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Abstract. In this paper we classify all non-trivial Riemannian submersions with connected fibers from any
of the simply connected, rank-one projective spaces. The result follows from results of Gromoll, Grove, Wilking,
Becker, Casson, Gottlieb, Schultz, Ucci, and Wolf, together with results of the author.

Throughout this paper all maps, functions and morphisms are assumed to be at least of
class C∞. All our manifolds are assumed to be without boundary. We will usually follow the
terminology of [GW]. A surjective map π : Mn+p → Bn, where M and B are manifolds
of dimension n + p and n respectively, is a submersion provided its derivative, π∗x , has
maximal rank n for each x ∈ M ([GW, page 1]). Now let π : Mn+p → Bn be a C∞ map
from a complete, connected, Riemannian manifold (Mn+p, g) onto a Riemannian manifold
(Bn, g∗), where g and g∗ are Riemannian metrics on M and B respectively. Let V denote the

distribution tangent to the fibers π−1(x), for some x ∈ B, and H the distribution orthogonal
to V in T M , the tangent bundle of M , determined by the metric g . If E is a vector field on
M , VE and HE will denote the projections of E onto the distributions V and H respectively.
Call the vector field E vertical if VE = E. Call E horizontal if HE = E. With this notation,
the map π above is a metric fibration, that is a Riemannian submersion, provided for any
horizontal vector fields X,Y at x ∈ M on Mn+p , one has that gx(X, Y ) = g∗

π(x)(π∗X,π∗Y ).

We say a horizontal vector field X on M is basic provided π∗X is a well defined vector field
on B.

D will denote the Levi-Civita connection on M and, following [EP], we introduce the
tensors T and A as follows. For vector fields E and F on M ,

TEF = VDVEHF + HDVEVF , and(1)

AEF = VDHEHF + HDHEVF .(2)
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Then T and A are tensors of type (1, 2). These tensors satisfy the usual properties outlined in
[EP]. We note that if X and Y are horizontal,

(3) AXY = −AY X .

Following [GW, page 4], a surjective map π : M → B is a fibration provided it has the
homotopy lifting property. As observed in [GW, page 4], a fibration is always a submersion.
Moreover, a locally trivial fiber bundle is always a fibration [GW, page 5], but not conversely.
By Theorem 1.3.1 of [GW], any Riemannian submersion, π : M → B with M complete
is always a locally trivial fiber bundle and so is a fibration. We begin with the following
elementary result that was just hinted at in [E2].

PROPOSITION 0.1. Let (A, g), (B, g∗), and (C, g∗∗) be three Riemannian manifolds,
with A connected and complete. If ρ : A → B and π : B → C are two non-trivial
Riemannian submersions with connected fibers, then the composite Riemannian submersion
π ◦ ρ : A → C is also a non-trivial Riemannian submersion with connected fibers. In
particular, B and C are also connected and complete.

SKETCH OF PROOF. It follows easily from the assumptions on A and Theorem
1.3.1 of [GW] mentioned above that B and C are also connected and complete. As the
composite of two submersions, one sees easily that π ◦ ρ : A → C is surjective from A

onto C and that (π ◦ ρ)∗ has maximal rank. If X and Y are two tangent vectors orthogonal
to the fibers of π ◦ ρ at some x ∈ A, then in particular, ρ∗X and ρ∗Y are orthogonal to
the fibers of π at ρ(x). Hence, gx(X, Y ) = g∗

ρ(x)
(ρ∗X,ρ∗Y ) = g∗∗

π(ρ(x))
(π∗ρ∗X,π∗ρ∗Y ) =

g∗∗
(π◦ρ)(x)((π ◦ ρ)∗X, (π ◦ ρ)∗Y ). Thus, the composite is a Riemannian submersion. Since

the fibers of each submersion are manifolds, they are locally path connected and hence path
connected. Using this observation it is easy to see that the fibers of π ◦ ρ are also connected
and indeed path connected. The sketch of proof of the proposition is now complete.

We assume that the metric fibrations below are all non-trivial, that is, the dimension of
the fibers of π is p, with p ≥ 1. We will always assume that the fibers are connected. In
the result below we assume that Sn is the n-sphere of radius 1, while Sm(r) is an m-sphere of
radius r . CP(n) is complex projective n-space of real dimension 2n, QP(n) is quaternionic n-
space of real dimension 4n, while CaP(2) is the Cayley projective two-plane of real dimension
16. Also, CaP(1) = S8(1/2) is the Cayley one-plane. For CP(n), QP(n), and CaP(2), the
sectional curvatures are understood to lie in the interval [1,4]. We assume that our rank-one
symmetric spaces are simply connected to rule out those rank-one symmetric spaces with
fundamental group Z2 as pointed out in [Chv], Corollary 2.2.

