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Abstract. Let a be a positive integer with a ≥ 2 and Qa(k, l) be the set of odd prime numbers p such that

the residual order of a in Z/pZ× is congruent to l mod k. The natural density of the set Qa(q, 0) (q is a prime) is
already known. In this paper, we consider the set Sa,b(k, l), which consists of the primes p that belong to Qa(k, l)

and satisfy
(

b
p

) = 1, where
(

b
p

)
is the Legendre symbol and b is a fixed integer. Heuristically, the natural density of

Sa,b(k, l) is expected to be half of that of Qa(k, l), but it is not true for some choices of a and b. In this paper, we
determine the natural density of Sa,b(k, l) for (k, l) = (2, j), (q, 0), (4, l), where j = 0, 1, q is an odd prime and
l = 0, 2.

1. Introduction

Let P be the set of all odd prime numbers and S ⊂ P. The natural density �S of the set
S is defined by

�S = lim
x→∞

# {s ∈ S ; s ≤ x}
#{p ∈ P ; p ≤ x} ,

if it exists.
We take an integer a ≥ 2. For a prime p with (a, p) = 1, we define Da(p), the residual

order of a (mod p) by

Da(p) = #〈a (mod p)〉 ,

i.e. the order of the subgroup generated by a in the group Z/pZ×. We also introduce the
quantity

Ia(p) = |Z/pZ× : 〈a (mod p)〉| ,
i.e. the residual index of a (mod p). We have

Da(p)Ia(p) = p − 1. (1.1)
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In this paper, we consider the prime set

Sa,b(k, l) =
{
p ∈ P ; p � a, b, Da(p) ≡ l (mod k),

(
b

p

)
= 1

}
,

where a, b, k, l ∈ Z, a ≥ 2, b �= 0 and ( b
p
) is the Legendre symbol. For simplicity, we assume

that a and b are square free. We introduce another prime set

Qa(k, l) = {
p ∈ P ; p � a, Da(p) ≡ l (mod k)

}
.

It is known that

�Qa(q, 0) = q

q2 − 1

if (a, q) �= (2, 2) (�Q2(2, 0) = 17/24, see [2], [3] and [8]). It is also well known that

�

{
p ∈ P ; p � b,

(
b

p

)
= 1

}
= 1

2
. (1.2)

So, heuristically, we expect that

�Sa,b(k, l) = 1

2
�Qa(k, l) . (1.3)

In many cases it is true, but this equality does not hold for some choices of a and b.
The aim of this paper is to determine �Sa,b(k, l) in the case (k, l) = (2, j), (q, 0), (4, l)

(j = 0, 1, q is an odd prime, l = 0, 2) and observe the effect of the algebraic interaction
between a and b on the density �Sa,b(k, l). Let

Sa,b(x; k, l) = {p ∈ Sa,b(k, l) ; p ≤ x} .

The main results are the following:

THEOREM 1. We assume a, b are square free positive integers with a, b ≥ 2. Then
we have

#Sa,b(x; 2, 0) = �Sa,b(2, 0)li x + O

(
x

log x log log x

)
(x → ∞) ,

where li x = ∫ x

2 (log t)−1dt and the density �Sa,b(2, 0) is given by the following:

�S2,2(2, 0) = 5

24
; �Sa,a(2, 0) = 1

6
, if a �= 2 ;

�Sa,b(2, 0) = 1

3
, if a, b �= 2 , a �= b, a �= 2b and b �= 2a ;

�Sa,b(2, 0) = 17

48
,

if one of the following three conditions holds:
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(i) a, b �= 2, a = 2b, or b = 2a,

(ii) a �= 2, b = 2,

(iii) a = 2, b �= 2.

It is remarkable that the conditions (i) through (iii) turn out to be symmetric with respect to a

and b, despite that the initial ones Da(p) ≡ 0 (mod q) and
(

b
p

) = 1 are not.

By Sa,b(2, 1) = {p ∈ P ; p � b,
(

b
p

) = 1} − Sa,b(2, 0) and (1.2), we easily obtain the

natural densities of all the sets

S±
a,b(2, j) =

{
p ∈ P ; p � a, b, Da(p) ≡ j (mod 2),

(
b

p

)
= ±1

}
(j = 0, 1) .

