Токуо J. Матн. Vol. 35, No. 2, 2012

On a Distribution Property of the Residual Order of *a* (mod *p*) **with a Quadratic Residue Condition**

Koji CHINEN and Chikako TAMURA

Kinki University

(Communicated by N. Suwa)

Abstract. Let *a* be a positive integer with $a \ge 2$ and $Q_a(k, l)$ be the set of odd prime numbers *p* such that the residual order of *a* in $\mathbb{Z}/p\mathbb{Z}^{\times}$ is congruent to *l* mod *k*. The natural density of the set $Q_a(q, 0)$ (*q* is a prime) is already known. In this paper, we consider the set $S_{a,b}(k, l)$, which consists of the primes *p* that belong to $Q_a(k, l)$ and satisfy $\left(\frac{b}{p}\right) = 1$, where $\left(\frac{b}{p}\right)$ is the Legendre symbol and *b* is a fixed integer. Heuristically, the natural density of $S_{a,b}(k, l)$ is expected to be half of that of $Q_a(k, l)$, but it is not true for some choices of *a* and *b*. In this paper, we determine the natural density of $S_{a,b}(k, l)$ for (k, l) = (2, j), (q, 0), (4, l), where j = 0, 1, q is an odd prime and l = 0, 2.

1. Introduction

Let **P** be the set of all odd prime numbers and $S \subset \mathbf{P}$. The natural density ΔS of the set *S* is defined by

$$\Delta S = \lim_{x \to \infty} \frac{\#\{s \in S ; s \le x\}}{\#\{p \in \mathbf{P} ; p \le x\}},$$

if it exists.

We take an integer $a \ge 2$. For a prime p with (a, p) = 1, we define $D_a(p)$, the residual order of a (mod p) by

$$D_a(p) = #\langle a \pmod{p} \rangle,$$

i.e. the order of the subgroup generated by a in the group $\mathbf{Z}/p\mathbf{Z}^{\times}$. We also introduce the quantity

$$I_a(p) = |\mathbf{Z}/p\mathbf{Z}^{\times} : \langle a \pmod{p} \rangle|,$$

i.e. the residual index of $a \pmod{p}$. We have

$$D_a(p)I_a(p) = p - 1. (1.1)$$

Received March 17, 2011; revised August 28, 2011

Mathematics Subject Classification: 11N05, 11N25, 11R18

Key words and phrases: Residual order, Artin's conjecture for primitive root

The first named author is supported by JSPS KAKENHI Grant Number 23540034.

In this paper, we consider the prime set

$$S_{a,b}(k,l) = \left\{ p \in \mathbf{P} \; ; \; p \nmid a, b, \; D_a(p) \equiv l \; (\text{mod } k), \; \left(\frac{b}{p}\right) = 1 \right\} \; ,$$

where $a, b, k, l \in \mathbb{Z}$, $a \ge 2, b \ne 0$ and $(\frac{b}{p})$ is the Legendre symbol. For simplicity, we assume that a and b are square free. We introduce another prime set

$$Q_a(k,l) = \left\{ p \in \mathbf{P} \; ; \; p \nmid a, \; D_a(p) \equiv l \; (\text{mod } k) \right\}$$

It is known that

$$\Delta Q_a(q,0) = \frac{q}{q^2 - 1}$$

if $(a, q) \neq (2, 2)$ ($\Delta Q_2(2, 0) = 17/24$, see [2], [3] and [8]). It is also well known that

$$\Delta\left\{p \in \mathbf{P} \; ; \; p \nmid b, \; \left(\frac{b}{p}\right) = 1\right\} = \frac{1}{2}.$$
(1.2)

So, heuristically, we expect that

$$\Delta S_{a,b}(k,l) = \frac{1}{2} \Delta Q_a(k,l) \,. \tag{1.3}$$

In many cases it is true, but this equality does not hold for some choices of a and b.

The aim of this paper is to determine $\Delta S_{a,b}(k, l)$ in the case (k, l) = (2, j), (q, 0), (4, l)(j = 0, 1, q is an odd prime, l = 0, 2) and observe the effect of the algebraic interaction between a and b on the density $\Delta S_{a,b}(k, l)$. Let

$$S_{a,b}(x;k,l) = \{ p \in S_{a,b}(k,l) ; p \le x \}.$$

The main results are the following:

THEOREM 1. We assume a, b are square free positive integers with a, $b \ge 2$. Then we have

$$\#S_{a,b}(x;2,0) = \Delta S_{a,b}(2,0) \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right) \quad (x \to \infty)$$

where $\lim x = \int_{2}^{x} (\log t)^{-1} dt$ and the density $\Delta S_{a,b}(2,0)$ is given by the following:

$$\Delta S_{2,2}(2,0) = \frac{5}{24}; \quad \Delta S_{a,a}(2,0) = \frac{1}{6}, \quad \text{if } a \neq 2;$$

$$\Delta S_{a,b}(2,0) = \frac{1}{3}, \quad \text{if } a, b \neq 2, \quad a \neq b, \ a \neq 2b \text{ and } b \neq 2a;$$

$$\Delta S_{a,b}(2,0) = \frac{17}{48},$$

if one of the following three conditions holds:

(i) $a, b \neq 2, a = 2b, or b = 2a,$

(ii)
$$a \neq 2, b = 2,$$

(iii) $a = 2, b \neq 2.$

It is remarkable that the conditions (i) through (iii) turn out to be symmetric with respect to *a* and *b*, despite that the initial ones $D_a(p) \equiv 0 \pmod{q}$ and $\left(\frac{b}{p}\right) = 1$ are not.

By $S_{a,b}(2, 1) = \{p \in \mathbf{P}; p \nmid b, (\frac{b}{p}) = 1\} - S_{a,b}(2, 0)$ and (1.2), we easily obtain the natural densities of all the sets

$$S_{a,b}^{\pm}(2, j) = \left\{ p \in \mathbf{P} \; ; \; p \nmid a, b, \; D_a(p) \equiv j \; (\text{mod } 2), \; \left(\frac{b}{p}\right) = \pm 1 \right\} \quad (j = 0, 1) \, .$$

COROLLARY 2. Let a, b be as above. Then we have

$$#S_{a,b}^{\pm}(x;2,j) = \Delta S_{a,b}^{\pm}(2,j) \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right) \quad (x \to \infty) \,,$$

where the density $\Delta S_{a,b}^{\pm}(2, j)$ is given by the following table. The condition (*) means $a, b \neq 2$, $a \neq b$, $a \neq 2b$ and $b \neq 2a$. The condition (**) means one of (i) and (ii) in Theorem 1 :

$$a = 2$$

	$\Delta S^+_{a,b}(2,0)$	$\Delta S^{-}_{a,b}(2,0)$	$\Delta S^+_{a,b}(2,1)$	$\Delta S^{-}_{a,b}(2,1)$
a = b = 2	$\frac{5}{24}$	$\frac{1}{2}$	$\frac{7}{24}$	0
$a = 2, b \neq 2$	$\frac{17}{48}$	$\frac{17}{48}$	$\frac{7}{48}$	$\frac{7}{48}$

