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Abstract. In this paper, we study the kernel of the reciprocity map of certain simple normal crossing varieties
over a finite field and give an example of a simple normal crossing surface whose reciprocity map is not injective for
any finite scalar extension.

1. Introduction

The reciprocity map of the unramified class field theory for a proper variety X over a
finite field k is a homomorphism of the following form:

ρX : CH0(X) −→ πab
1 (X).

Here CH0(X) is the Chow group of 0-cycles on X modulo rational equivalence, and πab
1 (X)

is the abelian étale fundamental group of X. The map ρX is defined by sending the class of a
closed point x to the Frobenius substitution at x. If X is normal, ρX has dense image [5]. If
X is smooth, ρX is injective [4]. We also know that there is a projective normal surface X for
which ρX is not injective [6], and that there is a simple normal crossing surface X over k for
which ρX/n is not injective but ρX⊗E/n is injective for any sufficiently large finite extension
E/k and some n > 1 [7]. Here a normal crossing variety X over k is a equidimensional
separated scheme of finite type over k which is everywhere étale locally isomorphic to

Spec
(
k[T0, . . . , Td ]/(T0T1 · · ·Tr)

)
(0 ≤ r ≤ d = dimX) .

A normal crossing variety X over k is called simple if any irreducible component of X is
smooth over k. For any simple normal crossing varietyX, we have an exact sequence (cf. [3])

H2(ΓX,Z/n)
εX,n �� CH0(X)/n

ρX/n �� πab
1 (X)/n , (1.1)

where ΓX is the dual graph ofX which is a finite simplicial complex. By studying on the map
εX,n, one can see as to whether ρX/n is injective or not. However εX,n is abstract and difficult
to compute directly. In this paper, we study εX,n and Ker(ρX) for a certain simple normal
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crossing variety, and construct a simple normal crossing variety X over k for which ρX⊗F /n
is not injective for any finite extension F/k and some n > 0.

This paper is organized as follows: In Section 2, we investigate the kernel of the reci-
procity map ρY for a certain simple normal crossing variety Y by using a method of Matsumi-
Sato-Asakura [6]. In Section 3, we construct a simple normal crossing surface over a finite
field whose reciprocity map ρY is potentially not injective. In Appendix, we prove some
lemmas on simple normal crossing varieties over finite fields which are used in Section 2.

Notation

(1) For an abelian group A and a positive integer n, A/n denotes the cokernel of the

map A
×n−→ A. Ators denotes the torsion subgroup of A. A⊕n denotes the direct sum of n

copies of A.
(2) For a field k, k× denotes the multiplicative group, ksep denotes a fixed separable

closure,Gk denotes the absolute Galois group Gal(ksep/k), Gab
k denotes the maximal abelian

quotient group of Gk . For a connected scheme X, πab
1 (X) denotes the abelian étale funda-

mental group. Further, for a non-connected scheme V , πab
1 (V ) denotes

⊕
i π

ab
1 (Vi) where Vi

are connected components of V . For k-scheme X, πgeo
1 (X) denotes Ker

(
πab

1 (X) −→ Gab
k

)
.

(3) Let k be a field and X be a k-scheme. For a field extension F/k, X ⊗k F denotes

X ×Spec(k) Spec(F ). Especially, for a fixed separable closure ksep/k, X denotes X ×Spec(k)

Spec(ksep).
(4) For a scheme X of finite type over a field and an integer q ≥ 0, Xq denotes the set

of points on X which dim({x}) = q . For a point x ∈ X, κ(x) denotes the residue field. For a
scheme X of finite type over a field k, we define the following group:

CH0(X) := Coker

(
∂1 :

⊕
x∈X1

κ(x)× −→
⊕
x∈X0

Z
)
,

where ∂1 is defined by the discrete valuation.
If X is proper over k, there is the degree map

degX/k : CH0(X)→ Z ,

A0(X) denotes its kernel.
(5) Hr(−,−) denotes an étale cohomology group. Especially, Hr(F,−) denotes

Hr(Spec(F ),−) for a field F .
For a separated scheme X of finite type over k and a natural number n, we define the

étale homology with coefficient Z/n to

Hi(X,Z/n) := Hom
(
Hi
c (X,Z/n),Q/Z

)
.