COROLLARY 2. Let a, b be as above. Then we have

#S±
a,b(x; 2, j) = �S±

a,b(2, j)li x + O

(
x

log x log log x

)
(x → ∞) ,

where the density �S±
a,b(2, j) is given by the following table. The condition (∗) means a, b �=

2, a �= b, a �= 2b and b �= 2a. The condition (∗∗) means one of (i) and (ii) in Theorem 1 :
a = 2

�S+
a,b(2, 0) �S−

a,b(2, 0) �S+
a,b(2, 1) �S−

a,b(2, 1)

a = b = 2
5

24

1

2

7

24
0

a = 2, b �= 2
17

48

17

48

7

48

7

48

a �= 2

�S+
a,b(2, 0) �S−

a,b(2, 0) �S+
a,b(2, 1) �S−

a,b(2, 1)

a = b �= 2
1

6

1

2

1

3
0

(∗)
1

3

1

3

1

6

1

6

(∗∗)
17

48

5

16

(
= 15

48

)
7

48

3

16

(
= 9

48

)

REMARK. (i) We can verify S−
a,a(2, 1) = ∅ in an elementary manner: Da(p) ≡

1 (mod 2) and (1.1) imply 2|Ia(p), which is equivalent to
(

a
p

) = 1.

(ii) We have �S+
a,b(2, j) = �S−

a,b(2, j) = �Qa(2, j)/2 when a = 2 and b �= 2, or

(∗) holds.
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THEOREM 3. Let a, b be as above, and q be an odd prime number. Then we have

#Sa,b(x; q, 0) = �Sa,b(q, 0)li x + O

(
x

log x log log x

)
(x → ∞) ,

where the density �Sa,b(q, 0) is given by the following:
�Sa,b(q, 0) = q

q2 − 1
, if b = q , q ≡ 1 (mod 4) ;

�Sa,b(q, 0) = q

2(q2 − 1)
, otherwise.

We know from these theorems that

�Sa,a(2, 0) = 1

6
= 1

4
�Qa(2, 0) ,

if a �= 2, and

�Sa,a(q, 0) = q

2(q2 − 1)
= 1

2
�Qa(q, 0)

if q ≥ 3 and a �≡ 1 (mod 4). It is remarkable that in the latter case, even though b = a, the
probabilistic argument in (1.3) is true, but in the former case, �Sa,a(2, 0) is actually much
less than the value expected from (1.3).

The case q = 4 can be dealt with in a similar manner and we obtain the following:

THEOREM 4. Let a, b be as above. Then we have

#Sa,b(x; 4, 0) = �Sa,b(4, 0)li x + O

(
x

log x log log x

)
(x → ∞) ,

where the density �Sa,b(4, 0) is given by the following:
�S2,2(4, 0) = 1

6
; �Sa,a(4, 0) = 1

12
, if a �= 2 ;

�Sa,b(4, 0) = 1

6
, if a, b �= 2 , a �= b, a �= 2b and b �= 2a ;

�Sa,b(4, 0) = 5

24
,

if one of the following three conditions holds:
(i) a, b �= 2, a = 2b, or b = 2a,

(ii) a �= 2, b = 2,
(iii) a = 2, b �= 2.

Since #Sa,b(x; 4, 2) = #Sa,b(x; 2, 0) − #Sa,b(x; 4, 0), we easily obtain the following:
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COROLLARY 5. Let a, b be as above. Then we have

#Sa,b(x; 4, 2) = �Sa,b(4, 2)li x + O

(
x

log x log log x

)
(x → ∞),

where the density �Sa,b(4, 2) is given by the following:
�S2,2(4, 2) = 5

24
− 1

6
= 1

24
; �Sa,a(4, 2) = 1

6
− 1

12
= 1

12
, if a �= 2 ;

�Sa,b(4, 2) = 1

3
− 1

6
= 1

6
, if a, b �= 2 , a �= b , a �= 2b and b �= 2a ;

�Sa,b(4, 2) = 17

48
− 5

24
= 7

48
,

if one of the following three conditions holds:
(i) a, b �= 2, a = 2b, b = 2a,

(ii) a �= 2, b = 2,
(iii) a = 2, b �= 2.

We obtain from Theorem 4 and Corollary 5 the following tables which show how the

sets Qa(4, 0) and Qa(4, 2) are divided by adding the conditions
(

b
p

) = 1 or
(

b
p

) = −1. Each

value is the density of the primes in Qa(4, l) satisfying
(

b
p

) = ±1. The condition (∗) means

a, b �= 2, a �= b, a �= 2b and b �= 2a. The condition (∗∗) means one of (i) and (ii) in Theorem
4. We can see from these tables that the “equi-distribution property” holds only in the case of
(∗).

a = 2

�Q2(4, 0) = 5/12 �Q2(4, 2) = 7/24

(
b
p

)
= 1

(
b
p

)
= −1

(
b
p

)
= 1

(
b
p

)
= −1

a = b = 2
1

6

1

4

1

24

1

4

a = 2, b �= 2
1

12

1

3

1

12

5

24
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a �= 2

�Qa(4, 0) = 1/3 �Qa(4, 2) = 1/3

(
b
p

)
= 1

(
b
p

)
= −1

(
b
p

)
= 1

(
b
p

)
= −1

a = b �= 2
1

12

1

4

1

12

1

4

(∗)
1

6

1

6

1

6

1

6

(∗∗)
5

24

1

8

(
= 3

24

)
7

48

3

16

(
= 9

48

)

This paper is organized as follows: in Section 2, we introduce some preliminary results
about algebraic number theory and the prime ideal theorem. In Sections 3, 4 and 5, we prove
the main results (Theorems 1, 3 and 4). In Section 6, some results of numerical experiments
are shown which support our main theorems.

