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Abstract. We define and study the Bessel potential and inhomogeneous Besov spaces associated with the
Dunkl operators on RY. As applications on these spaces we construct the Sobolev type embedding theorem and the
paraproduct operators associated with the Dunkl operators, as similar to those defined by Bony. We also establish
Strichartz type estimates for the Dunkl-Schrodinger equation and finally we study the problem of well posedness of
the generalized heat equation.

1. Introduction

The Dunkl operators, which are differential-difference operators introduced by Dunkl in
[3], are very important in pure mathematics and in physics. Especially, they provide a useful
tool in the study of special functions related with root systems (cf. [4]). In the previous paper
[7], we study some function spaces associated with Dunkl operators. We have begun a general
theory on Littlewood-Paley decompositions associated with Dunkl operators and introduced
generalized Sobolev spaces, generalized Holder spaces and BM O associated with the Dunkl
operators.

In this second paper of a series of our study we continue our investigation of func-
tion spaces; generalized Bessel potential spaces, inhomogeneous Besov spaces and Triebel-
Lizorkin spaces associated with Dunkl operators. We obtain their basic properties and apply
them to estimate the solutions of the Dunkl-Schrodinger and the Dunkl heat equations. In
their recent paper [1], Abdelkefi, Anker, Sassi and Sifi also obtain some basic properties of
the Besov spaces and integrability for the Dunkl transform.

The contents of the paper are as follows. In §2 we recall some basic results about the har-
monic analysis associated with the Dunkl operators. In §3 we introduce the Littlewood-Paley
decomposition associated with the Dunkl operators. We shall obtain Bernstein’s inequalities.
§4 is devoted to study the Dunkl-Bessel potential spaces, the inhomogeneous Dunkl-Besov
spaces and the Dunkl-Triebel-Lizorkin spaces. According to a standard process in the Eu-
clidean case (cf. [15]), we shall consider equivalent norms, lifting properties, interpolations
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and dualities of these spaces. In §5 we summarize some results on embeddings and para-
product operators, which depend on the index y associated to the multiplicity function of
the root system. In the last §6 we consider some applications of the Dunkl-Besov spaces to
differential-difference equations. We shall obtain Strichartz type estimates of the solutions
of the Dunkl-Schrédinger equation and finally a space-time estimate of the solutions of the
Dunkl heat equation.

Throughout this paper by ¢, C we always represent positive constants not necessarily the
same in each occurrence.

2. Preliminaries

In order to confirm the basic and standard notations we briefly overview the theory of
Dunkl operators and related harmonic analysis. Main references are [3, 4, 5, 6, 7, 11, 12, 14,
17, 18].

2.1. Root system, reflection group and multiplicity function. Let R? be the Eu-
clidean space equipped with a scalar product (,) and let ||x|| = +/{(x, x). For o in R%\{0},
oo denotes the reflection in the hyperplane H, C R¢ perpendicular to «, i.e., for x € R?,
0o (x) = x—=2|la|| "% {e, x)a. A finite set R C R\ {0} is called a root system if RNRa = {+ar}
and o, R = R for all @ € R. We normalize each « € R as (x,a) = 2. We fix a
B € R\Uycr H, and define a positive root system R, of R as Ry = {« € R | («, B) > 0}.
The reflections oy, @ € R, generate a finite group W C O(d), called the reflection group. A
function k : R — C on R is called a multiplicity function if it is invariant under the action of
W. We introduce the index y as

y=yk) =) k).
aeRy
Throughout this paper, we will assume that k(o) > O for all @ € R. We denote by wy the
weight function on R¢ given by

o) = [ Hewx)*,

Ol€R+

which is invariant and homogeneous of degree 2y. In the case that the reflection group W
is the group lei of sign changes, the weight function wy is a product function of the form

]_[‘;=1 |x; 1%Ki | k j = 0. We denote by ¢, the Mehta-type constant defined by

—llx?

Ck =/ e 2 wip(x)dx.
R4

In the following we denote by
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C(R%) the space of continuous functions on RY.

Co(RY)  the space of continuous functions on R? vanishing at infinity.
CP(R?)  the space of functions of class C” on RY.

Cf (RY)  the space of bounded functions of class C”.

