp(sA)w0 readily shows that u(s) = cos(s
√
�)u0 on a dense

subspace, hence in fact for all u0 ∈ L2(M) (cf. also [3, 35]).
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For a given even Schwartz function F ∈ S (R) the operator F(
√
�) can be defined by

functional calculus for essentially self adjoint unbounded operators. We show that we have

the following alternative description of F(
√
�) by inverse Fourier transform:

(5) F(
√
�) = 1

2π

∫ ∞

−∞
F̂ (s) cos(s

√
�) ds .

In fact, by standard estimates in the functional calculus this identity holds pointwise on
L2(M). Moreover, since

‖F̂ (s) cos(s
√
�)‖ ≤ |F̂ (s)|‖ cos(s . )‖L∞ ≤ |F̂ (s)|

and F̂ ∈ L1(R), the integral in (5) exists as a Bochner integral in B(L2(M)).
The description of functional calculus using (5) allows to estimate the support of the

kernel of the operator F(
√
�) based on the finite speed of propagation for the operator

cos(s
√
�). To see this, we first describe an alternative approach to obtaining the solution

operator to (3)–(4). Consider the first order differential operator D := d + δ on the space
�∗(M) of differential forms on M . The symbol σD of D is given by σD(x, ξ) = ξ ∧ . − iξ ,
where iξ denotes interior differentiation along the vector field metrically equivalent to the
one-form ξ (cf., e.g., [30], 10.1.22). Therefore,

σD(x, ξ)
2 = (ξ ∧ . − iξ )

2 = −‖ξ‖2 id

(again by [30], 10.1.22). We conclude that the speed of propagation of D, defined by cD :=
sup{‖σD(x, ξ)‖ | x ∈ M, ξ ∈ TxM∗, ‖ξ‖ = 1} is cD = 1. Since D is symmetric and of finite
propagation speed, it is essentially self-adjoint ([20], 10.2.11).

Based on these facts, an explicit bound on the speed of propagation for the support of
eisDu is given by the following result (see [20], 10.5.4):

PROPOSITION 2.2. Let u ∈ L2(M : �∗M) and denote by dg the distance function

induced by g . Then supp(eisDu) ⊆ B|s|(supp(u)) := {x ∈ M | dg(x, supp(u)) ≤ |s|}.
Thus the same property holds for the bounded operator

cos(sD) = 1

2

(
eisD + e−isD

)
.

By functional calculus, for any u ∈ L2(M), cos(sD)u solves the initial value problem (3)–

(4). By uniqueness, therefore, cos(sD) = cos(s
√
�) on L2(M) and the above considerations

apply to our solution operator.
Next we provide some estimates that will repeatedly be useful in our further study of

operators of the form F(
√
�).
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LEMMA 2.3. Let F ∈ S(R) be even. Then for any compactly supported smooth func-
tion u,

‖F(√�)u‖L2(M) ≤ ‖u‖L2(M)

1

π

∫ ∞

0
|F̂ (s)| ds .

Moreover, for any positive integers k, l,

‖�kF(√�)�lu‖L2(M) ≤ ‖u‖L2(M)

1

π

∫ ∞

0
|F̂ (2k+2l)(s)| ds .

PROOF. The first estimate follows from (5): Since the operator cos(s
√
�) has operator

norm ≤ 1 we have

‖F(√�)u‖ = ‖ 1

2π

∫ ∞

−∞
F̂ (s) cos(s

√
�)u ds‖

≤ ‖u‖ 1

π

∫ ∞

0
|F̂ (s)|ds .

Concerning the second inequality, note that by functional calculus we have

�kF(
√
�)�lu= (t2k+2lF (t))(

√
�)u

= 1

2π

∫ ∞

−∞
(t2k+2lF (t))∧ cos(s

√
�)u ds

= 1

2π
(−1)k+l

∫ ∞

−∞
F̂ (2k+2l)(s) cos(s

√
�)u ds ,

from which the claim follows as above. �

For any s ∈ R and any u ∈ D(M) we set

‖u‖s := ‖(1 +�)s/2u‖L2(M) .

The Sobolev space of order s is the completion of D(M) with respect to this norm. We set
H∞(M) := ⋂

s∈RH
s(M) and denote byHs

cp(M) the space of compactly supported elements

of Hs(M).
The following result will be essential for our approach to regularizing distributions on

complete Riemannian manifolds. For the notion of (properly supported) smoothing (or regu-
larizing) operator we refer to [2], ch. 1.4.

PROPOSITION 2.4. Let F ∈ S(R) be even. Then

(i) The operator F(
√
�) : D′(M) → C∞(M) is a smoothing operator.

(ii) Let c > 0 and let φc ∈ D(R) be such that supp(φc) ⊆ [−2c, 2c] and φc ≡ 1 on
(−c, c). Then

T (
√
�) := 1

2π

∫ ∞

−∞
φc(s)F̂ (s) cos(s

√
�) ds
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is a properly supported smoothing operator.

PROOF. (i) This is a consequence of ellipticity of the Laplace operator�. For brevity,

we set A := F(
√
�). Given any ϕ ∈ D(M ×M), let

〈K,ϕ〉 :=
∫

M

(Aϕ(x, . ))(x) dx .