 $a \neq 2$

	$\Delta S^+_{a,b}(2,0)$	$\Delta S^{-}_{a,b}(2,0)$	$\Delta S^+_{a,b}(2,1)$	$\Delta S^{-}_{a,b}(2,1)$
$a = b \neq 2$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	0
(*)	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$
(**)	$\frac{17}{48}$	$\frac{5}{16}\left(=\frac{15}{48}\right)$	$\frac{7}{48}$	$\frac{3}{16}\left(=\frac{9}{48}\right)$

REMARK. (i) We can verify $S_{a,a}^{-}(2, 1) = \emptyset$ in an elementary manner: $D_a(p) \equiv 1 \pmod{2}$ and (1.1) imply $2|I_a(p)$, which is equivalent to $\left(\frac{a}{p}\right) = 1$.

(ii) We have $\Delta S_{a,b}^+(2, j) = \Delta S_{a,b}^-(2, j) = \Delta Q_a(2, j)/2$ when a = 2 and $b \neq 2$, or (*) holds.

THEOREM 3. Let a, b be as above, and q be an odd prime number. Then we have

$$#S_{a,b}(x;q,0) = \Delta S_{a,b}(q,0) \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right) \quad (x \to \infty),$$

where the density $\Delta S_{a,b}(q, 0)$ is given by the following:

$$\Delta S_{a,b}(q,0) = \frac{q}{q^2 - 1}, \quad if \ b = q, \quad q \equiv 1 \pmod{4};$$

$$\Delta S_{a,b}(q,0) = \frac{q}{2(q^2 - 1)}, \quad otherwise.$$

We know from these theorems that

$$\Delta S_{a,a}(2,0) = \frac{1}{6} = \frac{1}{4} \Delta Q_a(2,0) \,,$$

if $a \neq 2$, and

$$\Delta S_{a,a}(q,0) = \frac{q}{2(q^2 - 1)} = \frac{1}{2} \Delta Q_a(q,0)$$

if $q \ge 3$ and $a \ne 1 \pmod{4}$. It is remarkable that in the latter case, even though b = a, the probabilistic argument in (1.3) is true, but in the former case, $\Delta S_{a,a}(2, 0)$ is actually much less than the value expected from (1.3).

The case q = 4 can be dealt with in a similar manner and we obtain the following:

THEOREM 4. Let a, b be as above. Then we have

$$#S_{a,b}(x;4,0) = \Delta S_{a,b}(4,0) \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right) \quad (x \to \infty),$$

where the density $\Delta S_{a,b}(4,0)$ is given by the following:

$$\Delta S_{2,2}(4,0) = \frac{1}{6}; \quad \Delta S_{a,a}(4,0) = \frac{1}{12}, \quad \text{if } a \neq 2;$$

$$\Delta S_{a,b}(4,0) = \frac{1}{6}, \quad \text{if } a, b \neq 2, \quad a \neq b, \ a \neq 2b \text{ and } b \neq 2a;$$

$$\Delta S_{a,b}(4,0) = \frac{5}{24},$$

if one of the following three conditions holds:

- (i) $a, b \neq 2, a = 2b, or b = 2a,$
- (ii) $a \neq 2, b = 2,$
- (iii) $a = 2, b \neq 2.$

Since $\#S_{a,b}(x; 4, 2) = \#S_{a,b}(x; 2, 0) - \#S_{a,b}(x; 4, 0)$, we easily obtain the following:

COROLLARY 5. Let a, b be as above. Then we have

$$#S_{a,b}(x;4,2) = \Delta S_{a,b}(4,2) \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right) \quad (x \to \infty),$$

where the density $\Delta S_{a,b}(4, 2)$ is given by the following:

$$\Delta S_{2,2}(4,2) = \frac{5}{24} - \frac{1}{6} = \frac{1}{24}; \quad \Delta S_{a,a}(4,2) = \frac{1}{6} - \frac{1}{12} = \frac{1}{12}, \quad \text{if } a \neq 2;$$

$$\Delta S_{a,b}(4,2) = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}, \quad \text{if } a, b \neq 2, \quad a \neq b, \quad a \neq 2b \text{ and } b \neq 2a;$$

$$\Delta S_{a,b}(4,2) = \frac{17}{48} - \frac{5}{24} = \frac{7}{48},$$

if one of the following three conditions holds:

- (i) $a, b \neq 2, a = 2b, b = 2a,$
- (ii) $a \neq 2, b = 2,$
- (iii) $a = 2, b \neq 2.$

We obtain from Theorem 4 and Corollary 5 the following tables which show how the sets $Q_a(4, 0)$ and $Q_a(4, 2)$ are divided by adding the conditions $\left(\frac{b}{p}\right) = 1$ or $\left(\frac{b}{p}\right) = -1$. Each value is the density of the primes in $Q_a(4, l)$ satisfying $\left(\frac{b}{p}\right) = \pm 1$. The condition (*) means $a, b \neq 2, a \neq b, a \neq 2b$ and $b \neq 2a$. The condition (**) means one of (i) and (ii) in Theorem 4. We can see from these tables that the "equi-distribution property" holds only in the case of (*).

 $\underline{a=2}$

	$\Delta Q_2(4,$	(0) = 5/12	$\Delta Q_2(4,2) = 7/24$		
	$\left(\frac{b}{p}\right) = 1$	$\left(\frac{b}{p}\right) = -1$	$\left(\frac{b}{p}\right) = 1$	$\left(\frac{b}{p}\right) = -1$	
a = b = 2	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{24}$	$\frac{1}{4}$	
$a = 2, b \neq 2$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{5}{24}$	

 $a \neq 2$

	$\Delta Q_a(4)$	(0) = 1/3	$\Delta Q_a(4,2) = 1/3$		
	$\left(\frac{b}{p}\right) = 1$	$\left(\frac{b}{p}\right) = -1$	$\left(\frac{b}{p}\right) = 1$	$\left(\frac{b}{p}\right) = -1$	
$a = b \neq 2$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{12}$	$\frac{1}{4}$	
(*)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	
(**)	$\frac{5}{24}$	$\frac{1}{8}\left(=\frac{3}{24}\right)$	$\frac{7}{48}$	$\frac{3}{16} \left(= \frac{9}{48} \right)$	

This paper is organized as follows: in Section 2, we introduce some preliminary results about algebraic number theory and the prime ideal theorem. In Sections 3, 4 and 5, we prove the main results (Theorems 1, 3 and 4). In Section 6, some results of numerical experiments are shown which support our main theorems.