ERD) the space of C*°-functions on R,

S(R?) the Schwartz space of rapidly decreasing functions on R?.
D(R?)  the space of C*®°-functions on R¢ which are of compact support.
S'(R?)  the space of temperate distributions on R?.

2.2. The Dunkl operators. Letk : R — C be a multiplicity function on R and Rt
a fixed positive root system of R. Then the Dunkl operators 7, 1 < j < d, are defined on

C!'(R?) by

0 B o
Tif@) =5 —f@)+ 3 k(majw,
J b

OlER+

where o = (a1, a2, ..., ag). Similarly as ordinary derivatives, each T satisfies for all f, g
in C'(R?) and at least one of them is W-invariant,

Ti(fo)=(T; g+ f(T;g)

and for all f in C}(RY) and g in S(RY),

/ T, £ (0)g()won(x)dx = — / FOOT;9()wn(x)dx
R4 R4

Furthermore, according to [3, 4], the Dunkl operators 7j, | < j < d, commute and there
exists the so-called Dunkl’s intertwining operator Vi such that T;Vy = Vi (9/0x;) for 1 <

j <dand Vi(1) = 1. We define the Dunkl-Laplace operator A; on R¢ by
Vi), a)  fx)— f(Ua(X))>

(o, x) (o, x)2

d
Af) =Y THfX)=Af(0)+2 ) k(a)(
j=1

a€RT

where A and V are the usual Euclidean Laplacian and nabla operators on R respectively.
Since the Dunkl operators commute, their joint eigenvalue problem is significant, and for
each y € R, the system

Tiu(x,y) =yju(x,y), j=1,...,d, and u(0,y) =1

admits a unique analytic solution K (x, y), x € RY, called the Dunkl kernel, which has a
holomorphic extension to C? x C4. For x, y € C?, the kernel satisfies

(@ K(x,y)=K(y, x),

®) K@Ax,y)=K(x,Ay)forx e C,

(©) K(wx,wy)=K(x,y)forwe W.
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2.3. The Dunkl transform. For functions f on R? we define L”-norms of f with
respect to wy (x)dx as

1
”f”L,f(Rd) = <~/Rd |f(x)|Pwk(x)dx> s

if ] < p < ooand ||f||Lgo(Rd) = ess sup,cgre | f(x)]. We denote by L,f (R?) the space of all

measurable functions f on R with finite L} -norm.
The Dunkl transform Fp on L ,i (RY) is given by

1
Fp(Hy) = a'/Rd SOK (x, —iy)wp(x)dx .

Some basic properties are the following (cf. [5] and [6]): For all f € L,i (RY),
@ IFp(Dllemsy < 11l way
(b)  Fp(f (/M) =2 Ep(f)(ry) for & > 0,
(c) if Fp(f) belongs to L,i (RY), then
1
1o)== [ Fo(K x s
Ck JRA

and moreover, for all f € S(R?),
@ FpT;Hy) =iy;Fp(HHy),
(e) if wedefine Fp(f)(y) = Fp(f)(—y), then

FpFp=FpFp=1d.
PROPOSITION 2.1. The Dunkl transform Fp is a topological isomorphism from

S(R?) onto itself and for all f in S(R?),

/ | f () Pox(x)dx = / |Fp(f)(E) o (€)dE .
R4 R4

In particular, the Dunkl transform f — Fp(f) can be uniquely extended to an isometric
isomorphism on L,% (RY).

We define the tempered distribution 7 associated with f € L,f (RY) by
(2.1 (Ty. ¢) = /Rd F ()P (x)wr(x)dx

for ¢ € S(R?) and denote by (f, @)« the integral in the righthand side.

DEFINITION 2.1. The Dunkl transform Fp(z) of a distribution T € S’(RY) is defined
by

(Fp(1), ¢) = (. Fp(9))
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for ¢ € S(RY).
In particular, for f € L,f (RY), it follows that for ¢ € S(R?),
(Fo(N), @) = (Fp(Tp), ¢) =Ty, Fp(P)) = (f, Fp(@))k -

THEOREM 2.2. The Dunkl transform Fp is a topological isomorphism from S'(R%)
onto itself.