Here Hi
c(−,−) denotes an étale cohomology group with compact support. This functor

H∗(−,Z/n) forms a homology theory on the category of separated schemes of finite type
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over k and proper k-morphisms ([2, (1.2), (2.1)]).
(6) For a simple normal crossing variety X over k, we use the following notation: Let

{Xi}i∈I be the set of irreducible components of X. For a positive integer r , we define

X(r) :=
∐

{i1,i2,...,ir }⊂I
Xi1 ×X Xi2 ×X · · · ×X Xir .

We define a simplicial complex ΓX called the dual graph of X as follows:
Fix an ordering on I . The set of r-simplexes Sr of ΓX is the set of irreducible com-

ponents of X(r). We determine the orientation on r-simplexes inductively on r by the fixed
ordering on I (cf. [3, §3]).

Let F/k be an algebraic extension. We put Y := X ⊗k F . Let {Yj }j∈J be the set of
irreducible components of Y . Then we define the semi-order on J as follows: for j1, j2 ∈ J,

j1 < j2 ⇐⇒ φ(j1) < φ(j2) ,

where φ : J −→ I is the map which sends j to φ(j) when Yj lies aboveXφ(j). By using this
order on J , we define the homomorphism of the complexes

σF/k : ΓY −→ ΓX .

Then the homomorphismHa(ΓY ,Z) −→ Ha(ΓX,Z) induced by σF/k is called norm map.

2. The kernel of the reciprocity map

In this section, we study the kernel of the reciprocity map ρY for a variety Y of the
following form by using a method of Matsumi-Sato-Asakura [6].

Let Y0 is a projective smooth and geometrically irreducible variety over a finite field k

and D be a simple normal crossing divisor on Y0. We put O := (0 : 1),∞ := (1 : 0) ∈ P1
k .

We then consider the following simple normal crossing variety:

Y := (
Y0 ×k O

) ∪ (
Y0 ×k ∞

) ∪ (
D ×k P1) ⊂ Y0 ×k P1 .

We will construct the following map δY whose image coincides with Ker(ρY ):

δY : H1(ΓD,Z) −→ CH0(Y ) .

We then consider the group

G(Y) := Im(δY ◦ σ) ⊂ Ker(ρY ),

where σ : H1(ΓD,Z) → H1(ΓD,Z) is the norm map. The group G(Y) is related to the
following group and map

Θ� := Coker

(⊕
j

πab
1 (Dj )

pro-� −→ πab
1 (Y0)

pro-�
)
,

α(�) : H1(ΓD,Z�) −→ Θ� .
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Here Y0 := Y0 ⊗k ksep and Dj denotes irreducible component of D := D ⊗k ksep, and

πab
1 (−)pro-� denotes the maximal pro-�-quotient of πab

1 (−).
We will prove the following theorem which is an analogy of a result of [6] for certain

simple normal crossing varieties over finite fields.

THEOREM 2.1. Let � be an arbitrary prime number.
(1) The �-primary part G(Y){�} of G(Y) is a subquotient of

(
Θ�

)
tors.

(2) Assume that

(i) each connected components of Y (2) has a k-rational point,
(ii) Gk acts on

(
Θ�

)
tors trivially.

Then G(Y){�} is isomorphic to the image of the map α(�).

The remarkable points in Theorem 2.1 are that the map α(�) does not vary for finite

scalar extensions, and that the group Im(α(�)) is related to G(Y). Therefore by studying on

G(Y) and using the map α(�), one can see as to whether the reciprocity map ρY is potentially
injective or not.

2.1. Construction of δY

PROPOSITION 2.2. There exists a homomorphism

δY : H1(ΓD,Z) −→ CH0(Y )

whose image coincides with Ker(ρY ).

PROOF. We consider the following variety and two closed subschemes:

S := (
Y0 ×k O

) � (
Y0 ×k ∞

) � (
D ×k P1) ,

Z := (
Y0 ×k O

) ∪ (
Y0 ×k∞

) ⊂ Y ,
Z′ := (

Y0 ×k O
) � (

Y0 ×k ∞
) � (

D ×k {O,∞}
) ⊂ S .