For a prime power q^e , $q^e \parallel m$ means that $q^e \mid m$ and $q^{e+1} \nmid m$. We denote Euler's totient by $\varphi(n)$. For $r \in \mathbb{Z}$, let ζ_r be a primitive *r*-th root of unity.

ACKNOWLEDGMENTS. The authors would like to express their sincere gratitude to Professor Leo Murata for an abundance of valuable advice and discussion.

2. Preliminaries

In this section, we introduce some preliminary results. First we need the following:

THEOREM 6 (THE PRIME IDEAL THEOREM). Let K be a finite Galois extension field over \mathbf{Q} , $n = [K : \mathbf{Q}]$ and Δ be the discriminant of K. Then under the condition $\exp(10n(\log |\Delta|)^2) \le x$, we have

$$\pi_K(x) = \#\{\mathfrak{p} : a \text{ prime ideal in } K ; N\mathfrak{p} \le x\}$$
$$= \operatorname{li} x + O\left(\operatorname{li}(x^{\beta_0}) + x \exp\left(-c_1\sqrt{\frac{\log x}{n}}\right)\right)$$

where $\beta_0 \in \mathbf{R}$,

$$\left(\frac{1}{2}<\right)\beta_0<\max\left\{1-\frac{1}{4\log|\Delta|},\ 1-\frac{1}{c_2|\Delta|^{1/n}}\right\},\$$

 $c_1, c_2 > 0$ and the constant implied by O-symbol does not depend on n, Δ .

PROOF. See [5, Theorems 1.3 and 1.4].

For the calculation of the densities, we need to know the extension degrees of some algebraic number fields.

LEMMA 7. (i) Let $b \in \mathbf{N}$, $b \ge 2$ and be square free. Then the real quadratic fields which are contained in $\mathbf{Q}(\zeta_{2j}, \sqrt{b})$ are

$$\begin{cases} \mathbf{Q}(\sqrt{b}), & \text{if } j = 1, 2\\ \mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt{b}), \mathbf{Q}(\sqrt{2b}), & \text{if } j \ge 3. \end{cases}$$

(ii) We have

$$[\mathbf{Q}(\zeta_{2^j}, \sqrt{b}) : \mathbf{Q}] = \begin{cases} \varphi(2^j), & \text{if } j \ge 3 \text{ and } b = 2, \\ 2\varphi(2^j), & \text{otherwise.} \end{cases}$$

PROOF. We give a proof of (i) only. Suppose $\sqrt{c} \in \mathbf{Q}(\zeta_{2^j}, \sqrt{b}) = \mathbf{Q}(\zeta_{2^j})(\sqrt{b})$ $(c \in \mathbf{N}, c \ge 2$ and is square free) and is expressed in the form $\sqrt{c} = \alpha + \beta\sqrt{b}$ $(\alpha, \beta \in \mathbf{Q}(\zeta_{2^j}))$. If $\alpha \ne 0$, then $\sqrt{c} = (c + \alpha^2 - b\beta^2)/2\alpha \in \mathbf{Q}(\zeta_{2^j})$ and it follows that $j \ge 3$. In this case, the only real quadratic field which is contained in $\mathbf{Q}(\zeta_{2^j})$ is $\mathbf{Q}(\sqrt{2})$, so we have c = 2. If $\alpha = 0$, then $\beta = \sqrt{c/b} \in \mathbf{Q}(\zeta_{2^j})$. So, when j = 1 or 2, we can conclude b = c. When $j \ge 3$, we have $\sqrt{c/b} \in \mathbf{Q}(\sqrt{2})$ and c = b, 2b or b/2.

REMARK. When q is an odd prime and $j \ge 1$, we have

$$[\mathbf{Q}(\zeta_{q^j}, \sqrt{b}) : \mathbf{Q}] = \begin{cases} \varphi(q^j), & \text{if } b = q, \ q \equiv 1 \pmod{4}, \\ 2\varphi(q^j), & \text{otherwise,} \end{cases}$$
(2.1)

since the quadratic field which is contained in $\mathbf{Q}(\zeta_{q^j})$ is $\mathbf{Q}(\sqrt{q})$ if $q \equiv 1 \pmod{4}$ and $\mathbf{Q}(\sqrt{-q})$ if $q \equiv 3 \pmod{4}$. We see later that the case b = q and $q \equiv 1 \pmod{4}$ can be treated quite easily without using (2.1) (see Section 4).

In Lemmas 8 and 9, we assume $L = \mathbf{Q}(a^{1/q^l})$, $M = \mathbf{Q}(\zeta_{q^j}, \sqrt{b})$ and $K = L \cap M$ (q: prime, $j \ge l \ge 1$).

LEMMA 8. We have

$$[LM:\mathbf{Q}] = [\mathbf{Q}(\zeta_{q^j}, \sqrt{b}, a^{1/q^l}) : \mathbf{Q}] = \frac{[L:\mathbf{Q}][M:\mathbf{Q}]}{[K:\mathbf{Q}]}$$

PROOF. Both *L* and *M* are finite extensions over **Q** and *M* is a Galois extension over **Q**. So LM/L is a Galois extension and we have $Gal(LM/L) \cong Gal(M/K)$. Then, [LM : L] = [M : K]. Hence,

$$[LM: \mathbf{Q}] = [LM: L][L: \mathbf{Q}] = [M: K][L: \mathbf{Q}] = \frac{[M: \mathbf{Q}]}{[K: \mathbf{Q}]}[L: \mathbf{Q}].$$

LEMMA 9. Let L, M and K be as above.

(i) If q is an odd prime, then we have $K = \mathbf{Q}$.

(ii) If q = 2 and j = 1, 2, then we have

$$K = \begin{cases} \mathbf{Q}(\sqrt{a}), & \text{if } a = b, \\ \mathbf{Q}, & \text{otherwise.} \end{cases}$$

If q = 2 and $j \ge 3$, then we have

$$K = \begin{cases} \mathbf{Q}(\sqrt{a}), & \text{if } a = 2, \ b, \ 2b, \ b/2\\ \mathbf{Q}, & otherwise. \end{cases}$$

PROOF. (i) First note that all the subfields of M are normal extensions over \mathbf{Q} , since M is a composition field of $\mathbf{Q}(\zeta_{q^j})$ and $\mathbf{Q}(\sqrt{b})$, which are abelian extensions over \mathbf{Q} , and is contained in some cyclotomic field. So, $K = M \cap L \subset M$ is normal over \mathbf{Q} . We also note that the maximal normal subfield over \mathbf{Q} which is contained in $\mathbf{Q}(a^{1/u})$ is

$$\begin{cases} \mathbf{Q}, & \text{if } u \text{ is odd}, \\ \mathbf{Q}(\sqrt{a}), & \text{if } u \text{ is even} \end{cases}$$
(2.2)

([7, Lemma 3.1]). Then it is clear from (2.2) that $K = \mathbf{Q}$ if q is odd.