2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce a gener-
alized translation and a convolution structure in our Dunkl setting. For a function f € S(RY)
and y € R? the Dunkl translation 7y f is defined by

1
Ty f(x) = Q/Rd Fp(f) @)K (ix, 2)K(iy, z)wr(z)dz .

Clearly 7y f(x) = 1, f(y) and by using the Dunkl’s intertwining operator Vi, 7y f is related

to the usual translation as 7, f(x) = (Vk)x(Vk)y((Vk)_l(f)(x + y)) (cf. [11, 18]), where the
subscript x of (V). means that Vj is applied to the x variable. Hence, Ty can also be defined

for f € £(R?). We define the Dunkl convolution product f #p g of functions f, g € S(R?)
as follows.

f*p glx) = /Rd T f (=) g(V)wr(Y)dy .

This convolution is commutative and associative (cf. [18]). Since Fp(ty f)(x) = K(ix,y)
Fp(f)(x) by the above definition of 7y, f, it follows that

(a) Forall f, g € D(R?) (resp. S(RY)), f xp g belongs to D(RY) (resp. S(RY)) and
(2.2) Fp(f *p 9)(y) = Fp(/HMFp(9) ().

Moreover, as pointed in [14], §4 and §7, the operator f — f *p g is bounded on L,f (Rd),
1 < p < oo, provided that g is a radial function in L ,1 (R?) or an arbitrary function in L ,i (R%)
for W = Zg. Hence the standard argument yields the following Young’s inequality.

(b) Letl < p,q,r < oo such that % + 5 —l=1IffeL/RYandge L{RY)is
radial or arbitrary for W = 74, then f xp g € Ly (R%) and

d
(2.3) I f *p g”L;(Rd) <22 ”f”L]f(Rd) ”g”LZ(Rd) .

DEFINITION 2.2. The Dunkl convolution product of a distribution § in S'(RY) and a
function ¢ in S(R?) is the function S *p ¢ defined by

S*p ¢(x) = (S, 79 (x)).

PROPOSITION 2.3. Let f be in LY(R?), 1 < p < oo, and ¢ in SRY). Then the
distribution Ty *p ¢ is given by the function f xp ¢. If we assume that ¢ is arbitrary for
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d = 1 and radial for d > 2, then Tf *p ¢ belongs to L,f (Rd). Moreover, for all € S(Rd),

(2.4) (T *p ¢, V) = (f, %D V)i,
where gb(x) =Y (—x), and
(2.5) Fp Ty xp ¢) = Fp(Tf)Fp(@) .

PROOEF. It follows that
Ty *p ¢(x) = ((Ty)y, T (—Y))
=(f, (== f*pd(x).

Let us suppose that ¢ is arbitrary for d = 1 and radial for d > 2. Then by (2.3), 7 *p ¢
belongs to L,f (R%). By Fubini-Tonelli’s theorem the function (x, y) — f(—y)T:¢(y) ¥ (x)
is integrable on R? x R? with respect to wy (y)dy wi (x)dx. Then for any ¥ € S(RY),

(T 0 6, ) = / / F bV (Dax ) dyor(x)dx
RY JR4
_ / f(—y)< / ryqﬁ<x)w<x)wk<x>dx)wk<y)dy
R4 R4

= fR NG T o(y)dy = (f. ¢ %0 V)i

Moreover, from (1), (2.2) and (2.4) it follows that
(Fp(Ty xp ¢), V) = Ty *p ¢, Fp(¥))
= (f. ¢ %D Fo()h
= (/. Fo(Fp@) ) = (Fp(Tp)Fp(@), ).

Foreachu € &’ (Rd ), we define the distributions Tju, 1 < j <d, by

for all ¥ € S(RY). Then (Agu, ) = (u, Aryr) and these distributions satisfy the following
properties (see 2.3 (d)):

(2.6) Fp(Tju) =iy;Fpu),
Fp(bgu) = —|yI*Fpu) .

In the following we denote 77 given by (2.1) by f for simplicity.
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3. Dunkl-Littlewood-Paley decomposition

One of the main tools in this paper is the Dunkl-Littlewood-Paley decompositions of
distributions on R into dyadic blocks of frequencies. Let ¥ be a non-negative function in
D(R?), which is radial for d > 2, satisfying ¥ (§) = 1 for ||&] < % and ¥(§) = O for
€] > 1. We define a function ¢ on R? by