Then we have

Y\Z ∼= S\Z′ � D ×Gm . (2.1)

From this isomorphism, we obtain the following commutative diagram with exact rows:

CH0(Z
′)

β ��

��

CH0(S) ��

��

CH0(D ×Gm)

CH0(Z) �� CH0(Y ) �� CH0(D ×Gm) .

(2.2)

Now we have CH0(D × Gm) = 0. We compute the kernel of the map β. Since there are the
following isomorphisms

CH0(Z
′) � CH0(Y0)

⊕2 ⊕ CH0(D)
⊕2 ,
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CH0(S) � CH0(Y0)
⊕2 ⊕ CH0(D × P1) ,

CH0(D × P1) � CH0(D) ,

we have

Ker(β) = {
(0, 0, c,−c)∣∣ c ∈ CH0(D)

} � CH0(D) .

Hence, by the diagram (2.2) and CH0(Z) � CH0(Y0)
⊕2, we have an exact sequence

CH0(D) −→ CH0(Y0)
⊕2 −→ CH0(Y ) −→ 0 . (2.3)

On the other hand, considering the localization sequence of étale homology groups, we
obtain the following commutative diagram with exact rows:

πab
1 (Z

′)
β ′ ��

��

πab
1 (S)

��

��

H1(D ×Gm,Q/Z)

πab
1 (Z)

�� πab
1 (Y )

�� H1(D ×Gm,Q/Z) .

(2.4)

Similarly to the above, we have Ker
(
β ′

) � πab
1 (D). Hence, by the diagram (2.4) and

πab
1 (Z) � πab

1 (Y0)
⊕2, we have an exact sequence

πab
1 (D) −→ πab

1 (Y0)
⊕2 −→ πab

1 (Y ) . (2.5)

From (2.3) and (2.5), we have the following diagram with exact rows (cf. Proposition
A.2):

CH0(D) ��

��

CH0(Y0)
⊕2 ��

�
��

CH0(Y )

ρY

��
πab

1 (D)
��

����

πab
1 (Y0)

⊕2 �� πab
1 (Y )

H1(ΓD, Ẑ) .

Here H1(ΓX, Ẑ) := lim←−
n

H1(ΓX,Z/n). Let δ̂ : H1(ΓD, Ẑ)→ Ker(ρY ) be the surjective map

induced by the above diagram. We then define δY by the composite

H1(ΓD,Z) �� H1(ΓD, Ẑ)
δ̂ �� Ker(ρY )

� � �� CH0(Y ) .

Then we have Im(δY ) = Ker(ρY ), since Ker(ρY ) is finite and the map H1(ΓD,Z) →
H1(ΓD, Ẑ) has dense image with respect to the pro-finite topology. �
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REMARK 2.3. From the structure of Y , we obtain a suspension isomorphism

H1(ΓD,Z) � H2(ΓY ,Z) .

Therefore we have the map

H1(ΓD,Z) � H2(ΓY ,Z)
εY−→ CH0(Y )

whose image coincides with Ker(ρY ). Here εY is the map in (1.1). This map coincides with
the map δY .

We write H1(ΓX, Ẑ)X for the image of the norm map H1(ΓX, Ẑ) −→ H1(ΓX, Ẑ). We
then define the map

δ
geo
Y : H1(ΓD, Ẑ)D −→ CH0(Y )

to be that induced by the following commutative diagram with exact rows (cf. Proposition
A.4):

A0(D) ��

��

A0(Y0)
⊕2 ��

�
��

A0(Y )

��
π

geo
1 (D) ��

����

π
geo
1 (Y0)

⊕2 �� πgeo
1 (Y )

H1(ΓD, Ẑ)D.

Here the diagram follows from (2.3) and (2.5). The bijectivity of the middle vertical map is
due to Kato-Saito [4].

From the constructions of δY and δgeo
Y , the following diagram commutes:

H1(ΓD,Z) ��

σ

��

H1(ΓD, Ẑ)D

δ
geo
Y

��
H1(ΓD,Z)

δY �� CH0(Y ).

(2.6)

2.2. Proof of Theorem 2.1. Let � be a prime number. We writeΘ� for theGk-module

Coker
(
πab

1 (D
(1)
)pro-� −→ πab

1 (Y0)
pro-�) .