(ii) Applying (2.2) to K and L above, we see that

$$K = \begin{cases} \mathbf{Q}(\sqrt{a}), & \text{if } \mathbf{Q}(\sqrt{a}) \subset M, \\ \mathbf{Q}, & \text{otherwise.} \end{cases}$$

So, we get the desired result invoking Lemma 7 (i).

We put

$$K_{a,b,q;j,l} = K_{j,l} = \mathbf{Q}(\zeta_{a^{j}}, a^{1/q^{l}}, \sqrt{b}).$$
(2.3)

Gathering these results, we get the following proposition which will be used in the subsequent sections:

PROPOSITION 10. (I) Let q be an odd prime. Then we have

$$[K_{j,l}:\mathbf{Q}] = \begin{cases} q^l \varphi(q^j) = (q-1)q^{j+l-1}, & \text{if } b = q, \quad q \equiv 1 \pmod{4}, \\ 2q^l \varphi(q^j) = 2(q-1)q^{j+l-1}, & \text{otherwise.} \end{cases}$$

(II) *Let*
$$q = 2$$
.

(i) *When* j = 1, 2,

$$[K_{j,l}:\mathbf{Q}] = \begin{cases} 2^{j+l-1}, & \text{if } a = b, \\ 2^{j+l}, & \text{otherwise.} \end{cases}$$

(ii) When $j \ge 3$,

(ii–a) if a = b = 2, then

$$[K_{j,l}:\mathbf{Q}] = 2^{j+l-2}$$

(1) $a \neq 2, b = 2,$ (2) $a = 2, b \neq 2,$ (3) $a = b \neq 2,$ (4) $a, b \neq 2, a = 2b \text{ or } 2a = b$

is satisfied, then

$$[K_{j,l}:\mathbf{Q}] = 2^{j+l-1},$$

(ii–c) if $a, b \neq 2, a \neq b, a \neq 2b, 2a \neq b$, then

$$[K_{j,l}:\mathbf{Q}] = 2^{j+l}.$$

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1. We transform the condition on $D_a(p)$ into some conditions on $I_a(p)$. We consider a prime p such that $2^j \parallel p - 1$, $j \ge 1$. From the equation (1.1), we have

$$D_a(p) \equiv 0 \pmod{2} \Leftrightarrow 2^j \nmid I_a(p)$$

and

$$S_{a,b}(x;2,0) = \bigcup_{j \ge 1} \left\{ p \le x \; ; \; 2^j \parallel p-1, \; 2^j \nmid I_a(p), \; \left(\frac{b}{p}\right) = 1 \right\} \; .$$

Then we have

We estimate the former sum in (3.1) (We can estimate the latter sum in (3.1) in a similar manner). Let

$$M_j(x) = \left\{ p \le x \; ; \; p \equiv 1 \; (\text{mod } 2^j), \; 2^j \mid I_a(p), \; \left(\frac{b}{p}\right) = 1 \right\}.$$

We estimate $\sum_{j\geq 1} M_j(x)$. We divide (0, x] into the following three intervals:

$$(0, x] = I_1 \cup I_2 \cup I_3,$$

where

$$I_1 = (0, \log \log x], I_2 = (\log \log x, \sqrt{x} \log^2 x], I_3 = (\sqrt{x} \log^2 x, x].$$

Then

$$\sum_{j\geq 1} \#M_j(x) = \left(\sum_{2^j \in I_1} + \sum_{2^j \in I_2} + \sum_{2^j \in I_3}\right) \#M_j(x) \, .$$

Here we introduce the set

$$M'_{j}(x) = \left\{ p \le x \; ; \; p \equiv 1 \; (\text{mod } 2^{j}), \; 2^{j} \mid I_{a}(p) \right\} \; .$$

Then $#M_j(x) \le #M'_j(x)$.

First we consider the sum on I_3 . It can be estimated in a similar way to [4]. Under $2^j \parallel p - 1$,

$$2^j \mid I_a(p) \Leftrightarrow v^{2^j} \equiv a \pmod{p}$$
 is solvable.

Then, $a^{2(p-1)/2^j} \equiv 1 \pmod{p}$. Since $(p-1)/2^j < \sqrt{x}/\log^2 x$, p must divide the positive product

$$\prod_{m<\sqrt{x}/\log^2 x} \left(a^{2m}-1\right)\,,$$

so we have

$$2^{\sum_{2^{j} \in I_{3}} \#M'_{j}(x)} \leq \prod_{m < \sqrt{x}/\log^{2} x} a^{2m \log x/\log 2}.$$

Therefore,

$$\sum_{2^{j} \in I_{3}} \#M_{j}(x) \le \sum_{2^{j} \in I_{3}} \#M_{j}'(x) \ll \sum_{m < \sqrt{x}/\log^{2} x} m \cdot \log x = O\left(\frac{x}{\log^{3} x}\right).$$
(3.2)

Next we consider the sum on I_2 . By the Siegel-Walfisz theorem, for some $\varepsilon_1 > 0$, we have

$$\sum_{2^{j} \in I_{2}} \#M_{j}(x) \leq \sum_{2^{j} \in I_{2}} \#\left\{p \leq x \; ; \; p-1 \equiv 0 \; (\text{mod } 2^{j})\right\}$$
$$= \sum_{2^{j} \in I_{2}} \frac{1}{\varphi(2^{j})} \left\{\text{li} \; x + O(xe^{-\varepsilon_{1}\sqrt{\log x}})\right\} = O\left(\frac{x}{\log x \log \log x}\right). \tag{3.3}$$

Finally we consider the sum on I_1 . Note that

$$p \equiv 1 \pmod{2^j}, 2^j \mid I_a(p), \left(\frac{b}{p}\right) = 1$$

$$\Leftrightarrow$$
 p splits completely in $\mathbf{Q}(\zeta_{2^j}, a^{1/2^j})$ and $\mathbf{Q}(\sqrt{b})$

$$\Leftrightarrow$$
 p splits completely in $K_{j,j} = \mathbf{Q}(\zeta_{2^j}, a^{1/2^j}, \sqrt{b})$