§
&) = W(E —y(é).
Then we see that (§) + Y 72, ¢(27/§) = 1.
DEFINITION 3.1. For j =0,1,2,..., the operators S; and A; on S’(Rd) are defined

by
Fp(S;f)=vQ7OFp(f),
Fp(Ajf) =@ Fp(f).
and put A_; = Sp.
We see that f = Y 52 | A; f in the sense of S'(RY). We call Aj f the j-th dyadic

j=—1
block of the Dunkl-Littlewood-Paley decomposition of f. Similarly, the operators S j and A j
on 8'(R?) are defined by replacing ¥ and ¢ by ¥/ (§) = ¥(§) and §(§) = ¥(§) — ¥ (48)
respectively. Throughout this paper we define the functions x, ¥, ¢ and ¢ on R? respectively
by

X=Fp' ). X=Fp' ). ¢ =Fp'(0). $=TF5'@.
PROPOSITION 3.1 (Bernstein’s inequalities). For all u € N o € R,jeN, 1<
p,q < 00, ql = %4—%— 1,and f € S'(R?), we have
j(d+2y) (3 -1y, =
(D 14, g way < 277211 L ey 14, £l p ey
i(d+2)(L=L1y o
@ 1S; Fllgwey < 27T TTDNR L @y 1) £k gey
@) =B A ey < 27 1F UENTD 11 ey | A5 f g ey
Moreover, if W = Zd, then each TH* = Tl“1 o---0 Ta’,” satisfies
@ NTHA; fllpr ey < 2WNTEP ) eyl A Fllp ey
S) NTHS; fllpr ey < 2MNTHR Ly ey 15 F 1l o ey
PROOF. Proposition 2.3 implies that
3.1) Sif =2 TWFQIy xp Sif . Ajf =21GRI ) xp A f
Therefore, (1), (2), (3) follow from (2.3) and (4), (5) follow from (2.3) and (2.6). O
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LEMMA 3.2. Assume that N is an integer such that N > y + % and that p € Li(Rd)
satisfies T p € L,%(Rd)for || = N. Then .7-"51(/0) € L,i (RY) and

1 1-6 OIL
175 )l = ClOl i, 590 1T P13 oy

d+2y
2N -

where 0 =
PROOF. The proof is similar to the classical case (cf. [16]). O
DEFINITION 3.2. Fors € R, the operator J; from S’ (RY) to S'(RY) is defined by
T =Fp A+ 1192 Fpf).
We call 7" the Dunkl-Bessel potential operator.

PROPOSITION 3.3. Lets € Rand 1 < p < oo. If f € S'(RY) satisfies Ajf €
LYRY) for j = —1,0,1,2,..., then

(3.2) 1T A5 Nty SC2NA; Fll 2 oy
where C is independent of p and j.
PROOF. We note that forall j =0,1,2,...,
1 1
Aif =" AjuAif =) ¢jrixpAjf,
I=—1 I=—1

where ¢ = F ;' (¢) and ¢4 (£) = 20UFD@+21)¢ 27+ ). This gives that

1
TEA )= TE@j) *p Ajf .

I=—1

Since the L (R?)-norms of Fp (J; ($,4+1))(§) = (14 [|£[*) 211 (€) and 20+D5 2720+D

II& ||2)%<p(§ ) are same, it follows from Lemma 3.2 that

(3.3) ||~7IQY(¢J‘+Z)||L]1€(R[1) <C2/5, 1=0,%+1.

Hence (3.2) follows from (2.3). The case of j = —1 is proved by the similar way. O

4. B;’,Z, F ;jl,‘,, H , spaces and basic properties

In this section we define analogues of the Besov, Tribel-Lizorkin and Bessel potential
spaces associated with the Dunkl operators on R? and obtain their basic properties. In par-
ticular, we use the Dunkl-Littlewood-Paley decomposition of f in S’(R?), obtained in the
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previous section, and apply the standard process used in the Euclidean case. Hence, we ex-
pect that, according to routine, we obtain analogous results in our Dunkl setting. However,
we have some obstacles to carry out the Euclidean process, which are stated in Remarks 4.1
and 4.2 below.
4.1. Definitions. From now, we make the convention that for all non-negative se-
1 .
quence {dq}4ez, the notation (Z a’) " stands for sup, dq in the case r = 0o. Lets € R and

g%
1 < p < oo. Forasequence {u;};=o,1,2,.., of functions on R?, we define

. q
0t} iy 2.2y = Nltoll o ey + (Z(z”uu juLg(Rd))q) ,

j>0

3@ (0T

j>0

||{’4j}||L,1:(l;) = HMOHL,‘:(Rd) +

LY R9)

Let Aj, j = —1,0,1,2,..., be the operators given in Definition 3.1. For convenience
we replace the indices j by j + 1. Thatis, A9 = So, Fp(A;f) = ¢ HE Fp(f) and
f=227204;f inthe sense of S'(RY).