Then for all ψ1, ψ2 ∈ D(M),

〈K,ψ1 ⊗ ψ2〉 =
∫

M

ψ1(x)Aψ2(x) dx = 〈Aψ2, ψ1〉 ,

so K is the distributional kernel of A : D(M) → C∞(M) ⊆ D′(M). We have to show that
K ∈ C∞(M×M). By Lemma 2.3, for all k ∈ N0 and all ψ ∈ D(M), ‖Aψ‖k ≤ Ck‖ψ‖L2(M),
hence

|〈K,ψ1 ⊗ ψ2〉| ≤
∫

M

|ψ1(x)||Aψ2(x)| dx ≤ C0‖ψ1‖L2(M)‖ψ2‖L2(M) .

Since D(M) ⊗ D(M) is dense in L2(M ×M) this implies that K ∈ L2(M ×M). Now set
Ak,l := �lA�k. Then the kernel of Ak,l is given by Kk,l := �ky�

l
xK , since

〈Kk,l , ψ1 ⊗ ψ2〉 = 〈K,�lψ1 ⊗�kψ2〉 = 〈A�kψ2,�
lψ1〉 = 〈Ak,lψ2, ψ1〉 .

As above it follows that Kk,l ∈ L2(M × M) for all k, l, hence by elliptic regularity for
�x ⊗ 1 + 1 ⊗�y it follows that K is smooth.

(ii) T (
√
�) is a smoothing operator by (i). To establish proper support, by [11], Prop.

8.12 we have to show:

(a) ∀K � M ∃L � M such that u ∈ D(K) ⇒ T (
√
�)u ∈ D(L).

(b) ∀K � M ∃L � M such that u = 0 on L⇒ T (
√
�)u = 0 onK .

Both (a) and (b) follow from the finite speed of propagation of cos(
√
�) which implies that

there exists some C̃ > 0 such that for any u ∈ L2(M), the support of T (
√
�)u is contained in

a ball of radius C̃ around supp(u) (Prop. 2.2). The result therefore follows from the properness
of the complete metric g . �

3. Embeddings

In this section we will employ the smoothing operators developed in Section 2 to con-
struct optimal embeddings of the space D′(M) of distributions on a complete Riemannian
manifoldM into the algebra G(M) of generalized functions on M .

A set X ⊂ M × M is called proper if the restriction of the projections on both factors
πj : X → M : j = 1, 2 are proper maps. Let �−∞

prop(M) be the space of all operators

T : C∞(M) → D(M) with smooth kernels with proper support in M × M . By a regular-
ization process we mean a net Tε of properly supported smoothing operators which provides
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an approximate identity on compactly supported distributions. More precisely, we shall be
interested in rapidly converging regularization processes of the following kind:

DEFINITION 3.1. A parametrized family (Tε)ε∈I of properly supported smoothing op-
erators is called an optimal regularization process if

(A) The regularization of any compactly supported distribution is of moderate growth.
That is, for any continuous semi-norm ρ on C∞(M) and any distribution w ∈
E ′(M) there exists an integer N such that

ρ(Tεw) = O(εN) (ε → 0) ,

i.e., (Tεw) ∈ EM(M).
(B) The net (Tε) is an approximate identity: for each compactly supported distribution

w ∈ E ′(M)

lim
ε→0

Tεw = w in D′(M) .

(C) Preservation of supports: For any w ∈ E ′(M), supp(w) equals the G(M)-support
supp[(Tεw)] of the class [(Tεw)].

(D) If u ∈ D(M) is a smooth compactly supported function on M then for all continu-
ous semi-norms ρ on C∞(M) and given any integer m,

ρ(Tεu− u) = O(εm) ,

i.e., (Tεu− u) ∈ N (M).
(E) Preservation of wavefront sets: Setting ιT : w �→ [(Tεw)], for any w ∈ E ′(M) we

have

WF(w) = WFg (ιT (w)) .

Given an optimal regularization process (Tε), we obtain a linear embedding

ιT : E ′(M)→ G(M)
ιT (w) = [(Tεw)]

(by (3.1) and (3.1)). By (3.1), ιT extends to an embedding of D′(M) into G(M) which pre-
serves supports. More precisely, there is a unique sheaf morphism on D′(M) (also denoted
by ιT ) which extends ιT : E ′(M) → G(M). ιT is a linear embedding that commutes with
restrictions. Details on how to extend ιT from E ′(M) to D′(M) can be found in [9], Sec. 2
or in [17], 1.2 (although carried out for special cases of optimal embeddings in these refer-
ences, the arguments given there, entirely sheaf-theoretic in nature, carry over to the general
situation studied here). (3.1) implies that ιT renders C∞(M) a faithful subalgebra of G(M).
Finally, (3.1) secures preservation of wavefront sets and, therefore, of singular supports under
this embedding. In particular, precisely the distributions that map into the subalgebra G∞(M)
under ιT are smooth:

ιT (D′(M)) ∩ G∞(M) = ιT (C∞(M)) .
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First, we provide some examples of optimal regularization processes:

EXAMPLE 3.2. Let� be the Laplace operator associated to a closed Riemannian man-
ifold M . Let F ∈ S (R) be a Schwartz function on the reals such that F is identically 1 near
the origin. Let Fε(x) := F(εx). Then by applying standard functional calculus, Fε(�) is an
optimal regularizing process: For a closed manifold, Weyl’s estimates on the spectrum of the
Laplacian provide asymptotic bounds for the spectral counting function

N�(λ) = #{λk| λk < λ} .
In fact, for m = dim(M) we have

N�(λ) ∼ vol(M)

(4π)
m
2 Γ (m/2 + 1)

λ
m
2 .