When *p* splits completely in $K_{j,j}$, the number of distinct prime ideals of degree 1 over *p* is $n_{j,j} = [K_{j,j} : \mathbf{Q}]$. We put

$$\pi_{K_{j,j}}^{(1)}(x) = \# \left\{ \mathfrak{p} : \text{a prime ideal in } K_{j,j} ; N\mathfrak{p} \le x, \ \mathfrak{p} : \text{degree } 1 \right\}.$$

Then for $\alpha = \log \log \log x / \log 2$, we have

$$\sum_{2^{j} \in I_{1}} \#M_{j}(x) = \sum_{j \le \alpha} \frac{\pi_{K_{j,j}}^{(1)}(x)}{n_{j,j}}$$

Therefore we have to evaluate $\pi_{K_{j,j}}^{(1)}(x)$. This evaluation needs Theorem 6:

$$\pi_{K_{j,j}}(x) = \operatorname{li} x + O\left(\operatorname{li}(x^{\beta_0}) + x \exp\left(-c_1 \sqrt{\frac{\log x}{n_{j,j}}}\right)\right)$$

To estimate β_0 , we need the following estimate of the discriminant Δ of $K_{j,j}$:

$$|\Delta| \le (n_{j,j}^2 a b)^{n_{j,j}} \,. \tag{3.4}$$

The formula (3.4) is proved by the chain rule of differents $\mathfrak{d}_{K_{j,j}/\mathbf{Q}} = \mathfrak{d}_{K_{j,j}/F_j}\mathfrak{d}_{F_j/\mathbf{Q}}$ $(F_j = \mathbf{Q}(\zeta_{2j}, a^{1/2^j}))$. Taking the norm $N = N_{K_{j,j}/\mathbf{Q}}$ of the both sides, we have $|\Delta| = N(\mathfrak{d}_{K_{j,j}/F_j})|D_{F_j}|^2 \leq (2b)^{n_{j,j}}([F_j : \mathbf{Q}]^2a)^{n_{j,j}} \leq (n_{j,j}^2ab)^{n_{j,j}}$, where D_{F_j} is the discriminant of F_j . We have

$$\log |\Delta| \le n_{j,j} \log(n_{j,j}^2 ab) \le d_1 n_{j,j}^2,$$

$$c_2 |\Delta|^{1/n_{j,j}} \le c_2(n_{j,j}^2 ab) \le d_2 n_{j,j}^2.$$

The constants d_1 and d_2 depend only on a and b. The number d_3 below is the same.

$$\beta_0 < \max\left\{1 - \frac{1}{4\log|\Delta|}, \ 1 - \frac{1}{c_2|\Delta|^{1/n_{j,j}}}\right\}$$
$$\leq \max\left\{1 - \frac{1}{d_1 n_{j,j}^2}, \ 1 - \frac{1}{d_2 n_{j,j}^2}\right\} \le 1 - \frac{1}{d_3 n_{j,j}^2}$$

by max $\{4 \log |\Delta|, c_2 |\Delta|^{1/n_{j,j}}\} \le \max \{d_1 n_{j,j}^2, d_2 n_{j,j}^2\} \le d_3 n_{j,j}^2$. Using this, we have

$$\operatorname{li}(x^{\beta_0}) \ll \frac{x^{\beta_0}}{\log x^{\beta_0}} \le x \exp\left(-\frac{\sqrt{\log x}}{d_3 n_{j,j}^2}\right).$$

Thus we have

$$\pi_{K_{j,j}}(x) = \operatorname{li} x + O\left(x \exp\left(-c \frac{\sqrt{\log x}}{n_{j,j}^2}\right)\right),$$

where c > 0 does not depend on j. Also, since the contribution of prime ideals of degree more than one is $O(n_{j,j}\sqrt{x})$, we have

$$\pi_{K_{j,j}}^{(1)}(x) = \operatorname{li} x + O\left(n_{j,j}x \exp\left(-c\frac{\sqrt{\log x}}{n_{j,j}^2}\right)\right)$$

We can estimate the sum on I_1 as follows:

$$\sum_{2^{j} \in I_{1}} \#M_{j}(x) = \sum_{2^{j} \le \log \log x} \left\{ \frac{1}{n_{j,j}} \text{li} \, x + O\left(x \exp\left(-c\frac{\sqrt{\log x}}{n_{j,j}^{2}}\right)\right) \right\}$$
$$= \sum_{j \ge 1} \frac{1}{n_{j,j}} \text{li} \, x - \sum_{2^{j} > \log \log x} \frac{1}{n_{j,j}} \text{li} \, x + O\left(\sum_{2^{j} \le \log \log x} x \exp\left(-c\frac{\sqrt{\log x}}{n_{j,j}^{2}}\right)\right).$$

We have

$$\sum_{2^j > \log \log x} \frac{1}{n_{j,j}} \operatorname{li} x \ll \operatorname{li} x \sum_{2^j > \log \log x} \frac{1}{2^{2j}} \ll \frac{x}{\log x \left(\log \log x\right)^2}$$

When $2^j \le \log \log x$, $n_{j,j}^2 \le (\log \log x)^4$ by $n_{j,j} = m \cdot 2^{2j} (m = 1, 1/2, 1/4)$, so

$$\sum_{2^j \le \log \log x} x \exp\left(-c\frac{\sqrt{\log x}}{n_{j,j}^2}\right) \le \sum_{2^j \le \log \log x} x \exp\left(-c\frac{\sqrt{\log x}}{(\log \log x)^4}\right).$$

When x is sufficiently large, for a positive integer N, $\exp(-c\sqrt{\log x}/(\log \log x)^4)$ log log log $x \le 1/(\log x)^N$. Letting N = 2, we have

$$\sum_{2^j \le \log \log x} x \exp\left(-c \frac{\sqrt{\log x}}{n_{j,j}^2}\right) \ll \frac{x}{\log^2 x}$$

Hence

$$\sum_{2^{j} \in I_{1}} \#M_{j}(x) = \sum_{j \ge 1} \frac{1}{[K_{j,j} : \mathbf{Q}]} \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right).$$
(3.5)

Gathering (3.2), (3.3) and (3.5), we obtain

$$\sum_{j \ge 1} \# \left\{ p \le x \; ; \; p \equiv 1 \; (\text{mod } 2^j), \; 2^j \mid I_a(p), \; \left(\frac{b}{p}\right) = 1 \right\}$$

$$= \sum_{j\geq 1} \frac{1}{[K_{j,j}:\mathbf{Q}]} \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right).$$