DEFINITION 4.1. Fors € Rand 1 < p,gq < oo, the inhomogeneous Dunkl-Besov
space B;’ff{ (RY) is defined by

By RY) = (F € SR 11f 1l g5t quay = HA; Pl ey < 00}

DEFINITION 4.2. Lets € Rand 1 < p, g < oo, the inhomogeneous Dunkl-Triebel-
Lizorkin space F, ;;j],; (RY) is defined by

Fpg®RD = {f € S'RY |11l pst gay = A7 FH 1pgy) < 00}

DEFINITION 4.3. Fors € Rand 1 < p < oo, the Dunkl-Bessel potential space
H;’ k(Rd) is defined as the space jk_s (L,f (R%Y), equipped with the norm || f|| HS (R =

||u7ks(f) “L,f(Rd)'

REMARK 4.1. We can define these spaces for 0 < p < 1 in the same way. In or-
der to study the case of 0 < p < 1, (vector-valued) Hardy spaces are useful, that is, the
theory of maximal operators is necessary. In our Dunkl setting, it is not accomplished gener-
ally, because of the difficulty arisen from the facts that an explicit formula for a generalized
translation operator 7y is unknown and t, is not a positive operator.

4.2. Equivalent norms. Let f € S'(R?). We say that f has a general Dunkl-
Littlewood-Paley decomposition if f is decomposed as f = Z?OZO uj, where each u; is a

functions on R? satisfying

suppFp(uo) C {§ | 1§] < 1},
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suppFp(uj) C {12772 <] <2/}, j=1,2,....

Obviously, the Dunkl-Littlewood-Paley decomposition f = Z?io Aj f is an example of the
generalized decomposition.

THEOREM 4.1. (1) Lets e Randl < p,q < oo. Then

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =
Y jsouj € S'(RY) with Mt} gy 1y < 00
(2) LetseRandl < p < oo. Then

”f”F;];(Rd) ~ inf ”{uJ}HL][:(l%) P

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =
Y isouj € S'(RY) with Ml sy < o0

PROOF. Since Fp satisfies (2.2), we can apply the same argument used in the proof of
Theorem 4.2.2 in [15]. We note that

Apf = Z Agup = Z VAVI ST

|l —k|<2 r=0,1,2

Hence (1) follows from the inequality ||¢k *p ti+r ||L,f(Rd) < cllUktr ||L,f(Rd) forl < p < o0,
where c is independent of k (see (2.3)). (2) follows from the inequality ||{¢x *p tx+r}|| Lras) <
cl{ugsr}l LPas) for 1 < p < oo, where c is independent of k, which is obtained in Theorem
3.131n [7]. O

REMARK 4.2. In the Euclidean case, (2) holds for F ;;jl;(Rd) with 1 < g < oo, be-

cause the inequality |[{¢x *p Mk+r}||LII:(Z;) < C||{”k+r}||L]f(z;) follows from the Hormander

multiplier theorem. However, in our Dunkl setting, we have no Hérmander type multiplier
theorem. When g = 2, we can apply the Plancherel formula for the Dunkl transform Fp and
thereby we can obtain (2).

COROLLARY 4.2. Lets € Rand1 < p,q < oo. Let {uj}jen be a sequence of
functions such that ”{”j}”l;(L,f) < oQ.

() If suppFp(uj) C 2/R for some annulus R centered at the origin, then
f = Z?OZO u; belongs to B;’ff] (RY) and there exists a positive constant C(s) such that

(2) Ifs > Oand suppFp(u;) C 2/ B for some ball B centered at the origin, then
f = Z?OZO u; belongs to B;’ff] (RY) and there exists a positive constant C(s) such that
1/ W3 oy = COI s 0
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PROOF. We can find an integer N such that Ay f = >, _; <y Axus in the case of (1)
and Ag f = Z,Z,{_N Aruy in the case of (2). Hence (1) follows as in Theorem 4.1 (1) (see
[7], Proposition 3.6) and (2) follows as in [7], Proposition 3.7. |

COROLLARY 4.3. Let p,q be as above. The definitions of the spaces B‘;,’,]; (R?) and
F ;:é(Rd) do not depend on the choice of the couple (¢, V) defining the Dunkl-Littlewood-

Paley decomposition.