Essentially, this suffices to obtain all the estimates in Definition 3.1 (preservation of wavefront
sets follows as in Th. 3.10 below). In addition, Fε(�) is invariant under isometries. We refer
to [7] for details.

EXAMPLE 3.3. As in the original construction of Colombeau (cf., e.g., [4, 5, 17]) an
optimal regularization process can be constructed from a mollifier ρ ∈ S (Rn) satisfying the
following conditions:

∫

Rn
ρ(x)dx = 1

∫

Rn
xαρ(x)dx = 0 α ∈ Nn+ .(6)

Then the net of functions ρε(x) := 1
εn
ρ( x

ε
) is a delta net. Convolution with such a delta

net provides an example of an optimal regularization process. For example, estimate (3.1)
from Definition 3.1 can be established in this setting using Taylor’s theorem and the moment
conditions (6) imposed on ρ. Concerning (3.1) from Def. 3.1, see [29, 21]. An important
characteristic of these approximate units is their equivariance with respect to the Euclidean
translations.

For (M, g) a complete Riemannian manifold with Laplacian�, F ∈ S(R) even, and φc
as in Prop. 2.4, we additionally suppose that F equals 1 in a neighborhood of 0 and that φc is
even. For any ε ∈ I we set Fε(s) := F(εs), and

(7) Tε(
√
�) := 1

2π

∫ ∞

−∞
φc(s)(Fε)

∧(s) cos(s
√
�) ds.

We will show that the family of smoothing operators (Tε(
√
�))ε∈I is an optimal regularization

process in the sense of Def. 3.1. Each Tε(
√
�) is a properly supported smoothing operator

by Prop. 2.4 (ii). Furthermore, we note that the explicit form of (7) allows to view it as a
generalized integral operator in the sense of [1, 8].

Turning first to Def. 3.1 (3.1), we have:

PROPOSITION 3.4. Let u ∈ E ′(M). Then (Tε(
√
�)u) ∈ EM(M).
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PROOF. It follows immediately from (7) that (ε, x) �→ (Tε(
√
�)w)(x) is smooth, so

it remains to establish the moderateness estimates for the net (Tε(
√
�)w). Since w ∈ E ′(M)

there exists some s0 ∈ R with w ∈ H
s0
cp(M). By Prop. 2.2, there exists some fixed compact

set K ⊂⊂ M such that supp(Tε(
√
�)w) ⊆ K for all ε ∈ I . Moreover, Prop. 2.4 implies that

each Tε(
√
�)w is in H∞

cp (M). By the local Sobolev embedding theorem it therefore suffices

to show that for each s ∈ R there exists some N ∈ N such that

‖Tε(
√
�)w‖s = O(ε−N) .

In fact (by enlarging s if necessary) we may assume in addition that l := s−s0
2 ∈ N. Let u be

the unique element of L2(M) such that w = (1 +�)−s0/2u. Then

‖Tε(
√
�)w‖s = ‖(1 +�)s/2Tε(

√
�)(1 +�)−s0/2u)‖L2(M)

= ‖(1 +�)lTε(
√
�)u‖L2(M)

≤
l∑

j=0

(
l

j

)
‖�jTε(

√
�)u‖L2(M) .

Now write φc = (ψc)
∧ for some ψc ∈ S(R). Then

Tε(
√
�)u =

∫ 2c

−2c
(ψc ∗ Fε)∧(t) cos(t

√
�)u dt .

Since ψc ∗ Fε is even, Lemma 2.3 implies that

‖�jTε(
√
�)u‖L2(M) ≤ ‖u‖L2(M)

1

π

∫ ∞

0
|[(ψc ∗ Fε)∧](2j)(t)| dt .

From this, we finally obtain

‖�jTε(
√
�)u‖L2(M) ≤ ‖u‖L2(M)

1

π

∫ 2c

0

∣∣∣
[(
φc(t)

1

ε
F̂

( t
ε

))](2j)
(t)| dt(8)

=O(ε−2l−1)

for 0 ≤ j ≤ l. �

We may use the method of proof of Prop. 3.4 to show that the embedding ιT is in fact
independent of the particular choice of the cut-off function φc:

LEMMA 3.5. Suppose that φ1
c1

and φ2
c2

are cut-off functions as in (7) and denote the

corresponding regularization operators by T 1
ε (

√
�) and T 2

ε (
√
�), respectively. Then for any

w ∈ E ′(M), ιT 1(w) = ιT 2(w).
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PROOF. Set φ̃ := φ1
c1

− φ2
c2

. Using the assumptions and notations from the proof of
Prop. 3.4, we have to estimate

‖�j (T 1
ε (

√
�)u− T 2

ε (
√
�)u)‖L2(M) .