We consider the followingGk-equivariant homomorphism

α(�) : H1(ΓD,Z�) −→ Θ�
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induced by the following commutative diagram with exact rows

πab
1 (D

(1)
)pro-� ��

��

πab
1 (D)

pro-� ��

��

H1(ΓD,Z�) ��

��

0

0 �� πab
1 (Y0)

pro-� id �� πab
1 (Y0)

pro-� �� 0 .

By the weight argument, Matsumi, Sato and Asakura [6, Thm. 3.3] proved the following:

LEMMA 2.4 (Matsumi-Sato-Asakura). Let � be an arbitrary prime number.

(1) The image of α(�) is contained in
(
Θ�

)
tors.

(2) Assume that Gk acts on
(
Θ�

)
tors trivially. Then the composite of canonical maps

(
Θ�

)
tors

f1 ��
((
Θ�

)
tors

)
Gk

f2 ��
(
Θ�

)
Gk

is injective.

PROOF OF THEOREM 2.1. (1) For a finite abelian group M , we write M(�) for the
maximal �-quotient. Since A0(Y ) is finite (cf. Lemma A.1(1)), the �-primary part G(Y){�} is

identified with G(Y)(�), and hence identified with the image of the composite map(
δY ◦ σ

)(�) : H1(ΓD,Z) −→ A0(Y ) −→ A0(Y )
(�) .

From the commutativity of the diagram (2.6) and the constructions of δgeo
Y and α(�), the map(

δY ◦ σ
)(�) is decomposed as follows:

H1(ΓD,Z) α(�) �� Θ� ��
(
Θ�

)
Gk

η(�) �� A0(Y )
(�) ,

where η(�) denotes the following composite map:(
Θ�

)
Gk
� Coker

(
π

geo
1 (D(1))pro-� → π

geo
1 (Y0)

pro-�)
� Coker

(
A0(D

(1))(�)→ A0(Y0)
(�)

)

→ Coker
(
A0(D)

(�) → A0(Y0)
(�)

) ψ(�)−→ A0(Y )
(�) .

From Lemma 2.4(1), the image of α(�) is contained in
(
Θ�

)
tors. Thus, G(Y){�} is a subquo-

tient of
(
Θ�

)
tors.

(2) It suffices to show that the composite of canonical maps

Im
(
α(�)

) � � ��
(
Θ�

)
tors

f1 ��
((
Θ�

)
tors

)
Gk

f2 ��
(
Θ�

)
Gk

η(�) �� A0(Y )
(�)

is injective under the assumptions. Here the first map is injective by (1). From Lemma 2.4(2),

the composite map f2 ◦ f1 is injective. Under the assumption (i), η(�) coincides with the map
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ψ(�) from Lemma A.1(2). The injectivity of ψ(�) follows from the following commutative
diagram with exact rows

A0(D) �� A0(Y0)

ξ

��

�� Coker

ψ

��
A0(D) �� A0(Y0)

⊕2 �� A0(Y ) ,

where ξ maps an element a of A0(Y0) to an element (a,−a) of A0(Y0)
⊕2. �

3. Example of potentially non-injectivity

We here construct a simple normal crossing surface over a finite field for which the
reciprocity map is potentially not injective by using a surface considered in [6].

Let k be a finite field. Let n > 1 be an integer such that (n, 6 · ch(k)) = 1. We assume

that k contains a primitive n-th root ζ of unity. Let V be a Fermat surface in P3
k defined by the

following equation:

T n0 + T n1 + T n2 + T n3 = 0 .

We define an action τ on V as follows:

τ : (T0 : T1 : T2 : T3
) �−→ (

T0 : ζT1 : ζ 2T2 : ζ 3T3
)
,

which does not have fixed points. We then have a projective smooth surface Y0 := V/〈τ 〉.
Now we consider 2n lines on V : j = 1, . . . , n− 1

L1 : T0 + T1 = T2 + T3 = 0 , L1
τ j : T0 + ζ jT1 = T2 + ζ jT3 = 0

L2 : T0 + T1 = T2 + ζT3 = 0 , L2
τ j : T0 + ζ jT1 = T2 + ζ j+1T3 = 0 .

Let L be the following divisor on V :

L = L1 ∪ L2 ∪ L1
τ ∪ · · · ∪ L1

τn−1 ∪ L2
τn−1

.

Then the divisor L is a connected simple normal crossing divisor and stable under the action
of 〈τ 〉.