For a prime power qe, qe ‖ m means that qe | m and qe+1 � m. We denote Euler’s totient
by ϕ(n). For r ∈ Z, let ζr be a primitive r-th root of unity.

ACKNOWLEDGMENTS. The authors would like to express their sincere gratitude to
Professor Leo Murata for an abundance of valuable advice and discussion.

2. Preliminaries

In this section, we introduce some preliminary results. First we need the following:

THEOREM 6 (THE PRIME IDEAL THEOREM). Let K be a finite Galois extension field
over Q, n = [K : Q] and � be the discriminant of K . Then under the condition

exp
(
10n(log |�|)2

) ≤ x, we have

πK(x) = #{p : a prime ideal in K ; Np ≤ x}

= li x + O

(
li (xβ0) + x exp

(
− c1

√
log x

n

))
,

where β0 ∈ R, (
1

2
<

)
β0 < max

{
1 − 1

4 log |�| , 1 − 1

c2|�|1/n

}
,

c1, c2 > 0 and the constant implied by O-symbol does not depend on n, �.

PROOF. See [5, Theorems 1.3 and 1.4].

For the calculation of the densities, we need to know the extension degrees of some
algebraic number fields.
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LEMMA 7. (i) Let b ∈ N, b ≥ 2 and be square free. Then the real quadratic fields

which are contained in Q(ζ2j ,
√

b) are{
Q(

√
b) , if j = 1, 2 ,

Q(
√

2), Q(
√

b), Q(
√

2b) , if j ≥ 3 .

(ii) We have

[Q(ζ2j ,
√

b) : Q] =
{

ϕ(2j ) , if j ≥ 3 and b = 2 ,

2ϕ(2j ) , otherwise.

PROOF. We give a proof of (i) only. Suppose
√

c ∈ Q(ζ2j ,
√

b) = Q(ζ2j )(
√

b) (c ∈ N,

c ≥ 2 and is square free) and is expressed in the form
√

c = α + β
√

b (α, β ∈ Q(ζ2j )). If

α �= 0, then
√

c = (c + α2 − bβ2)/2α ∈ Q(ζ2j ) and it follows that j ≥ 3. In this case, the

only real quadratic field which is contained in Q(ζ2j ) is Q(
√

2), so we have c = 2. If α = 0,
then β = √

c/b ∈ Q(ζ2j ). So, when j = 1 or 2, we can conclude b = c. When j ≥ 3, we

have
√

c/b ∈ Q(
√

2) and c = b, 2b or b/2.

REMARK. When q is an odd prime and j ≥ 1, we have

[Q(ζqj ,
√

b) : Q] =
{

ϕ(qj ) , if b = q , q ≡ 1 (mod 4) ,

2ϕ(qj ) , otherwise,
(2.1)

since the quadratic field which is contained in Q(ζqj ) is Q(
√

q) if q ≡ 1 (mod 4) and

Q(
√−q) if q ≡ 3 (mod 4). We see later that the case b = q and q ≡ 1 (mod 4) can be

treated quite easily without using (2.1) (see Section 4).

In Lemmas 8 and 9, we assume L = Q(a1/ql
), M = Q(ζqj ,

√
b) and K = L ∩ M (q:

prime, j ≥ l ≥ 1).

LEMMA 8. We have

[LM : Q] = [Q(ζqj ,
√

b, a1/ql

) : Q] = [L : Q][M : Q]
[K : Q] .

PROOF. Both L and M are finite extensions over Q and M is a Galois extension over
Q. So LM/L is a Galois extension and we have Gal(LM/L) ∼= Gal(M/K). Then, [LM :
L] = [M : K]. Hence,

[LM : Q] = [LM : L][L : Q] = [M : K][L : Q] = [M : Q]
[K : Q] [L : Q] .

LEMMA 9. Let L, M and K be as above.

(i) If q is an odd prime, then we have K = Q.
(ii) If q = 2 and j = 1, 2, then we have
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K =
{

Q(
√

a), if a = b,

Q, otherwise.