Since

T 1
ε (

√
�)u− T 2

ε (
√
�)u = 1

2π

∫ ∞

−∞
φ̃(s)(Fε)

∧(s) cos(s
√
�)u ds ,

analogous to (8) the L2-norm of this expression is bounded by

‖u‖L2(M)

1

π

∫ ∞

0

∣∣∣∣

[(
φ̃(t)

1

ε
F̂

(
t

ε

))](2j)
(t)

∣∣∣∣ dt .

A typical term to estimate therefore is
∫ ∞

0
|φ̃(p)(εr)F̂ (q)(r)| dr (p, q ∈ N0) .

Since F ≡ 1 near 0, all higher moments
∫ ∞
−∞ rkF̂ (r) dr of F̂ (k ≥ 1) vanish. Moreover, φ̃

is identically zero in a neighborhood of 0, so Taylor expansion of φ̃(p)(εr) around zero up to
orderm− 1 implies that the above integral is of order εm for any m ∈ N. �

Next, we establish suitable convergence of ιT (w) to w:

PROPOSITION 3.6. Let w ∈ E ′(M). Then Tε(
√
�)w → w in D′(M).

PROOF. We may write w = (1 + �)ku for some u ∈ L2(M) and some k ∈ N0. By

Prop. 2.3 it therefore suffices to show that Tε(
√
�)u − u → 0 in L2(M) in order to ensure

that Tε(
√
�)w → w in H−2k(M) and hence in D′(M). Now

‖Tε(
√
�)u− u‖L2(M) ≤

∫ ∞

−∞
‖φc(εr)F̂ (r)(cos(εr

√
�)u− u)‖L2(M) dr → 0

by dominated convergence (noting that the integrand is pointwise bounded by the integrable

function r �→ 2‖φc‖L∞‖u‖L2 |F̂ (r)| and, for each fixed r , tends to 0 as ε → 0). �

This settles Def. 3.1, (3.1). As was remarked after Def. 3.1, we thereby obtain a linear
embedding ιT of E ′(M) into G(M). Our next result establishes preservation of supports under
ιT .

PROPOSITION 3.7. For any w ∈ E ′(M), supp(w) = supp(ιT (w)).

PROOF. Let x ∈ M \ supp(w) and choose a compact neighborhood K of x such that
K ∩ supp(w) = ∅. Suppose first that w is continuous. Then

ιT (w)ε(x) =
∫ ∞

−∞
φc(εr)F̂ (r) cos(εr

√
�)w(x) dr .
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We split this integral in one part over |r| < 2c/
√
ε and a second part where |r| > 2c/

√
ε.

For the first part we note that by Prop. 2.2, supp(cos(εr
√
�)w) ⊆ Bε|r |(supp(w)) ⊆

B√
ε2c(supp(w)) for all |r| < 2c/

√
ε. Hence for small ε, the support of the first term lies

in the complement of K .
To estimate the second integral we proceed as in the proof of Prop. 3.4: observe first that

by Prop. 2.2, the support of cos(εr
√
�) is contained in a single compact set for all ε and all

r in the domain of integration. It therefore suffices to estimate, for each j ∈ N0:
∥∥∥
∫

|r |>2c/
√
ε

φc(εr)F̂ (r)(cos(εr
√
�)�jw) dr

∥∥∥
L2(M)

≤ ‖w‖2j

∫

|r |>2c/
√
ε

|F̂ (r)| dr = O(εm)

for each m. Summing up, it follows that x does not lie in the support of ιT (w) in G(M). In
the general case where w is not necessarily continuous we can write w = (1 +�)kv for some
continuous v and some k ∈ N0, so the above argument readily carries over.

Conversely, let x ∈ supp(w) and suppose that there exists a neighborhood U of x such
that ιT (w)|U = 0 in G(M). Pick some ϕ ∈ D(U) such that 〈w,ϕ〉 �= 0. Then |〈ιT (w)ε, ϕ〉| =
O(εm) for each m but 〈ιT (w)− w,ϕ〉 → 0 by Prop. 3.6, so we arrive at a contradiction. �

PROPOSITION 3.8. Let u ∈ D(M). Then (Tε(
√
�)u− u)ε∈I ∈ N (M).

PROOF. By the local Sobolev embedding theorem, it suffices to show that for all j ∈
N0

α(ε, j) := ‖�j(Tε(
√
�)u− u)‖L2(M) = O(εm)

for each m ∈ N. Due to our assumptions on F and φc, α(ε, j) equals

∥∥∥�j
∫ ∞

−∞
(Fε)

∧(t)(φc(t) cos(t
√
�)u− u) dt

∥∥∥
L2(M)

=
∥∥∥
∫ ∞

−∞
F̂ (r)

(
φc(εr) cos(εr

√
�)�ju−�ju

)
dr

∥∥∥
L2(M)

.