In the following, we denote by F ;jl,‘{ (RY) the space of all f € &’ (R?) which has a general
Dunkl-Littlewood-Paley decomposition f = Z?io u; with [[{u;}| L < °° Clearly,
FykRY) c Fyk(RY) and F;;’;(Rd) = f;‘:’;(Rd ) by Theorem 4.1 (2).

THEOREM 4.4. Letl < p <ocoands € R, we have

FYSRY) = Hy ((RY).

PROOF. Because of F;:g(Rd) = f;:g(Rd), it is enough to show that I?;:l;(Rd) =
H ;’ k(Rd ). When s = 0, this is nothing but a theorem of Littlewood-Paley type. The general
case of s # 0 follows form the lifting property (see Theorem 4.7 below). O

COROLLARY 4.5. Lets e Nand1 < p < oo then
FYS@®RY) = WP RY),
where WP (R?) = {u € S'(RY) | T*u € LY (R?) for all p € N with |u| = s}.
4.3. Lifting property. We recall that for f € S'(RY),

FoTjAn)(E) = 2"$Q7"OFp())E), $&) = i8;p().
Then we can obtain

THEOREM 4.6. Lets € Rand 1 < p,q < oo. The operator T; is a linear con-
tinuous operator from B;’ff{ (RY) into B;fql’k (RY), from F;]f{ (RY) into f;}l’k RY), and from
Hyk(RY) into HY M *(RY).

Similarly, we recall that 7, k’ ,t € R, is a linear continuous injective operator from S (Rd )
onto S(RY) and is extended to a linear continuous operator from S’ (R%) onto S'(RY) with
IH™ =7

THEOREM 4.7. Lets,t € Rand1 < p,q < oo. The operator jk’ is a linear continu-
ous injective operator from B;;’,lf] (R?) onto B;}:]t’k(Rd), from F ;;j],; R?) onto F [S),_q"k(Rd), and
from H;:]f{ (R?) onto H;;lt’k(Rd).
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PROOF. Since Fp satisfies (2.2), we can apply the same arguments used in the proof
of Theorem 5.1.1 in [15]. g

4.4. Embeddings. As in the Euclidean case (see [15], 5.2), the monotone character
of [,-spaces and Minkowski’s inequality yield the following.
THEOREM 4.8. (1) Ifs;i <sxand1 < p,q < oo, then
s,k (pd s1,k d
B2 (RY) = B! /(RY),

59,k d s1,k d
Fp%q (R%) — Fp}q (RY).

2) IfseR 1 <p<ococandl <q; < q < 00, then
By, R = By R,
Fyh R — Frb 7).
(B) ForseRandl < p,q <oo,letr =min{p, q},t = max{p, q}. Then
4.1) ByERY) — Fyk R — BYIRY).
Asin [15], §6, we can obtain.

THEOREM 4.9. Lets € Rand1 < p,q < oco. Then D(RY) is dense in B;’ff{ (R?) and
Fpg(RY).

4.5. Duality. In the Euclidean case we see that (B‘;,’q(Rd))’ = Bp_,‘vq,(Rd) and
(Fpq (R = Fp_,fq,(Rd), where p’, ¢’ are conjugate numbers of p, g respectively (see [15],
§7). For the B;’,];-spaces, we can apply the same argument used in [15], §7. However, we

can not do for the F ;j];-spaces, because Hormander’s type multiplier theorem is used in the
Euclidean case (see Remark 4.2). For the H ; «-Space, the duality follows from the one of

LY (RY).
THEOREM 4.10. (1) Ifse€eRandl < p < oo, then
(Hp  (R) = H " (RY).
2) IfseRandl < p,q < oo, then

s,k d\y/ _ p—s.kpd
B3k R =B, SR,

4.6. Interpolation. We can apply the real method used in [15], §8. In this process,
the duality is used frequently. In our Dunkl setting, as shown in Theorem 4.10 the duality

holds only for B;’,’f]-spaces and H ; «-Spaces. Hence, we have the following.
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THEOREM 4.11. (1) Letso,s1 € R, so # 51,0 <6 < 1,5 = (1 — 0)so + 0s1,
1 = P,4,490, 491 < oQ. Then

(B R, ByLF (RD), = By (RY).