The first term in (3.1) can be estimated by direct application of Theorem 6 with $K = \mathbf{Q}(\sqrt{b})$:

$$\#\left\{p \le x \; ; \; \left(\frac{b}{p}\right) = 1\right\} = \frac{1}{2} \text{li}\,x + O\left(x \exp\left(-c_2 \frac{\sqrt{\log x}}{4}\right)\right) \quad (c_2 > 0) \; .$$

Consequently, we have

$$\#S_{a,b}(x;2,0) = \left\{\frac{1}{2} - \sum_{j\geq 1} \frac{1}{[K_{j,j}:\mathbf{Q}]} + \sum_{j\geq 1} \frac{1}{[K_{j+1,j}:\mathbf{Q}]}\right\} \ln x + O\left(\frac{x}{\log x \log \log x}\right).$$

Finally, we calculate the coefficient of li *x*, that is $\Delta S_{a,b}(2, 0)$. By Proposition 10, we have

$$\Delta S_{2,2}(2,0) = \frac{1}{2} - \left(\frac{1}{2} + \frac{1}{8} + \sum_{j \ge 3} \frac{1}{2^{2j-2}}\right) + \left(\frac{1}{4} + \sum_{j \ge 2} \frac{1}{2^{2j-1}}\right) = \frac{5}{24},$$

$$\Delta S_{a,a}(2,0) = \frac{1}{2} - \sum_{j \ge 1} \frac{1}{2^{2j-1}} + \sum_{j \ge 1} \frac{1}{2^{2j}} = \frac{1}{6} \quad (a \ne 2),$$

$$\Delta S_{a,b}(2,0) = \frac{1}{2} - \sum_{j \ge 1} \frac{1}{2^{2j}} + \sum_{j \ge 1} \frac{1}{2^{2j+1}} = \frac{1}{3} \quad (a,b \ne 2, a \ne b, a \ne 2b, b \ne 2a),$$

$$\Delta S_{a,b}(2,0) = \frac{1}{2} - \left(\frac{1}{4} + \frac{1}{16} + \sum_{j \ge 3} \frac{1}{2^{2j-1}}\right) + \left(\frac{1}{8} + \sum_{j \ge 2} \frac{1}{2^{2j}}\right) = \frac{17}{48}$$

(one of the conditions (i)–(iii) in Theorem 1 holds), which give Theorem 1.

4. Proof of Theorem 3

In this section, we outline the proof of Theorem 3. In the case b = q and $q \equiv 1 \pmod{4}$, we get $S_{a,b}(x;q,0) = Q_a(x;q,0)$ in an elementary manner. Indeed, since $D_a(p) \equiv 0 \pmod{q}$ and $D_a(p)I_a(p) = p - 1$, we have $p \equiv 1 \pmod{q}$. So, $q \equiv 1 \pmod{4}$ and the quadratic reciprocity law give

$$\left(\frac{b}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) = \left(\frac{1}{q}\right) = 1,$$

i.e. $D_a(p) \equiv 0 \pmod{q}$ always implies $(\frac{b}{p}) = 1$.

Now we proceed to the case where b = q and $q \equiv 1 \pmod{4}$ do not hold. By the equation

$$p-1=I_a(p)D_a(p),$$

we have $q \mid p - 1$. So we assume $q^j \parallel p - 1, j \ge 1$. Then

 $D_a(p) \equiv 0 \pmod{q} \Leftrightarrow q^j \nmid I_a(p).$

We can decompose $S_{a,b}(x; q, 0)$ in the same way as in Theorem 1 and get

$$\begin{split} \#S_{a,b}(x;q,0) &= \# \left\{ p \le x \; ; \; p \equiv 1 \pmod{q}, \left(\frac{b}{p}\right) = 1 \right\} \\ &- \sum_{j \ge 1} \# \left\{ p \le x \; ; \; p \equiv 1 \pmod{q^j}, \; q^j \mid I_a(p), \; \left(\frac{b}{p}\right) = 1 \right\} \\ &+ \sum_{j \ge 1} \# \left\{ p \le x \; ; \; p \equiv 1 \pmod{q^{j+1}}, \; q^j \mid I_a(p), \; \left(\frac{b}{p}\right) = 1 \right\}. \end{split}$$

We can estimate the remainder terms similarly to Theorem 1 and obtain

$$\begin{split} \#S_{a,b}(x;q,0) &= \left(\frac{1}{[\mathbf{Q}(\zeta_q,\sqrt{b}):\mathbf{Q}]} - \sum_{j\geq 1} \frac{1}{[K_{j,j}:\mathbf{Q}]} + \sum_{j\geq 1} \frac{1}{[K_{j+1,j}:\mathbf{Q}]}\right) \text{li}\,x \\ &+ O\left(\frac{x}{\log x \log \log x}\right), \end{split}$$

where $K_{j,l} = \mathbf{Q}(\zeta_{q^j}, a^{1/q^l}, \sqrt{b})$. We calculate the coefficients of li *x* using Proposition 10. Then we have

$$\Delta S_{a,b}(q,0) = \frac{1}{2(q-1)} - \sum_{j \ge 1} \frac{1}{2(q-1)q^{2j-1}} + \sum_{j \ge 1} \frac{1}{2(q-1)q^{2j}} = \frac{q}{2(q^2-1)}.$$

Thus we have proved Theorem 3.

5. Proof of Theorem 4

In this section, we describe a proof of Theorem 4. The proof is similar to those of the previous theorems, so we give an outline only. By $D_a(p) \equiv 0 \pmod{4}$, $p - 1 = D_a(p)I_a(p) \equiv 0 \pmod{4}$. So we assume $2^j \parallel p - 1$, $j \ge 2$. Then we have

$$D_a(p) \equiv 0 \pmod{4} \Leftrightarrow 2^{j-1} \nmid I_a(p).$$

We can proceed in the same way as in Theorem 1 and get

$$#S_{a,b}(x; 4, 0) = #\left\{ p \le x \; ; \; p \equiv 1 \pmod{4}, \; \left(\frac{b}{p}\right) = 1 \right\} \\ -\sum_{j \ge 1} #\left\{ p \le x \; ; \; p \equiv 1 \pmod{2^{j+1}}, \; 2^j \mid I_a(p), \; \left(\frac{b}{p}\right) = 1 \right\}$$

DISTRIBUTION PROPERTY OF THE RESIDUAL ORDER OF $a \pmod{p}$

$$+\sum_{j\geq 1} \#\left\{p\leq x \; ; \; p\equiv 1 \; (\text{mod } 2^{j+2}), \; 2^{j} \mid I_{a}(p), \; \left(\frac{b}{p}\right)=1\right\}.$$