By Taylor expansion, for anym ∈ N there exists some Cm such that

φc(εr) cos(εr
√
�)�ju = �ju+

m−1∑

l=1

εlrl

l! al�
j+l/2u+ Rm(r, ε)�

j+m/2u ,

where aj ∈ R and Rm is globally bounded by Cmεm.

Since all higher moments of F̂ vanish,

α(ε, j)≤
∥∥∥
∫ ∞

−∞
F̂ (r)Rm(r, ε)�

j+m/2u dr
∥∥∥
L2(M)
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≤Cm‖F̂‖L1(R)‖�j+m/2u‖L2(M)ε
m ,

as claimed. �

The following important invariance properties of the embedding ιT follow immediately
from (7).

PROPOSITION 3.9.
(i) Let f : M → M be an isometry. Then for any u ∈ D′(M), ιT (f ∗u) = f ∗ιT (u).

(ii) If� is a pseudodifferential operator commuting with �, then � commutes with ιT .

Turning now to the singularity structure of distributions and their embedded images, we
will show that the embedding ιT preserves the wavefront set of distributions, i.e., that (3.1)
from Def. 3.1 is satisfied.

THEOREM 3.10. Let w ∈ D′(M). Then WF(w) = WFg (ιT (w)).

PROOF. We first note that the notion of wavefront set (both distributional and gen-
eralized) is local in nature. Moreover, by finite propagation speed of the solution operator

cos(s
√
�) (Prop. 2.2), we may choose the cutoff function φc in such a way that given some

local chart (ψ,U) and anyw ∈ E ′(U), each Tε(
√
�)w is supported in U as well (this particu-

lar choice of φc does not affect ιT by Lemma 3.5). By unique solvability of the wave equation
(3)–(4) we may therefore use (7) on ψ(U) (with metric ψ∗g), thereby effectively transferring
the problem to Rn.

Suppose first that (x0, ξ0) ∈ (T ∗M \ {0}) \ WFg(w). By (2) this means there exists
some conic neighborhood Γ of ξ0 in T ∗M \ {0}, some N ∈ N0 and some ϕ ∈ D(Rn) with
ϕ(x0) = 1 such that for all l ∈ N0 and all ξ ∈ Γ ,

(9) |(ϕ(Tε(
√
�)w))∧(ξ)|(1 + |ξ |)l = O(ε−N).

For a suitable k ∈ N0 we may write w = (1 + �)ku, with u ∈ H 2(Rn). Since � is elliptic,
WF(w) = WF(u) and WFg (ιT (w)) = WFg (ιT (u)) (by [15], Th. 4.1 and Prop. 3.9 (ii)), so

we may without loss of generality assume that w ∈ H 2(Rn). We have to estimate

|(ϕw)∧(ξ)| ≤ |[(Tε(
√
�)w −w)ϕ]∧(ξ)| + |(ϕTε(

√
�)w)∧(ξ)|

≤ ‖ϕ(Tε(
√
�)w −w)‖L1 + |(ϕTε(

√
�)w)∧(ξ)| .(10)

Now
∫

|ϕ(x)(Tε(
√
�)w(x)−w(x))| dx

≤
∫ ∫

|ϕ(x)||φc(εr) cos(εr
√
�)w(x)−w(x)| dx|F̂ (r)| dr

≤ C(ϕ)

∫
‖φc(εr) cos(εr

√
�)w −w‖L2 |F̂ (r)| dr .
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We use functional calculus to bound this term (cf., e.g., [33], Th. VIII.4). Let U :
L2(Rn, g) → L2(�, dμ) be a unitary isomorphism transforming � into the multiplica-

tion operator Mf : h �→ f h (for some fixed f ∈ L2(�, dμ)). Then setting α(ε, r) :=
‖φc(εr) cos(εr

√
�)w −w‖L2 and k(�) := φc(εr) cos(εr

√
�)− I we find

α(ε, r)2 = ‖U(k(�)w)‖2
L2(�)

= ‖Mk◦f Uw‖2
L2(�)

=
∫

|k ◦ f (ω)|2|(Uw)(ω)|2 dμ(ω) .

To estimate this term we note that k(0) = φc(εr)− 1 and

|k′(x)| = εr

∣∣∣∣
φc(εr)

2

∣∣∣∣

∣∣∣∣
sin(εr

√
x)

εr
√
x

∣∣∣∣ ≤ Cεr .

Hence |k(x)| ≤ Cεr(|x| + 1) and we obtain

α(ε, r)2 ≤ Cε2r2
∫
(f (ω)2 + 1)|(Uw)(ω)|2 dμ(ω) .

Since w ∈ Dom(�), f · (Uw) ∈ L2(�, dμ), hence the integral in this last expression is
finite. It follows that α(ε, r) ≤ Cε|r|. From (10) and these calculations we therefore conclude
that for some C = C(ϕ, F ),

(11) |(ϕw)∧(ξ)| ≤ Cε + |(ϕTε(
√
�)w)∧(ξ)| .