) LetseR,1<pg,p1 <00, po#p1,0<6 < l,%:lp;oe—i—%,then
k d k d 0.k pd
(F[S)O’Z(R ), F)o (R ))e’p = Fh(RY.

(3) Letso,s1 € R, s0 # 51,1 < po, p1 =00, po # p1,0 <6 < 1,5 =(1—0)so+ 0s1,
% = 1[);09 + %, then

(Fr @D, FISRY), = BARY).
4) Letso,s1 €R,50#51,0<60 <1,s=(1—0)so+0s1,1 <p,q,q0,q1 <oo. Then

42) (FlaoRD, Foli RD), | = By RY).

PROOF. (1), (2), (3) follows from the arguments used in Theorem 8.1.3 and Theorem
8.3.31in [15]. (4) follows from (1) and (4.1). O

As a consequence of real and complex interpolations, we can deduce multiplicative in-
equalities, which will be needed in the theory of differential operators.

THEOREM 4.12. (1) If u belongs to B;’,q(Rd) N Bp q(Rd), then u belongs to
B HI=ONKRA) for all 6 € [0, 1] and

IIMII

”M” HH'(I e)fk(Rd) = ”M” vk

g (RY) (Rd )

(2) If u belongs to B‘,Y,’,koo(Rd) N Bp Oo(Rd) and s < t, then u belongs to BOY—H1 o, k(Rd)
forall 6 € (0, 1) and there exists a positive constant C(t, s) such that

Il g a-oms gy S €Ol g Nl

(3) If u belongs to B;’,]éo(Rd) N B;fo%k(Rd) and & > 0, then u belongs to B;k1 (R?) and

there exists a positive constant C such that
C ||u||BS,+O%k(Rd)
lull gk ey < —llull gsk  ga 102> (e + ’7)

i = 5 M) el 55 e
PROOF. (1)is obvious from Holder’s inequality. As for (2), we write |lu ||Bes+(l—0)t,k(Rd)
p.1
as

Z 2j(es+(1—e)z)“Aju”LII:(Rd) + Z 2j(95+(1_9)’)||Aj”||L,f(Rd)’
j<N j>N
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where N is chosen here after. By the definition of the Dunkl-Besov norms, we see that

2]'(9s+(1—0)t)”Aju”L]f(Rd) < 2j(1—0)(t—s)||u||B;,;O(Rd) ,

2j(es+(l_6)t)||Aj"‘”L,f(Rd) < 2—j9(t—s)||u||35;koo(Rd)

is dominated by

and thus, ||u ||BHS+(1—6)t.k(Rd)
p,1
J(1=0)(1—s) —jé(t—s)
”u”B;,I;O(Rd) Z 2 + ”u”B;;,koo(Rd) Z 2
j<N j>N
2N+ (A=0)(t—s) 2—NO(t—s)
=Cllull gt ey == =1 + Mlspt vty T 2700 -

Hence, in order to complete the proof of (2), it suffices to choose N such that

u k u k
” ”B;,,oo(Rd) - N(t—s) ” ”B;z,oo(Rd)

<2

”u”B;kw(Rd) ”u”B;kw(Rd)

is dominated as

As for (3), it is easy to see that ||u|| B;,’kl (RY)
Y 2P NAjull ey + Y 2 1A Ul gy
j<N-1 j=N
—(N=1)e

S(N + 1)”””32’/‘&(1{51) + ﬁ”u”B;ﬁ;’k(RJ) .
Hence, letting

1 ”u”BS+0%k R4
N=1+ [—logzp’i()]
& ”u”B;’,kw(Rd)

we can obtain the desired estimate. O

5. Some properties related with the index

We continue to study the Béj‘; spaces. The results obtained in the previous section are
exactly same as in the Euclidean case. In this section we obtain some properties related with
the index y .

5.1. Embeddings

THEOREM 5.1. Ifsg,s1 € R, s1 <50, 1 < p < p;1 <00,1 <q < q1 < o0,
—@:sl—ﬂ

, then
P

S0

BSX RY) — BiE (RY).
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PROOF. In order to prove the inclusion, we use the identities

Aif=¢;*p Ajf, j=1,2,..., Aof =X*pAof.