Let ϕ : V −→ Y0 and Ci = ϕ∗(Li) (i = 1, 2). Since Ci is isomorphic to Li , Ci is a
nonsingular rational curve on Y0 andD = C1 ∪C2 is a simple normal crossing divisor on Y0.
Moreover every singular points ofD are k-rational. We then put

Y := (
Y0 ×k O

) ∪ (
Y0 ×k ∞

) ∪ (
D ×k P1).

Now we have to show that for the above surface Y , the map ρY /n is not injective. Since

V is a hypersurface in P3
ksep , πab

1 (V ) = 0 (cf. [7, Lemma 3.5.]). Hence we have

πab
1 (Y0) � 〈τ 〉 � Z/n .
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Since Ci is rational curves, we have πab
1 (Ci) = 0. Therefore, we have

Θtors = Coker

(⊕
j

πab
1 (Dj ) −→ πab

1 (Y0)

)
tors

= πab
1 (Y0) ,

and Gk acts on the above group trivially.
On the other hand, the map

α : H1(ΓD,Z) −→ πab
1 (Y0)

is surjective, because ϕ induces the completely splitting covering L −→ D.
From Theorem 2.1, Ker(ρY ) � Z/n. Thus ρY is not injective. Moreover, we have

Ker(ρY⊗F ) � Z/n for any finite extension F/k, therefore the map ρY⊗F is not injective. We
also see that the map ρY⊗F /n is not injective.

Considering a product Y ×k X, we obtain a higher dimensional variety for which the
reciprocity map is potentially not injective. Here Y is the above surface and X is a projective
smooth and geometrically irreducible variety over k. Indeed, ρY×kX is not injective for any
finite scalar extension. This follows from the following commutative diagram with exact rows:

H1(ΓD×X,Z)
δY×X �� CH0(Y ×X)

��

ρY×X �� πab
1 (Y ×X)

��
H1(ΓD,Z)

δY �� CH0(Y )
ρY �� πab

1 (Y ) .

ACKNOWLEDGEMENTS. The author expresses his sincere gratitude to Professor Kane-
tomo Sato for his valuable comments and discussions. He also thanks the referee for his/her
constructive comments to improve the presentation of this paper.

A. Appendix

We here prove some lemmas about simple normal crossing varieties over finite fields. In
case of curves, lemmas similar to that in this section is proved in [6]. We extend to higher
dimensional cases by an argument similar to that in [6].

LetX be a simple normal crossing variety over a finite field k which is proper over k. Let
{Xi}i∈I be the set of irreducible components of X. Fix an ordering on I . For i < j (i, j ∈ I ),

Xi,j denotesXi ×X Xj . Then X(2) =∐
i<j Xi,j (cf. notation (6)).

LEMMA A.1. (1) There is an exact sequence of Chow groups⊕
i<j

CH0(Xi,j )
φ−→

⊕
i∈I

CH0(Xi)
ψ−→ CH0(X)→ 0 ,

where φ is the alternate sum of the push-forward maps CH0(Xi,j ) → CH0(Xi) and
CH0(Xi,j )→ CH0(Xj ), and ψ is the push-forward map for the canonical map

∐
i∈I Xi →

X.
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(2) The degree 0-part A0(X) of CH0(X) is finite.

(3) Assume that each connected component of X(2) has a k-rational point. Then the
canonical map

⊕
i∈I A0(Xi) −→ A0(X) is surjective.

PROOF. The proof of (1) is straight-forward and left to the reader.
(2) We consider the following commutative diagram with exact rows:

⊕
i<j

CH0(Xi,j ) g ��

φ

��

⊕
i<j

Z

ν

��

��
⊕
i<j

Z/mij → 0

ν
′

��

0 ��
⊕
i∈I

A0(Xi) ��

ψ
′

��

⊕
i∈I

CH0(Xi) f ��

ψ

����

⊕
i∈I

Z

����

��
⊕
i∈I

Z/mi → 0

0 �� A0(X) �� CH0(X)
degX/k �� Z .

Here mij = [Γ (Xi,j ,OXi,j ) : k], mi = [Γ (Xi,OXi ) : k] and the above maps are defined as
follows:

f :=⊕
i∈I degXi/k ,

g :=⊕
i<j degXi,j /k,

ν : the alternate sum of the identity maps,

ν
′
: the map induced by ν,

ψ
′
: the restriction of ψ .