We now show that for anym ∈ N0, |ξ | 2m
N+1 |(ϕw)∧(ξ)| is bounded onΓ , thereby demonstrating

that (x0, ξ0) �∈ WF(w).
Suppose to the contrary that there exists some m ∈ N0 and a sequence ξj ∈ Γ with

|ξj | → ∞ such that |ξj | 2m
N+1 |(ϕw)∧(ξj )| → ∞ as j → ∞. Then εj := |ξj |− 2m

N+1 → 0, and
using (11), we obtain

|ξj | 2m
N+1 |(ϕw)∧(ξj )| = εNj |ξj |2m|(ϕw)∧(ξj )|

≤ CεN+1
j |ξj |2m + εNj |ξj |2m|(ϕTε(

√
�)w)∧(ξ)| .

By (9), however, the right hand side of this inequality is globally bounded, a contradiction.
Conversely, suppose that (x0, ξ0) �∈ WF(w). We have to show that (x0, ξ0) �∈

WFg(ιT (w)). As above, we may without loss of generality suppose that w ∈ L2(M). Pick
some open neighborhoodU of x0 and some conic neighborhood Γ1 of ξ0 in Rn \ 0 such that
(U × Γ1) ∩ WF(w) = ∅. Let us suppose for the moment that we already know that, setting

u(s, x) := cos(s
√
�)w, we have

(12) ∃ s0 > 0 : (U × Γ1) ∩ {(x, ξ) | ∃s, |s| ≤ s0 ∃τ : (s, x; τ, ξ) ∈ WF(u)} = ∅.
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Then, given χ ∈ D(U) and ν ∈ D((−s0, s0)), for each l ∈ N there exists some Cl > 0 such
that

|((ν ⊗ χ)u)∧(τ, ξ)| ≤ Cl(1 + |τ | + |ξ |)−l (τ ∈ R, ξ ∈ Γ1) .

Thus for l > n and |s| ≤ s0 we obtain

|ν(s)(χ · u(s, . ))∧(ξ)| = |F−1
τ→s(((ν ⊗ χ)u)∧(ξ, τ ))|

≤
∫

R

Cl dτ

(1 + |τ | + |ξ |)l = O((1 + |ξ |)−l ) .

In addition, we now choose c such that 2c < s0 (which is possible by Lemma 3.5) and
ν ∈ D((−s0, s0)) such that ν ≡ 1 on suppφc. Then for ξ ∈ Γ1,

|(χ · ιT (w)ε)∧(ξ)| =
∣∣∣∣
∫

R
φc(s)(Fε)

∧(s)ν(s)
∫

Rn
e−iξxχ(x)u(s, x) dx ds

∣∣∣∣

=O((1 + |ξ |)−l ) .
Thus, (x0, ξ0) �∈ WFg(ιT (w)), as claimed.

It remains to establish (12). To this end, denote by β the bicharacteristic flow on T ∗(R×
M) corresponding to ∂2

s +�. Since u is the solution to (3)–(4) with u0 = w, by [10], p 118,
WF(u) ⊆ C0 ◦ WF(w), where

C0 = {((s, x; τ, ξ), (x0, ξ0)) | ∃r, τ0 ∈ R : (s, x; τ, ξ) = β(r, (0, x0, τ0, ξ0))

∧ −τ 2
0 + gx0(ξ0, ξ0) = 0} .

β is the flow of the Hamiltonian vector field of the symbol −τ 2 + gx(ξ, ξ), so the correspond-
ing system of ODEs reads

ṡ(r) = −2τ (r)
ẋ(r) = 2gx(r)(ξ(r), . )
τ̇ (r) = 0
ξ̇ (r) = −Dg(x(r))(ξ(r), ξ(r)) .

Denoting by βi the i-th component of β, it follows that

C0 = {((s, x; τ, ξ), (x0, ξ0)) | τ ≡ τ0 = ±√
gx0(ξ0, ξ0), s = −2rτ0, ∃r ∈ R :

(x, ξ) = (β2, β4)(r, (0, x0, τ0, ξ0))} ,
and, since WF(u) ⊆ C0 ◦ WF(w),

WF(u) ⊆ {(s, x; τ0, ξ) | τ0 = ±√
gx0(ξ0, ξ0), s = −2rτ0, ∃r ∈ R :

∃(x̄, ξ̄ ) ∈ WF(w) ∃r ∈ R : (x, ξ) = (β2, β4)(r, (0, x̄, τ0, ξ̄ ))} .
By continuity of β and the fact that (U × Γ1) ∩ WF(w) = ∅, (12) follows. �
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Summing up, we obtain

THEOREM 3.11. The family (Tε(
√
�))ε∈I defined by (7) is an optimal regularization

process. The corresponding embedding

ιT : D′(M)→ G(M)
ιT (u) = [(Tε(

√
�)u)]

is an injective sheaf morphism that renders C∞(M) a subalgebra of G(M). ιT commutes with
isometries and pseudodifferential operators that commute with �. Moreover, it preserves the
singularity structure (wavefront set) of distributions.