If q = 2 and j ≥ 3, then we have

K =
{

Q(
√

a), if a = 2, b, 2b, b/2,

Q, otherwise.

PROOF. (i) First note that all the subfields of M are normal extensions over Q, since

M is a composition field of Q(ζqj ) and Q(
√

b), which are abelian extensions over Q, and is

contained in some cyclotomic field. So, K = M ∩ L ⊂ M is normal over Q. We also note

that the maximal normal subfield over Q which is contained in Q(a1/u) is{
Q, if u is odd ,

Q(
√

a), if u is even
(2.2)

([7, Lemma 3.1]). Then it is clear from (2.2) that K = Q if q is odd.

(ii) Applying (2.2) to K and L above, we see that

K =
{

Q(
√

a) , if Q(
√

a) ⊂ M ,

Q, otherwise.

So, we get the desired result invoking Lemma 7 (i).

We put

Ka,b,q;j,l = Kj,l = Q(ζqj , a1/ql

,
√

b) . (2.3)

Gathering these results, we get the following proposition which will be used in the subsequent
sections:

PROPOSITION 10. (I) Let q be an odd prime. Then we have

[Kj,l : Q] =
{

qlϕ(qj ) = (q − 1)qj+l−1 , if b = q , q ≡ 1 (mod 4) ,

2qlϕ(qj ) = 2(q − 1)qj+l−1 , otherwise.

(II) Let q = 2.
(i) When j = 1, 2,

[Kj,l : Q] =
{

2j+l−1 , if a = b ,

2j+l , otherwise.

(ii) When j ≥ 3,
(ii–a) if a = b = 2, then

[Kj,l : Q] = 2j+l−2 ,
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(ii–b) if one of
(1) a �= 2, b = 2,
(2) a = 2, b �= 2,
(3) a = b �= 2,
(4) a, b �= 2, a = 2b or 2a = b

is satisfied, then

[Kj,l : Q] = 2j+l−1,

(ii–c) if a, b �= 2, a �= b, a �= 2b, 2a �= b, then

[Kj,l : Q] = 2j+l .

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1. We transform the condition on Da(p) into
some conditions on Ia(p). We consider a prime p such that 2j ‖ p − 1, j ≥ 1. From the
equation (1.1), we have

Da(p) ≡ 0 (mod 2) ⇔ 2j � Ia(p)

and

Sa,b(x; 2, 0) =
⋃
j≥1

{
p ≤ x ; 2j ‖ p − 1, 2j � Ia(p),

(
b

p

)
= 1

}
.

Then we have

#Sa,b(x; 2, 0) = #

{
p ≤ x ;

(
b

p

)
= 1

}

−
∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod 2j ), 2j | Ia(p),

(
b

p

)
= 1

}

+
∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod 2j+1), 2j | Ia(p),

(
b

p

)
= 1

}
. (3.1)

We estimate the former sum in (3.1) (We can estimate the latter sum in (3.1) in a similar
manner). Let

Mj(x) =
{
p ≤ x ; p ≡ 1 (mod 2j ), 2j | Ia(p),

(
b

p

)
= 1

}
.

We estimate
∑

j≥1 Mj(x). We divide (0, x] into the following three intervals:

(0, x] = I1 ∪ I2 ∪ I3 ,
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where

I1 = (0, log log x], I2 = (log log x,
√

x log2 x], I3 = (
√

x log2 x, x] .

Then

∑
j≥1

#Mj(x) =
( ∑

2j ∈I1

+
∑

2j∈I2

+
∑

2j∈I3

)
#Mj(x) .

Here we introduce the set

M ′
j (x) =

{
p ≤ x ; p ≡ 1 (mod 2j ), 2j | Ia(p)

}
.

Then #Mj(x) ≤ #M ′
j (x).

First we consider the sum on I3. It can be estimated in a similar way to [4]. Under
2j ‖ p − 1,

2j | Ia(p) ⇔ ν2j ≡ a (mod p) is solvable .

Then, a2(p−1)/2j ≡ 1 (mod p). Since (p − 1)/2j <
√

x/ log2 x, p must divide the positive
product ∏

m<
√

x/ log2 x

(
a2m − 1

)
,

so we have

2
∑

2j ∈I3
#M ′

j (x) ≤
∏

m<
√

x/ log2 x

a2m logx/ log 2 .