By the above diagram, we have a surjective map from the kernel of ν
′

to the cokernel of

ψ
′
. Since Xi is smooth for all i ∈ I , A0(Xi) is finite by a theorem of Kato-Saito [4]. Hence

we see that the cokernel of ψ
′

is finite and that A0(X) is finite.
(3) Under the assumption, the map g is surjective. The assertion follows from the

above diagram. �

We describe the cokernel of the reciprocity map ρX for X in terms of the dual graph of
X (cf. [3], [4]).

PROPOSITION A.2. For a positive integer n, there is an exact sequence

CH0(X)/n
ρX/n �� πab

1 (X)/n
(∗1) �� H1(ΓX,Z/n) �� 0 .

PROOF. We consider the following exact sequence of étale sheaves on Xét:

0 �� Z/nX ��
⊕
i∈I

Z/nXi �� . . . ��
⊕
t∈T

Z/n
X
(d+1)
t

�� 0 .
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Here {X(d+1)
t }t∈T is the set of irreducible components of X(d+1), and we have omitted the

indication of direct image functors of sheaves. From this exact sequence, we obtain a spectral
sequence

E
p,q
1 = Hq(X(p),Z/n) �⇒ Hp+q(X,Z/n) .

By computing E2-terms, we have an exact sequence

0 �� H 1(ΓX,Z/n) �� H 1(X,Z/n) ��
⊕
i∈I

H 1(Xi,Z/n) ,

where H 1(ΓX,Z/n) := Hom(H1(ΓX,Z/n),Q/Z). From the Pontryagin dual of this se-
quence and Lemma A.1 (1), we obtain the following commutative diagram:

⊕
i∈I

CH0(Xi)/n

⊕
ρXi /n

��

�� CH0(X)/n

ρX/n

��

�� 0

��⊕
i∈I

πab
1 (Xi)/n �� πab

1 (X)/n
(∗1) �� H1(ΓX,Z/n) �� 0 .

Here ρX (resp. ρXi ) is the reciprocity map for X (resp. Xi ) and the left vertical map is an
isomorphism by Kato-Saito [4]. Hence the assertion follows from the above diagram. �

We regard X as a trivial right Gk-scheme and define the right action of Gk on X by the
natural right action of Gk on Spec(ksep). Let {Ws}s∈S be the set of connected components of

X, and let {Vj }j∈J be the set of irreducible components of X. We define the semi-order on J
as in notation (6). Then we have the norm map σ : H1(ΓX,Z/n)→ H1(ΓX,Z/n).

LEMMA A.3. There is an exact sequence of finite left Gk-modules:
⊕
j∈J

πab
1 (Vj )/n ��

⊕
s∈S

πab
1 (Ws)/n (∗2) �� H1(ΓX,Z/n) �� 0 . (A.1)

Further the following diagram commutes:
⊕
s∈S

πab
1 (Ws)/n ��

(∗2)
��

πab
1 (X)/n

(∗1)
��

H1(ΓX,Z/n) σ �� H1(ΓX,Z/n) .

(A.2)

PROOF. Since we have the canonical isomorphisms⊕
s∈S

πab
1 (Ws)/n � Hom

(
H 1(X,Z/n),Q/Z

)
,
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⊕
j∈J

πab
1 (Vj )/n � Hom

(⊕
j∈J

H 1(Vj ,Z/n),Q/Z
)
,

the finiteness of groups in (A.1) follows from the finiteness of étale cohomology groups [1,
XVI, 5.2] and the definition of dual graph. Furthermore it is sufficient to prove that there is
the following exact sequence:

0 �� H 1(ΓX,Z/n) �� H 1(X,Z/n) ��
⊕
j∈J

H 1(Vj ,Z/n) ,

where H 1(ΓX,Z/n) := Hom(H1(ΓX,Z/n),Q/Z). The above exact sequence is obtained
from the same argument as that in the proof of Proposition A.2 and the following exact se-

quence of étale sheaves on Xét:

0 �� Z/nX ��
⊕
j∈J

Z/nVj �� . . . ��
⊕
u∈U

Z/n
X
(d+1)
u

�� 0 .