REMARK 3.12. We note that while Th. 3.11 is formulated using the language of alge-
bras of generalized functions, it can also be used independently of this theory. For example,
on the level of regularizing nets, preservation of wavefront sets under ιT means that the wave-
front set of a distribution w ∈ D′(M) can be read off from the asymptotic properties of its

regularization (Tε(
√
�)(w)) via (2), and similar for the other properties.

4. Distributional sections of a vector bundle

In this section we consider the problem of regularizing distributional sections of a vector
bundle over a manifold. We shall provide a notion of optimal regularization and show that
given a differential operator D satisfying two simple conditions, we can always obtain such
regularizations.

Let |�|M denote the density bundle overM . Then forE∗ the dual vector bundle of some
vector bundle E, the space of distributional sections of E is given by D′(M : E) := Γ∞

c (M :
E∗ ⊗ |�|M)′. In particular we have a natural inclusion Γ∞(M : E) → D′(M : E). By
choosing a trivialization of the density bundle |�|M , for example by choosing a Riemannian
metric, and by choosing a Hermitian inner product on E to identify with E∗ we can (non-
canonically) identify D′(M : E) with Γ∞

c (M : E)′. In the sequel we shall assume that we are
given a Riemannian metric on M and a Hermitian inner product on E. We similarly define
the space E ′(M : E) of compactly supported E-valued distributions.

By a smoothing operator onE we shall mean an operator defined by a kernel in Γ∞(M×
M : End(E)⊗�R)1. Then if T is a smoothing operator then T : E ′(M : E) → Γ∞(M : E).

Having fixed our notations we shall define optimal regularization processes for distribu-
tional sections analogous to Def. 3.1.

DEFINITION 4.1. A parametrized family (Tε)ε∈I of properly supported smoothing op-
erators is called an optimal regularization process if

1To be precise, let πL, πR : M ×M → M be the left and right projections on M. Then End(E) := π∗
R
(E)∗ ⊗

π∗
L(E) and �R = π∗

R |�|M.
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(A) The regularization of any compactly supported distributional section s ∈ E ′(M :
E) is of moderate growth: For any continuous seminorm ρ on Γ∞(M : E), there
exists some integer N such that

ρ(Tεs) = O(εN) (ε → 0) .

(B) The net (Tε) is an approximate identity: for each s ∈ E ′(M : E),

lim
ε→0

Tεs = s in D′(M : E) .

(C) If u ∈ Γ∞
c (M : E) is a smooth compactly supported section of E then for all

continuous seminorms ρ and given any integer m,

ρ(Tεu− u) = O(εm) .

(D) The induced map ιT : E ′(M : E) → G(M : E) preserves support, singular support
and the wavefront set. In particular,

ιT (D′(M : E)) ∩ G∞(M : E) = Γ∞(M : E) .
In the following section we shall describe the precise requirements on a differential op-

erator D that would provide us with the functional calculus necessary for the construction of
an optimal regularization.

4.1. Admissible operators. Let E → M be a vector bundle over a complete Rie-
mannian manifold M provided with a Hermitian inner-product 〈 〉E . We shall denote by

L2(M : E) the completion of the compactly supported sections Γ∞
c (M : E) with respect to

the norm

‖s‖ :=
∫

M

〈s(x), s(x)〉Edx s ∈ Γ∞
c (M : E) .

DEFINITION 4.2. LetD be a symmetric first order differential operator onE. We shall
assume that

(1) The operator D has finite speed of propagation, that is the norm of the principal
symbol over the unit sphere is bounded by a constant CD ,

CD = sup{‖σD(x, ξ)‖ | x ∈ M, ‖ξ‖ = 1} < ∞ .

(2) The operatorD is elliptic.

Such a differential operatorD shall be called admissible operator.

As a consequence of the finite speed of propagation,D is essentially self-adjoint. There-
fore the equation

∂

∂t
u = iDu , u( . , 0) = u0(13)
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has a unique solution for all times t for any initial datum u0 ∈ Γ∞
c (M : E). Uniqueness

follows from energy estimates, while existence is seen by applying functional calculus to note
that eitDu0 is a solution.

Furthermore, for a Schwartz function F ∈ S (R) the Fourier inversion formula gives
that

F(D) = 1

2π

∫ ∞

−∞
F̂ (s)eisDds(14)

(with respect to the strong operator topology).
As already noted, if u is supported in a setL then eitDu is supported in the ballBCD ·t (L).

This has the following consequence:

LEMMA 4.3. If F ∈ S (R) is a Schwartz function such that F̂ is supported in an

interval (−c, c) then, for any u ∈ L2(M : E),
supp(F (D)u) ⊆ BCD ·c(supp(u)) .

On the other hand the ellipticity of D insures that the operator defined by applying a
Schwartz function F to D is necessarily a smoothing operator.

Let as before F be an even Schwartz function in S (R) such that F ≡ 1 near the origin.
Let Fε(x) := F(εx). Our main result in this section is

THEOREM 4.4. Given an admissible differential operator D and a Schwartz function
F as above the family of operators (Fε(D))ε∈I provides an optimal regularization process in
sense of Def. 4.1.

The next two subsections provide the arguments for the proof.