Therefore,

∑
2j ∈I3

#Mj(x) ≤
∑

2j ∈I3

#M ′
j (x) �

∑
m<

√
x/ log2 x

m · log x = O

(
x

log3 x

)
. (3.2)

Next we consider the sum on I2. By the Siegel-Walfisz theorem, for some ε1 > 0, we
have ∑

2j ∈I2

#Mj(x) ≤
∑

2j∈I2

#
{
p ≤ x ; p − 1 ≡ 0 (mod 2j )

}

=
∑

2j∈I2

1

ϕ(2j )

{
li x + O(xe−ε1

√
log x)

} = O

(
x

log x log log x

)
. (3.3)

Finally we consider the sum on I1. Note that

p ≡ 1 (mod 2j ), 2j | Ia(p),

(
b

p

)
= 1
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⇔ p splits completely in Q(ζ2j , a1/2j

) and Q(
√

b)

⇔ p splits completely in Kj,j = Q(ζ2j , a1/2j

,
√

b) .

When p splits completely in Kj,j , the number of distinct prime ideals of degree 1 over p is
nj,j = [Kj,j : Q]. We put

π
(1)
Kj,j

(x) = #
{
p : a prime ideal in Kj,j ; Np ≤ x, p : degree 1

}
.

Then for α = log log log x/ log 2, we have

∑
2j ∈I1

#Mj(x) =
∑
j≤α

π
(1)
Kj,j

(x)

nj,j

.

Therefore we have to evaluate π
(1)
Kj,j

(x). This evaluation needs Theorem 6:

πKj,j (x) = li x + O

(
li (xβ0) + x exp

(
− c1

√
log x

nj,j

))
.

To estimate β0, we need the following estimate of the discriminant � of Kj,j :

|�| ≤ (n2
j,j ab)nj,j . (3.4)

The formula (3.4) is proved by the chain rule of differents dKj,j /Q = dKj,j /Fj dFj /Q

(Fj = Q(ζ2j , a1/2j
)). Taking the norm N = NKj,j /Q of the both sides, we have |�| =

N(dKj,j /Fj )|DFj |2 ≤ (2b)nj,j ([Fj : Q]2a)nj,j ≤ (n2
j,j ab)nj,j , where DFj is the discriminant

of Fj . We have

log |�| ≤ nj,j log(n2
j,j ab) ≤ d1n

2
j,j ,

c2|�|1/nj,j ≤ c2(n
2
j,j ab) ≤ d2n

2
j,j .

The constants d1 and d2 depend only on a and b. The number d3 below is the same.

β0 < max

{
1 − 1

4 log |�| , 1 − 1

c2|�|1/nj,j

}

≤ max

{
1 − 1

d1n
2
j,j

, 1 − 1

d2n
2
j,j

}
≤ 1 − 1

d3n
2
j,j

by max
{
4 log |�|, c2|�|1/nj,j

} ≤ max
{
d1n

2
j,j , d2n

2
j,j

} ≤ d3n
2
j,j . Using this, we have

li (xβ0) � xβ0

log xβ0
≤ x exp

(
−

√
log x

d3n
2
j,j

)
.
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Thus we have

πKj,j (x) = li x + O

(
x exp

(
− c

√
log x

n2
j,j

))
,

where c > 0 does not depend on j . Also, since the contribution of prime ideals of degree
more than one is O(nj,j

√
x), we have

π
(1)
Kj,j

(x) = li x + O

(
nj,j x exp

(
− c

√
log x

n2
j,j

))
.

We can estimate the sum on I1 as follows:∑
2j ∈I1

#Mj(x) =
∑

2j ≤log log x

{
1

nj,j

li x + O

(
x exp

(
− c

√
log x

n2
j,j

))}

=
∑
j≥1

1

nj,j

li x −
∑

2j >log log x

1

nj,j

li x + O

( ∑
2j ≤log log x

x exp

(
− c

√
log x

n2
j,j

))
.

We have ∑
2j >log log x

1

nj,j

li x � li x
∑

2j >log log x

1

22j
� x

log x

(
log log x

)2
.

When 2j ≤ log log x, n2
j,j ≤ (log log x)4 by nj,j = m · 22j (m = 1, 1/2, 1/4), so

∑
2j≤log log x

x exp

(
− c

√
log x

n2
j,j

)
≤

∑
2j≤log log x

x exp

(
− c

√
log x

(log log x)4

)
.

When x is sufficiently large, for a positive integer N , exp(−c
√

log x/(log log x)4)

log log log x ≤ 1/(log x)N . Letting N = 2, we have

∑
2j ≤log log x

x exp

(
− c

√
log x

n2
j,j

)
� x

log2 x
.

Hence

∑
2j∈I1

#Mj(x) =
∑
j≥1

1

[Kj,j : Q] li x + O

(
x

log x log log x

)
. (3.5)

Gathering (3.2), (3.3) and (3.5), we obtain∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod 2j ), 2j | Ia(p),

(
b

p

)
= 1

}
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=
∑
j≥1

1

[Kj,j : Q] li x + O

(
x

log x log log x

)
.