THEOREM 0.2. The only non-trivial metric fibrations (i.e. Riemannian submersions),
π : Mn+p → Bn from a simply connected rank-one projective space, M , having connected ,
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tangentially oriented fibers onto an oriented closed manifold B are those of the form

(4)

S2(1)
ι−−−−→ CP(2n + 1)

π

⏐
⏐
�

QP(n)

with n ≥ 1. In fact, the fibers are totally geodesic. Moreover, any two such Riemannian
submersions πi : CP(2n + 1) → QP(n) are equivalent in the sense that there is an isometry
f− : CP(2n + 1) → CP(2n + 1) that induces an isometry f= : QP(n) → QP(n) so that the
following diagram commutes:

(5)

CP(2n + 1)
f−−−−−→ CP(2n + 1)

π1

⏐
⏐
� π2

⏐
⏐
�

QP(n)
f=−−−−→ QP(n) .

REMARK. This result strengthens Theorem 5.2 (mislabelled Theorem 3.2) in [E2],
where the fibers are already assumed to be complex and totally geodesic. These assump-
tions are not made in the above result, but will follow as a consequence of the classification
results of Gromoll-Grove ([GG]), and Wilking ([W]), and equation (6) of [E2]. Together with
the results of [GG] and [W] , this theorem classifies completely all metric fibrations from
compact, simply connected, rank one symmetric spaces.

PROOF. Under the stated hypotheses, any possible Riemannian submersion from such
a simply connected rank-one projective space is necessarily a fibration by Theorem 1.3.1 of
[GW]. Since each of the the simply connected rank-one projective spaces M has positive Euler
characteristic, it follows from Theorem 1 on page 481 of [Sp] that the fiber cannot be odd
dimensional, since closed oriented odd-dimensional manifolds have an Euler characteristic of
zero. Hence, the real fiber dimension cannot be odd, so the real dimensions of both fibers and
bases are even.

According to Theorem 2 of [CG] (see also Theorem 2.1 of [S1]), there are no non-trivial
fibrations from CP(2n), QP(2n), or CaP(2) onto a compact CW complex with compact fiber.
Since the base space of a Riemannian submersion is a manifold and, in particular, a CW
complex, it follows from this theorem and the remarks before the statement of the theorem
that there are no non-trivial Riemannian submersions from these rank-one symmetric spaces
onto a Riemannian manifold B. This means that the only possible non-trivial Riemannian
submersions are from CP(2n + 1) or from QP(2n + 1), with n ≥ 0.

From the work of Gromoll-Grove ([GG]) and Wilking ([W]), the only Riemannian sub-
mersions from spheres with connected fibers are the standard Hopf fibrations. Specifically,
Theorem 4.4.3 of [GW] asserts that any non-trivial Riemannian submersion from Sn+k → Bn

is congruent to a Hopf fibration. Since the congruence is achieved by a Euclidean motion, it
follows that the fibers of any such Riemannian submersion are congruent to a Riemannian
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submersion with totally geodesic fibers, which exist in these cases. In particular, it follows
that the fibers of any such Riemannian submersions are necessarily totally geodesic. This was
assumed in [E1] and [R]. In particular, these submersions are:

(6)

S1 ι−−−−→ S3

ρ

⏐
⏐
�

S2(1/2)

(7)

S1 ι−−−−→ S2n+1

ρ

⏐
⏐
�

CP(n)

(8)

S3 ι−−−−→ S7

ρ

⏐
⏐
�

S4(1/2)

(9)

S3 ι−−−−→ S4n+3

ρ

⏐
⏐
�

QP(n)

(10)

S7 ι−−−−→ S15

ρ

⏐
⏐
�

S8(1/2)

Moreover, any two submersions in the same class are congruent (see [GW, page 156] and
[W, page 282]). Note, the first class, (6), is a special case of the second, (7), with n = 1 , while
the third class, (8), is a special case of the fourth, (9), again with n = 1. This occurs since

when n = 1, CP(1) = S2(1/2) and QP(1) = S4(1/2). As noted, CaP(1) = S8(1/2). It is
easy to see using the list above that when n = 0, no such non-trivial Riemannian submersion

exists from CP(1) = S2(1/2) or from QP(1) = S4(1/2) . This follows easily from the above
classification theorem for Riemannian submersions from spheres, using appropriate scaling
of the metric on the total space. Also, there is no non-trivial Riemannian submersion from

CaP(1) = S8(1/2) onto some B, since if there were, there would also be a Riemannian
submersion from S8 onto some B∗, again obtained by appropriate scaling of the metric. Such
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a Riemannian submersion is not in the list above. If our projective space is M = QP(2n + 1),
our Riemannian submersions are π : QP(2n + 1) → B. Thus, the only possible composite
submersion is with the Hopf fibration ρ : S4n+3 → QP(2n + 1). The resulting submersion,

π ◦ρ : S4n+3 → B is also a Riemannian submersion, and if the composite is to be non-trivial

in the above sense, the only possible non-trivial composite is π ◦ ρ : S15 → QP(3) → S8.
The resulting possible Riemannian submersion from QP(3) → B is thus,

(11)

S3(1)
ι−−−−→ Q(3)

π

⏐
⏐
�

S8

But this contradicts a result of Ucci ([U]) . Note, Ucci actually shows a more general result,

namely, that there is no Serre fibration from QP(3) → S8.
Let us now turn to Riemannian submersions π : CP(m) → B. As already noted, m must

be odd, so our task is to classify Riemannian submersions π : CP(2n + 1) → B. Then, from
Proposition 1.1,