Estimating the remainder terms, we get

$$\begin{split} \#S_{a,b}(x;4,0) &= \left\{ \frac{1}{[\mathbf{Q}(\zeta_4,\sqrt{b}):\mathbf{Q}]} - \frac{1}{[K_{j+1,j}:\mathbf{Q}]} + \frac{1}{[K_{j+2,j}:\mathbf{Q}]} \right\} \text{li}\,x \\ &+ O\left(\frac{x}{\log x \log \log x}\right), \end{split}$$

where $K_{j,l} = \mathbf{Q}(\zeta_{2^j}, a^{1/2^l}, \sqrt{b})$. The densities are given by the following:

$$\Delta S_{2,2}(4,0) = \frac{1}{4} - \left(\frac{1}{4} + \sum_{j\geq 2} \frac{1}{2^{2j-1}}\right) + \sum_{j\geq 1} \frac{1}{2^{2j}} = \frac{1}{6},$$

$$\Delta S_{a,a}(4,0) = \frac{1}{4} - \sum_{j\geq 1} \frac{1}{2^{2j}} + \sum_{j\geq 1} \frac{1}{2^{2j+1}} = \frac{1}{12} \quad (a \neq 2),$$

$$\Delta S_{a,b}(4,0) = \frac{1}{4} - \sum_{j\geq 1} \frac{1}{2^{2j+1}} + \sum_{j\geq 1} \frac{1}{2^{2j+2}} = \frac{1}{6} \quad (a,b\neq 2, a\neq b, a\neq 2b, b\neq 2a),$$

$$\Delta S_{a,b}(4,0) = \frac{1}{4} - \left(\frac{1}{8} + \sum_{j\geq 2} \frac{1}{2^{2j}}\right) + \sum_{j\geq 1} \frac{1}{2^{2j+1}} = \frac{5}{24}$$

(one of the conditions (i)–(iii) in Theorem 4 holds). This completes the proof Theorem 4.

6. Numerical examples

In this section, we give some results of numerical experiments on the densities $\Delta S_{a,b}(k, l)$. Each table shows the values $\#S_{a,b}(x; k, l)/\pi(x)$ for $x = 10^m$ (m = 3, 4, ..., 8). The theoretical densities which are obtained in the previous sections are also shown.

(I) The case (k, l) = (2, 0)

This case corresponds to Theorem 1.

(I–i) The case
$$a = b$$

We show the data for (a, b) = (2, 2), (3, 3) and (6, 6). The theoretical densities are

 $5/24 \approx 0.208333$ for (a, b) = (2, 2) and $1/6 \approx 0.166667$ for other cases.

x	(a, b) = (2, 2)	(a,b) = (3,3)	(a, b) = (6, 6)
10 ³	0.179641	0.132530	0.138554
10^{4}	0.206026	0.164629	0.162999
10^{5}	0.207069	0.164234	0.165693
106	0.207320	0.165856	0.166187
10^{7}	0.208054	0.166599	0.166288
10^{8}	0.208284	0.166595	0.166656

(I-ii)	The case a ,	<i>b</i> :	$\neq 2. a$	$a \neq b$	b.a	$\neq 2b$.	b	$\neq 2a$	a

This is the standard case in (k, l) = (2, 0). The theoretical density is $1/3 \approx 0.333333$ for all cases.

x	(a, b) = (3, 5)	(a, b) = (3, 10)	(a,b) = (5,3)
10 ³	0.303030	0.327273	0.321212
10^{4}	0.331158	0.334421	0.327080
10^{5}	0.332464	0.331526	0.332881
10^{6}	0.332735	0.332913	0.333435
10^{7}	0.333309	0.333181	0.333158
10^{8}	0.333295	0.333313	0.333348
<i>x</i>	(a,b) = (6,5)	(a, b) = (6, 10)	(a,b) = (10,3)
10^{3}	0.296970	0.315152	0.296970
10^{4}	0.333605	0.332790	0.331158
10^{5}	0.332151	0.331526	0.332256
10^{6}	0.332161	0.332658	0.332798
10^{7}	0.333098	0.332799	0.333408
10^{8}	11	0.333346	0.333218

	None of the al	
(1-m)	None of the at	Jove cases

This case includes (a) $a, b \neq 2, a = 2b$ or b = 2a, (b) $a \neq 2, b = 2$, (c) $a = 2, b \neq 2$. The theoretical density is $17/48 \approx 0.354167$.

x	(a,b) = (3,6)	(a,b) = (6,3)	(a, b) = (7, 14)	(a, b) = (14, 7)
10 ³	0.331325	0.325301	0.361446	0.343373
10 ⁴	0.352893	0.356153	0.352893	0.359413
10 ⁵	0.353180	0.352555	0.355474	0.351825
10 ⁶	0.353368	0.353547	0.354298	0.352961
107	0.354093	0.353963	0.354004	0.354066
10^{8}	0.354136	0.354138	0.354040	0.354046

DISTRIBUTION PROPERTY OF THE RESIDUAL ORDER OF $a \pmod{p}$

x	(a,b) = (3,2)	(a,b) = (6,2)	(a,b) = (2,3)	(a,b) = (2,6)
10 ³	0.331325	0.337349	0.313253	0.325301
10^{4}	0.349633	0.352893	0.352078	0.352078
10^{5}	0.352868	0.353806	0.352138	0.353702
10^{6}	0.353496	0.353585	0.353508	0.353419
10^{7}	0.354042	0.353945	0.353954	0.353988
10 ⁸	0.354116	0.354121	0.354160	0.354163

(II) The case (k, l) = (q, 0) (q is an odd prime)

This case corresponds to Theorem 3.

(II–i) The case $b = q, q \equiv 1 \pmod{4}$

In this case, $\Delta S_{a,b}(q, 0) = \Delta Q_a(q, 0)$ holds. We give the examples for b = q = 5 and b = q = 13. Theoretical densities are $5/24 \approx 0.208333$ for b = q = 5 and $13/168 \approx 0.077381$ for b = q = 13.

The case $b = q = 5$			The case $b = q = 13$					
x	a = 2	a = 3	<i>a</i> = 5		x	a = 2	<i>a</i> = 3	<i>a</i> = 5
10 ³	0.204819	0.212121	0.204819		10 ³	0.078313	0.072727	0.066667
10^{4}	0.205379	0.211256	0.211084		104	0.076610	0.076672	0.073409
10^{5}	0.209906	0.208259	0.208551		10^{5}	0.077372	0.076963	0.077693
10^{6}	0.208584	0.208128	0.208686		10^{6}	0.077087	0.077636	0.077725
107	0.208223	0.208340	0.208275		107	0.077454	0.077507	0.077413
10 ⁸	0.208351	0.208354	0.208311		10^{8}	0.077374	0.077406	0.077420

(II-ii) The general cases

We give the examples where b = q and $q \equiv 1 \pmod{4}$ do not hold. In this case, $\Delta S_{a,b}(q,0) = \Delta Q_a(q,0)/2$. We give some results for q = 3 and q = 5. The theoretical densities are 3/16 = 0.1875 for q = 3 and $5/48 \approx 0.104167$ for q = 5.