The first term in (3.1) can be estimated by direct application of Theorem 6 with K =
Q(

√
b):

#

{
p ≤ x ;

(
b

p

)
= 1

}
= 1

2
li x + O

(
x exp

(
− c2

√
log x

4

))
(c2 > 0) .

Consequently, we have

#Sa,b(x; 2, 0) =
{

1

2
−

∑
j≥1

1

[Kj,j : Q] +
∑
j≥1

1

[Kj+1,j : Q]
}

li x + O

(
x

log x log log x

)
.

Finally, we calculate the coefficient of li x, that is �Sa,b(2, 0). By Proposition 10, we
have

�S2,2(2, 0) = 1

2
−

(
1

2
+ 1

8
+

∑
j≥3

1

22j−2

)
+

(
1

4
+

∑
j≥2

1

22j−1

)
= 5

24
,

�Sa,a(2, 0) = 1

2
−

∑
j≥1

1

22j−1
+

∑
j≥1

1

22j
= 1

6
(a �= 2) ,

�Sa,b(2, 0) = 1

2
−

∑
j≥1

1

22j
+

∑
j≥1

1

22j+1 = 1

3
(a, b �= 2, a �= b, a �= 2b, b �= 2a) ,

�Sa,b(2, 0) = 1

2
−

(
1

4
+ 1

16
+

∑
j≥3

1

22j−1

)
+

(
1

8
+

∑
j≥2

1

22j

)
= 17

48

(one of the conditions (i)–(iii) in Theorem 1 holds), which give Theorem 1.

4. Proof of Theorem 3

In this section, we outline the proof of Theorem 3. In the case b = q and q ≡ 1 (mod 4),
we get Sa,b(x; q, 0) = Qa(x; q, 0) in an elementary manner. Indeed, since Da(p) ≡
0 (mod q) and Da(p)Ia(p) = p − 1, we have p ≡ 1 (mod q). So, q ≡ 1 (mod 4) and
the quadratic reciprocity law give(

b

p

)
=

(
q

p

)
=

(
p

q

)
=

(
1

q

)
= 1,

i.e. Da(p) ≡ 0 (mod q) always implies ( b
p
) = 1.

Now we proceed to the case where b = q and q ≡ 1 (mod 4) do not hold. By the
equation

p − 1 = Ia(p)Da(p),
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we have q | p − 1. So we assume qj ‖ p − 1, j ≥ 1. Then

Da(p) ≡ 0 (mod q) ⇔ qj � Ia(p).

We can decompose Sa,b(x; q, 0) in the same way as in Theorem 1 and get

#Sa,b(x; q, 0) = #

{
p ≤ x ; p ≡ 1 (mod q),

(
b

p

)
= 1

}

−
∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod qj ), qj | Ia(p),

(
b

p

)
= 1

}

+
∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod qj+1), qj | Ia(p),

(
b

p

)
= 1

}
.

We can estimate the remainder terms similarly to Theorem 1 and obtain

#Sa,b(x; q, 0) =
(

1

[Q(ζq,
√

b) : Q] −
∑
j≥1

1

[Kj,j : Q] +
∑
j≥1

1

[Kj+1,j : Q]
)

li x

+ O

(
x

log x log log x

)
,

where Kj,l = Q(ζqj , a1/ql
,
√

b). We calculate the coefficients of li x using Proposition 10.
Then we have

�Sa,b(q, 0) = 1

2(q − 1)
−

∑
j≥1

1

2(q − 1)q2j−1
+

∑
j≥1

1

2(q − 1)q2j
= q

2(q2 − 1)
.

Thus we have proved Theorem 3.

5. Proof of Theorem 4

In this section, we describe a proof of Theorem 4. The proof is similar to those of the pre-
vious theorems, so we give an outline only. By Da(p) ≡ 0 (mod 4), p − 1 = Da(p)Ia(p) ≡
0 (mod 4). So we assume 2j ‖ p − 1, j ≥ 2. Then we have

Da(p) ≡ 0 (mod 4) ⇔ 2j−1 � Ia(p) .

We can proceed in the same way as in Theorem 1 and get

#Sa,b(x; 4, 0) = #

{
p ≤ x ; p ≡ 1 (mod 4),

(
b

p

)
= 1

}

−
∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod 2j+1), 2j | Ia(p),

(
b

p

)
= 1

}
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+
∑
j≥1

#

{
p ≤ x ; p ≡ 1 (mod 2j+2), 2j | Ia(p),

(
b

p

)
= 1

}
.