(12) S4n+3 ρ−−−−→ CP(2n + 1)
π−−−−→ B

is also Riemannian submersion from S4n+3 → B. If B = CP(2n + 1), the Riemannian
submersion π : CP(2n + 1) → B is trivial. Thus, B = QP(n) or B = S8(1/2). The result of
Ucci explicitly rules out a Riemannian submersion from CP(7) → S8(1/2). Note, once again,

Ucci’s result actually rules out any Serre fibration from CP(7) → S8(1/2). This is what is
needed here. Thus, the only possible Riemannian submersion is from π : CP(2n + 1) →
QP(n). If such a Riemannian submersion exists, then the composite Riemannian submersion,

(13) S4n+3 ρ−−−−→ CP(2n + 1)
π−−−−→ QP(n)

has totally geodesic fibers as follows from the result of Gromoll-Grove and Wilking. Then,
π : CP(2n + 1) → QP(n) has totally geodesic fibers. To see this, let x ∈ QP(n) and let

P = π−1(x). We will show explicitly that P is totally geodesic in CP(2n + 1). Now,

(14) ρ−1(P ) = ρ−1(π−1(x)) = (π ◦ ρ)−1(x)

is totally geodesic in S4n+3. We want to apply Proposition 2.1 (a) of [E2] with ρ as the
Riemannian submersion of record rather than the π used there. Keeping in mind the label

changes, Section 2 of [E2] identifies SY as the second fundamental form of ρ−1(P ) (instead

of π−1(P )) in the horizontal direction of a vector Y orthogonal to ρ−1(P ). If X is horizontal

and tangent to ρ−1(P ), then by Proposition 2.1 (a) of [E2], we have

(15) SY X = CY X + AY X = 0 ,



510 RICHARD H. ESCOBALES, JR.

since ρ−1(P ) is totally geodesic in S4n+3 by the above remarks. Now CY X is horizontal
and tangent to ρ−1(P ), while AY X is vertical and tangent to ρ−1(P ). Hence, (15) implies
CY X = 0, since the second fundamental form SY = 0. Let Y∗ be a vector orthogonal to P

and X∗ a vector tangent to P , with Y and X their respective ρ-horizontal lifts. Then,

(16) C∗
Y∗X∗ = ρ∗(CY X) = C∗

ρ∗Y ρ∗X = 0 ,

as was observed in the beginning of Section 2 of [E2] with the above mentioned submersion-

map label changes. This means that the second fundamental form of P = π−1(x) in
CP(2n + 1) satisfies C∗

Y∗X∗ = 0.

It was also observed in [E2] that if the Riemannian submersion

π : CP(2n + 1) → QP(n)

found there had complex fibers, then the connected complex totally geodesic fibers had to be

isometric to CP(1) = S2. In fact, in section 5 of [E2], we actually constructed a Riemannian
submersion, in our labeling π1 : CP(2n + 1) → QP(n), and showed that the fibers are
complex and totally geodesic. We must show that any other such Riemannian submersion is
equivalent to this standard construction in the sense of the statement of the theorem.

If π2 : CP(2n + 1) → QP(n) is any other Riemannian submersion, then by Proposition
1.1 above, the composite

(17) S4n+3 ρ−−−−→ CP(2n + 1)
π2−−−−→ QP(n)

is a Riemannian submersion. Appealing again to the results [GG] and [W] (see [GW, page
156]) and the above argument modified from [E2] (see also equation (6) in [E2]) , it follows
that π2 : CP(2n + 1) → QP(n) has totally geodesic fibers. We want to apply Proposition
4.4 of [E2]. To do this we need to see that the hypotheses of that theorem are satisfied.
Dimensional considerations force the fibers of the submersion to be even dimensional, namely
2. The exact sequence for a homotopy groups of a fibration ([St, page 91]) with total space
CP(2n + 1), fiber F , and base space QP(n) yields

(18) π2(QP(n))
�−−−−→ π1(F )

p∗−−−−→ π1(CP(n)) .

Since both π2(QP(n)) = 0 and π1(CP(n) = 0, exactness forces π1(F ) = 0, so the fiber
F is simply connected. Now by Theorem 1 of [Wo], the only 2- dimensional totally geodesic

submanifolds of CP(2n + 1) are real or complex projective spaces, RP(2) or S2 = CP(1),
respectively. But real projective space, RP(2), is not simply connected. Hence, the only

admissible two-dimensional totally geodesic fiber is S2 = CP(1), as follows from Wolf’s
theorem.

Using Proposition 4.4 of [E2] which we can now apply because the fibers are both totally
geodesic and complex, we see that there is an isometry f− : CP(2n + 1) → CP(2n + 1) so
that the diagram above (and below), [(5) of Theorem 1.2], commutes, where the horizontal
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maps are isometries and where the vertical maps are Riemannian submersions.

(19)

CP(2n + 1)
f−−−−−→ CP(2n + 1)

π1

⏐
⏐
� π2

⏐
⏐
�

QP(n)
f=−−−−→ QP(n)

This completes the proof of the theorem.
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