The case q = 3

x	(a, b) = (2, 2)	(a,b) = (2,3)	(a,b) = (2,6)	(a,b) = (3,2)	(a,b) = (3,3)
10 ³	0.167665	0.168675	0.180723	0.168675	0.186747
10 ⁴	0.183225	0.182559	0.184189	0.190709	0.191524
10^{5}	0.189553	0.187070	0.187904	0.188843	0.186340
10^{6}	0.187434	0.187182	0.187513	0.187653	0.186914
107	0.187659	0.187614	0.187628	0.187309	0.187179
10^{8}	0.187520	0.187502	0.187509	0.187495	0.187469

x	(a, b) = (5, 2)	(a,b) = (5,3)	(a, b) = (5, 5)	(a,b) = (6,2)	(a,b) = (6,3)
10 ³	0.156627	0.157576	0.180723	0.144578	0.156627
10^{4}	0.185004	0.185971	0.185004	0.182559	0.191524
10^{5}	0.187278	0.186881	0.186861	0.187070	0.186548
106	0.187105	0.186687	0.187589	0.187041	0.186990
107	0.187480	0.187339	0.187576	0.187367	0.187579
10^{8}	0.187456	0.187485	0.187469	0.187444	0.187408

The case q = 5

Note that we must exclude b = 5.

x	(a, b) = (2, 2)	(a, b) = (2, 3)	(a, b) = (2, 6)	(a, b) = (3, 2)	(a, b) = (3, 3)
10 ³	0.095808	0.078313	0.078313	0.102410	0.084337
10^{4}	0.100163	0.103504	0.096170	0.101874	0.105134
10^{5}	0.104369	0.105839	0.106257	0.104484	0.103754
10 ⁶	0.104399	0.103954	0.104948	0.104859	0.103814
107	0.104037	0.104126	0.104152	0.104102	0.104197
10 ⁸	0.104156	0.104156	0.104206	0.104165	0.104173
x	(a,b) = (5,2)	(a,b) = (5,3)	(a,b) = (6,2)	(a,b) = (6,3)	
10 ³	0.084337	0.090909	0.096386	0.078313	
10^{4}	0.103504	0.106036	0.104319	0.108394	
10 ⁵	0.104901	0.105016	0.103441	0.103128	
10 ⁶	0.104630	0.103306	0.104974	0.103852	
10 ⁷	0.104039	0.104101	0.104158	0.104271	
10^{8}	0.104125	0.104099	0.104132	0.104188	

(III) The case (k, l) = (4, 0), (4, 2)

This case corresponds to Theorem 4 and Corollary 5. We give four typical examples.

(a,b)	(a,b) = (2,2)				
x	l = 0	l = 2			
10 ³	0.167665	0.011976			
10^{4}	0.162866	0.043160			
10^{5}	0.167136	0.039933			
106	0.166134	0.041186			
107	0.166597	0.041456			
108	0.166669	0.041614			

Theoretical densities:

 $\Delta S_{2,2}(4,0) = 1/6 \approx 0.166667,$ $\Delta S_{2,2}(4,2) = 1/24 \approx 0.041667.$

(a, b) = (3, 3)				
x	l = 0	l = 2		
10 ³	0.060241	0.072289		
10^{4}	0.079055	0.085574		
10^{5}	0.083107	0.081126		
10^{6}	0.082641	0.083214		
107	0.083259	0.083340		
10^{8}	0.083262	0.083333		

Theoretical densities:

 $\Delta S_{3,3}(4,0) = 1/12 \approx 0.083333,$ $\Delta S_{3,3}(4,2) = 1/12 \approx 0.083333.$

DISTRIBUTION PROPERTY OF THE RESIDUAL ORDER OF $a \pmod{p}$

(a, b) = (5, 7)				(a, b) = (5, 10)			
x	l = 0	l = 2		x	l = 0	l = 2	
10 ³	0.145455	0.175757		10 ³	0.192771	0.156627	
104	0.164763	0.163132		104	0.204564	0.150774	
10 ⁵	0.165606	0.166441		10^{5}	0.208342	0.145047	
106	0.165769	0.166444		106	0.208087	0.145511	
107	0.166769	0.166473		107	0.208173	0.145527	
108	0.166593	0.166685		10^{8}	0.208333	0.145860	
Theoretical densities:			Theoretical densities:				
$\Delta S_{5,7}(4,0) = 1/6 \approx 0.166667,$				$\Delta S_{5,10}(4,0) = 5/24 \approx 0.208333,$			
$\Delta S_{5,7}(4,2) = 1/6 \approx 0.166667.$				$\Delta S_{5,10}(4,2) = 7/48 \approx 0.145833.$			

References

- [1] K. CHINEN and L. MURATA, On a distribution property of the residual order of *a* (mod *p*), J. Number Theory **105** (2004), 60–81.
- [2] H. HASSE, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von durch eine vorgegebene Primzahl $l \neq 2$ teilbarer bzw. unteibarer Ordnung mod p ist, Math. Ann. **162** (1965), 74–76.
- [3] H. HASSE, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. **166** (1966), 19–23.
- [4] C. HOOLEY, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209–220.
- [5] J. C. LAGARIAS and A. M. ODLYZKO, Effective versions of the Chebotarev density theorem, in: Algebraic Number Fields (Durham, 1975), Academic Press, London, 1977, pp. 409–464.
- [6] L. MURATA, A problem analogous to Artin's conjecture for primitive roots and its applications, Arch. Math. 57 (1991), 555–565.
- [7] L. MURATA and K. CHINEN, On a distribution property of the residual order of *a* (mod *p*), II, J. Number Theory **105** (2004), 82–100.
- [8] R. W. K. ODONI, A conjecture of Krishnamurthy on decimal periods and some allied problems, J. Number Theory 13 (1981), 303–319.

Present Addresses: KOJI CHINEN DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND ENGINEERING, KINKI UNIVERSITY, 3–4–1, KOWAKAE, HIGASHI-OSAKA, 577–8502 JAPAN. *e-mail*: chinen@math.kindai.ac.jp

CHIKAKO TAMURA OSAKA UNIVERSITY OF COMMERCE HIGH SCHOOL, 4–1–10, MIKURIYA-SAKAEMACHI, HIGASHI-OSAKA, 577–8505 JAPAN. *e-mail*: evening-sunlight-2134711@s2.dion.ne.jp