Estimating the remainder terms, we get

#Sa,b(x; 4, 0) =
{

1

[Q(ζ4,
√

b) : Q] − 1

[Kj+1,j : Q] + 1

[Kj+2,j : Q]
}

li x

+ O

(
x

log x log log x

)
,

where Kj,l = Q(ζ2j , a1/2l
,
√

b). The densities are given by the following:

�S2,2(4, 0) = 1

4
−

(
1

4
+

∑
j≥2

1

22j−1

)
+

∑
j≥1

1

22j
= 1

6
,

�Sa,a(4, 0) = 1

4
−

∑
j≥1

1

22j
+

∑
j≥1

1

22j+1
= 1

12
(a �= 2),

�Sa,b(4, 0) = 1

4
−

∑
j≥1

1

22j+1 +
∑
j≥1

1

22j+2 = 1

6
(a, b �= 2, a �= b, a �= 2b, b �= 2a),

�Sa,b(4, 0) = 1

4
−

(
1

8
+

∑
j≥2

1

22j

)
+

∑
j≥1

1

22j+1 = 5

24

(one of the conditions (i)–(iii) in Theorem 4 holds). This completes the proof Theorem 4.

6. Numerical examples

In this section, we give some results of numerical experiments on the densities
�Sa,b(k, l). Each table shows the values #Sa,b(x; k, l)/π(x) for x = 10m (m = 3, 4, . . . , 8).
The theoretical densities which are obtained in the previous sections are also shown.

(I) The case (k, l) = (2, 0)

This case corresponds to Theorem 1.

(I–i) The case a = b

We show the data for (a, b) = (2, 2), (3, 3) and (6, 6). The theoretical densities are
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5/24 ≈ 0.208333 for (a, b) = (2, 2) and 1/6 ≈ 0.166667 for other cases.

x (a, b) = (2, 2) (a, b) = (3, 3) (a, b) = (6, 6)

103 0.179641 0.132530 0.138554
104 0.206026 0.164629 0.162999
105 0.207069 0.164234 0.165693
106 0.207320 0.165856 0.166187
107 0.208054 0.166599 0.166288
108 0.208284 0.166595 0.166656

(I–ii) The case a, b �= 2, a �= b, a �= 2b, b �= 2a

This is the standard case in (k, l) = (2, 0). The theoretical density is 1/3 ≈ 0.333333
for all cases.

x (a, b) = (3, 5) (a, b) = (3, 10) (a, b) = (5, 3)

103 0.303030 0.327273 0.321212
104 0.331158 0.334421 0.327080
105 0.332464 0.331526 0.332881
106 0.332735 0.332913 0.333435
107 0.333309 0.333181 0.333158
108 0.333295 0.333313 0.333348

x (a, b) = (6, 5) (a, b) = (6, 10) (a, b) = (10, 3)

103 0.296970 0.315152 0.296970
104 0.333605 0.332790 0.331158
105 0.332151 0.331526 0.332256
106 0.332161 0.332658 0.332798
107 0.333098 0.332799 0.333408
108 0.333297 0.333346 0.333218

(I–iii) None of the above cases

This case includes (a) a, b �= 2, a = 2b or b = 2a, (b) a �= 2, b = 2, (c) a = 2, b �= 2.
The theoretical density is 17/48 ≈ 0.354167.

x (a, b) = (3, 6) (a, b) = (6, 3) (a, b) = (7, 14) (a, b) = (14, 7)

103 0.331325 0.325301 0.361446 0.343373
104 0.352893 0.356153 0.352893 0.359413
105 0.353180 0.352555 0.355474 0.351825
106 0.353368 0.353547 0.354298 0.352961
107 0.354093 0.353963 0.354004 0.354066
108 0.354136 0.354138 0.354040 0.354046
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x (a, b) = (3, 2) (a, b) = (6, 2) (a, b) = (2, 3) (a, b) = (2, 6)

103 0.331325 0.337349 0.313253 0.325301
104 0.349633 0.352893 0.352078 0.352078
105 0.352868 0.353806 0.352138 0.353702
106 0.353496 0.353585 0.353508 0.353419
107 0.354042 0.353945 0.353954 0.353988
108 0.354116 0.354121 0.354160 0.354163

(II) The case (k, l) = (q, 0) (q is an odd prime)

This case corresponds to Theorem 3.

(II–i) The case b = q , q ≡ 1 (mod 4)

In this case, �Sa,b(q, 0) = �Qa(q, 0) holds. We give the examples for b = q = 5
and b = q = 13. Theoretical densities are 5/24 ≈ 0.208333 for b = q = 5 and 13/168 ≈
0.077381 for b = q = 13.