Here {X(d+1)
u }u∈U is the set of irreducible components of X

(d+1)
, and we have omitted the

indication of direct image functors of sheaves.
The commutativity of (A.2) follows from the following commutative diagram of étale

sheaves on Xét:

0 �� Z/nX ��

��

⊕
i∈I

Z/nXi ��

��

. . . ��
⊕
t∈T

Z/n
X
(d+1)
t

��

��

0

0 �� Z/nX ��
⊕
j∈J

Z/nVj �� . . . ��
⊕
u∈U

Z/n
X
(d+1)
u

�� 0 ,

and the fact that the map (∗1) comes from the upper row (cf. Proposition A.2). �

We put H1(ΓX, Ẑ) := lim←−
n

H1(ΓX,Z/n). We write H1(ΓX, Ẑ)X for the image of the

norm map H1(ΓX, Ẑ) −→ H1(ΓX, Ẑ). The following proposition is the ‘geometric’ part of
the unramified class field theory for a simple normal crossing variety. If dimX = 1, the map

ρ
geo
X in the proposition is injective by Kato-Saito [4].

PROPOSITION A.4. There is an exact sequence

A0(X)
ρ

geo
X �� πgeo

1 (X)
(∗3) �� H1(ΓX, Ẑ)X

�� 0 .
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Further the following diagram commutes:

π
geo
1 (X)

� � ��

(∗3)
��

πab
1 (X)

(∗1)∧
��

H1(ΓX, Ẑ)X
� � �� H1(ΓX, Ẑ) ,

where the map (∗1)∧ is induced by the map (∗1) in Proposition A.2.

PROOF. We write CH0(X)
∧ for lim←−

n

CH0(X)/n, and Ẑ for lim←−
n

Z/n. We consider the

following commutative diagram with exact rows (cf. Proposition A.2):

0 �� A0(X) ��

ρ
geo
X

��

CH0(X)
∧ deg∧X/k ��

ρ∧X
��

Ẑ

ρ∧k
��

0 �� π
geo
1 (X) �� πab

1 (X)
��

(∗1)∧
��

Gab
k

�� 0

H1(ΓX, Ẑ) ,

where the map ρ∧X is induced by ρX . Here we have used the finiteness of A0(X) (cf. Lemma
A.1(2)), and the fact that the pro-finite completion of an exact sequence of finitely generated
abelian groups is exact. Since the map ρ∧k is injective (in fact bijective), the cokernel of

the map ρgeo
X is isomorphic to the image of πgeo

1 (X) in H1(ΓX, Ẑ). Therefore Coker
(
ρ

geo
X

)
coincides with H1(ΓX, Ẑ)X from Lemma A.3. �

References

[ 1 ] M. ARTIN, A. GROTHENDIECK, J. L. VERDIER et al., Théorie des Topos et Cohomologie Etale des
Schemas, Tome 3, Lecture Notes in Math. 305, Springer, Berlin, 1973.

[ 2 ] S. BLOCH and A. OGUS, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup.
(4) 7 (1974), 181–201.

[ 3 ] U. JANNSEN and S. SAITO, Kato homology of arithmetic schemes and higher class field theory over local
fields, Documenta Math, (Extra Volume: Kazuya Kato’s Fiftieth Birthday) (2003), 479–538.

[ 4 ] K. KATO and S. SAITO, Unramified class field theory for arithmetic surfaces, Ann. of Math. 118 (1983),
241–274.

[ 5 ] S. LANG, Unramified class field theory over function fields in several varieties, Ann. of Math. 64 (1956),
285–325.

[ 6 ] K. MATSUMI, K. SATO and M. ASAKURA, On the Kernel of the Reciprocity Map of Normal Surfaces over
Finite Fields, K-Theory 18 (1999), 203–234.

[ 7 ] K. SATO, Non-divisible cycles on surfaces over local fields, J. Number Theory 114 (2005), 272–297.



526 RIN SUGIYAMA

Present Address:
GRADUATE SCHOOL OF MATHEMATICS,
NAGOYA UNIVERSITY,
FURO-CHO, CHIKUSA-KU, NAGOYA, 464–8602 JAPAN.
e-mail: rin-sugiyama@math.nagoya-u.ac.jp