4.2. Weyl’s law and functional calculus. In this subsection we shall assume that M
is compact. In this case any symmetric operator D is essentially self-adjoint. In addition the

operatorD2 is a positive elliptic operator by assumption and hence Weyl’s asymptotic formula
for eigenvalues gives

ND2(λ) := #{λi ∈ sp(D2)| λi ≤ λ} ∼ Cλ
dim(M)

2 .(15)

Then the following can be obtained by applying (15).

LEMMA 4.5. Let D be an elliptic self-adjoint differential operator of order 1 and let
M be compact. Then for a Schwartz function F on R with F ≡ 1 near the origin we have:

(A) Given a smooth section u ∈ Γ (M : E)
‖Fε(D)u− u‖L2(M:E) = O(εm) for all m ∈ Z .

(B) If s �∈ Hk(M : E) for every k > t then given any δ > 0, ‖Fε(D)s‖L2(M:E) is not

O(ε
dim M

2 +t+δ). In particular,

ιFε(D)(D′(M : E)) ∩ G∞(M : E) = Γ∞(M : E)) .
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(C) For every distributional section s the regularization (Fε(D)s) is moderate.

The proof of the above Lemma can be found in [7]. This result is precisely due to the

fact thatD2 is a positive elliptic operator. We still need to prove that the microlocal properties
hold true for our regularizations Fε(D). These turn out to be precisely due to the finite speed
of propagation of D.

4.3. Finite speed of propagation and localization. We now return to the general
situation whereM is a complete Riemannian manifold not necessarily compact.

Recall that if X is a compact manifold with boundary then one can obtain a double ofX,
denoted here by DX by gluing two copies of X along the boundary ∂X (e.g., [24], VI 5.1).
Now if X is a compact manifold with boundary embedded in a Riemannian manifold M of

the same dimension and if U is an open subset of M such that Ū ⊂ interior(X), then one
can choose a Riemannian metric on DX so that the inclusion j : U ↪→ DX is an isometry.
Furthermore it is clear that given any vector bundle E → M there exists a vector bundle
EX → DX such that EX restricted to U is canonically isomorphic to E|U . At the same time
there exists a symmetric elliptic operatorDX on EX that matches up with D on U .

We fix a compactly supported distributional section u ∈ E ′(M : E) and a constant
c > 0. Since M is complete the open ball U := B2c·CD(supp(u)) is relatively compact and
is contained in a compact manifold with boundary X ⊆ M . Now u can be identified with a
distributional section of a vector bundle EX → DX.

PROPOSITION 4.6. With assumptions on u, c and F as above, let us further assume

that the Fourier transform F̂ (s) is supported in an interval (−c, c). Then F(D)u andF(DX)u
are both supported in U and

F(D)u = F(DX)u .

PROOF. Since the operators D and DX restricted to the open set U coincide, the
uniqueness of solutions to the equation (13) implies that eisDu and eisDXu agree for s ≤ c.
The statement therefore follows from the Fourier Inversion Formula (14). �

We can now finish the proof of our main result.

PROOF OF THEOREM 4.4. First we note that given any cutoff function φ(s) supported
in an interval (−c, c) such that φ ≡ 1 near the origin, and any compactly supported distribu-
tional section u,

[Fε(D)u] =
[ 1

2π

∫ ∞

−∞
φ(s)F̂ε(s)e

isDu ds
]

=
[
j∗( 1

2π

∫ ∞

−∞
φ(s)F̂ε(s)e

isDXu ds
)]

in G(M : E).
With this observation it is clear that:
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(1) All estimates for Definition 4.1 follow from Lemma 4.5.
(2) The support of u coincides with the generalized support of [Fε(D)u]. This implies

that the embedding extends to a sheaf morphism iFε : D′(M : E) → G(M : E).
(3) Since wave-front sets are defined locally, our embedding ιFε preserves wavefront

sets by Th. 3.10.
�

REMARK 4.7. From the proof one notices that a second order positive elliptic differen-
tial operator� on sections of E also provides us with an optimal embedding Fε(�) provided

that the solution operator to the wave equation (3), namely cos(s
√
�) propagates support at

a finite speed. Thus in particular if T rs (M) denotes the tensor bundle on M and g a complete
Riemannian metric on M the induced Laplace operator �rs provides an example of such an
operator.

4.4. Isomorphisms between vector bundles. Let φ : E1 → E2 be an isomorphism
of Hermitian vector bundles (preserving the inner product). Given any admissible differen-

tial operator D1 on sections of E1 the push-forward D2 := φDφ−1 is also an iso-spectral
admissible differential operator. In particular, for any Schwartz function F we have

F(D2) = φF(D1)φ
−1 .

The extension of φ∗ : Γ∞(M : E1) → Γ∞(M : E2) to the generalized sections, φ∗ : G(M :
E1) → G(M : E2) commutes with the geometrical embeddings Fε(D1) and Fε(D2).

Thus for example if r1 + s1 = r2 + s2 then the Riemannian metric provides an isomor-
phism g : T r1s1 (M) → T

r2
s2 (M) that pushes �r1s1 to �r2s2 . Hence the corresponding functional

calculus embedding commutes with the lowering or raising of indices.
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