The case b = q = 5

x a = 2 a = 3 a = 5

103 0.204819 0.212121 0.204819
104 0.205379 0.211256 0.211084
105 0.209906 0.208259 0.208551
106 0.208584 0.208128 0.208686
107 0.208223 0.208340 0.208275
108 0.208351 0.208354 0.208311

The case b = q = 13

x a = 2 a = 3 a = 5

103 0.078313 0.072727 0.066667
104 0.076610 0.076672 0.073409
105 0.077372 0.076963 0.077693
106 0.077087 0.077636 0.077725
107 0.077454 0.077507 0.077413
108 0.077374 0.077406 0.077420

(II–ii) The general cases

We give the examples where b = q and q ≡ 1 (mod 4) do not hold. In this case,
�Sa,b(q, 0) = �Qa(q, 0)/2. We give some results for q = 3 and q = 5. The theoretical
densities are 3/16 = 0.1875 for q = 3 and 5/48 ≈ 0.104167 for q = 5.

The case q = 3

x (a, b) = (2, 2) (a, b) = (2, 3) (a, b) = (2, 6) (a, b) = (3, 2) (a, b) = (3, 3)

103 0.167665 0.168675 0.180723 0.168675 0.186747
104 0.183225 0.182559 0.184189 0.190709 0.191524
105 0.189553 0.187070 0.187904 0.188843 0.186340
106 0.187434 0.187182 0.187513 0.187653 0.186914
107 0.187659 0.187614 0.187628 0.187309 0.187179
108 0.187520 0.187502 0.187509 0.187495 0.187469
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x (a, b) = (5, 2) (a, b) = (5, 3) (a, b) = (5, 5) (a, b) = (6, 2) (a, b) = (6, 3)

103 0.156627 0.157576 0.180723 0.144578 0.156627
104 0.185004 0.185971 0.185004 0.182559 0.191524
105 0.187278 0.186881 0.186861 0.187070 0.186548
106 0.187105 0.186687 0.187589 0.187041 0.186990
107 0.187480 0.187339 0.187576 0.187367 0.187579
108 0.187456 0.187485 0.187469 0.187444 0.187408

The case q = 5

Note that we must exclude b = 5.

x (a, b) = (2, 2) (a, b) = (2, 3) (a, b) = (2, 6) (a, b) = (3, 2) (a, b) = (3, 3)

103 0.095808 0.078313 0.078313 0.102410 0.084337
104 0.100163 0.103504 0.096170 0.101874 0.105134
105 0.104369 0.105839 0.106257 0.104484 0.103754
106 0.104399 0.103954 0.104948 0.104859 0.103814
107 0.104037 0.104126 0.104152 0.104102 0.104197
108 0.104156 0.104156 0.104206 0.104165 0.104173

x (a, b) = (5, 2) (a, b) = (5, 3) (a, b) = (6, 2) (a, b) = (6, 3)

103 0.084337 0.090909 0.096386 0.078313
104 0.103504 0.106036 0.104319 0.108394
105 0.104901 0.105016 0.103441 0.103128
106 0.104630 0.103306 0.104974 0.103852
107 0.104039 0.104101 0.104158 0.104271
108 0.104125 0.104099 0.104132 0.104188

(III) The case (k, l) = (4, 0), (4, 2)

This case corresponds to Theorem 4 and Corollary 5. We give four typical examples.

(a, b) = (2, 2)

x l = 0 l = 2

103 0.167665 0.011976
104 0.162866 0.043160
105 0.167136 0.039933
106 0.166134 0.041186
107 0.166597 0.041456
108 0.166669 0.041614

Theoretical densities:
�S2,2(4, 0) = 1/6 ≈ 0.166667,
�S2,2(4, 2) = 1/24 ≈ 0.041667.

(a, b) = (3, 3)

x l = 0 l = 2

103 0.060241 0.072289
104 0.079055 0.085574
105 0.083107 0.081126
106 0.082641 0.083214
107 0.083259 0.083340
108 0.083262 0.083333

Theoretical densities:
�S3,3(4, 0) = 1/12 ≈ 0.083333,
�S3,3(4, 2) = 1/12 ≈ 0.083333.
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(a, b) = (5, 7)

x l = 0 l = 2

103 0.145455 0.175757
104 0.164763 0.163132
105 0.165606 0.166441
106 0.165769 0.166444
107 0.166769 0.166473
108 0.166593 0.166685

Theoretical densities:
�S5,7(4, 0) = 1/6 ≈ 0.166667,
�S5,7(4, 2) = 1/6 ≈ 0.166667.

(a, b) = (5, 10)

x l = 0 l = 2

103 0.192771 0.156627
104 0.204564 0.150774
105 0.208342 0.145047
106 0.208087 0.145511
107 0.208173 0.145527
108 0.208333 0.145860

Theoretical densities:
�S5,10(4, 0) = 5/24 ≈ 0.208333,
�S5,10(4, 2) = 7/48 ≈ 0.145833.
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