Then Bernstein’s inequality (Proposition 3.1 (1)) gives that for j =0, 1,2, ...,
(d+27) (=5
18, ey < C2750 70N A fll ey -

Thus, by definition of the inhomogeneous Dunkl-Besov spaces, we see that

1

is15J (d+27) (=50 “
11 g gy < CUA0f g e + (Z(zmzf NG04, f||L£(Rd))ql>
jeN
1
. q1
= C(||A0f||L£(Rd) + <Z(2]‘Y||Ajf”L£(Rd))ql)
JjeN
S C”f”B;,];(Rd) )

because g < q. O

d+2y
PROPOSITION 5.2. If1 < p < oo, then B, " (R?) < Co(R?) and BYK (RY) —

Cp(RY).

a2y
PROOF. To prove that B/, R?) — Cp(R?) for 1 < p < oo, we use again Bern-

stein’s inequalities (see Proposition 3.1) to deduce that
jd+2y
||Aju||LlfO(Rd) =C2 ”Aju”LII:(Rd) .

This ensures that the series > j A ju of continuous bounded functions converges uniformly to

a continuous bounded function on R?. Hence u is a bounded continuous function on R?. If p
d+2y
is finite, one can use in addition that D(R?) is dense in B » T (R?) (see Theorem 4.9). Then

we can conclude that # decays at infinity. O

5.2. Sobolev type embedding. In the previous paper [7], Theorem 4.3, the second

author proved the Sobolev embedding theorem; if s > #, then

[N

. s—y—24k
ByARY = HY ,(RY) < By o 7 (RY).

In this subsection we consider the case s < %. We recall that B?”lf(Rd )C L ,i (RY) by the

definition and BYf(RY) — F')(RY) = H!,(R?) < Li(RY) for 1 <r < 2by (4.1). We

here obtain a stronger integrability in the case of 0 < 5 < 27/r—+d.
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THEOREM 5.3. Ifs e R, 1 <r <00,0 < s < 27/r—+d, then we have a continuous
embedding
BIFR?Y) — LY (R,
where p = 7}’(2)/ +d)
pP= 2y +d —rs’

PROOF. We recall that for f € S(RY),
j2 * 1
— pP—
gy =2 [ 307 el 17601 = a0
where my(E) is the volume of E ¢ R? with respect wi (x)dx. For A > 0, we put f =

fra+ faawith fia=3 5 _4A;f,and fo.4 =} i, Aj f. Then by using Proposition
3.1 we deduce that

. sod+2y
I allzoomey < D 2708, fllg a2/
2/ <A
d+2y_‘,
d+2y

We take now A = A; such that CA, " _S”f”Bf;,"(Rd) = %. Then for all A > 0, we see that
me({x [ 1O = A < me(x |1 fra@] = 5D +me({x | | f2.4()] > 5D
<me({x | 12,4, = 5D
= 207" 2y ey

and moreover, for ¢ > 0,

p
2.0, 17 ety = /R ) Z Ajf()| ok (x)dx
2/>A
r v
:/ Z 2N f(x)| wr(x)dx - < Z 2—/sr)
R :
2/>A 2/>A
< CA;” Z str”Ajf”rL;(Rd) :
ZjZA)L

Hence by Fubini’s theorem we can deduce that

o0
P p—l—r p—er jer It
10 p gy < € /0 U D ST TNTI
2/>A;
2y+d

427 CFNFN ok o 2
=y O s 1=t g,
0

j=—1
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£r2 .
X (4C||f||Bs,k(Rd))2y+d_” ngr”Ajf“;/(Rd)

y+
< el Mk iy 2 278 1 ey
j=-1

=l f g ZZWANMM Il e

F(RY)

This implies the desired result. O

THEOREM 5.4. If1 <r <ooands € Rsuchthat0 <s < @, then we have

p ]7
ummmswm(wuw|muwh

rQy +d)

where p = m

PROOF. The precedent proof is available. In fact it suffices to modify the calculation
in (5.1) by

If1all Lo ray = cA _SIIfII M,A)k(R "

d+2y
and by taking A = A, with CA, ™ |fl _ovsa ,, =% O
B ERY

5.3. Paraproduct algorithm. In this subsection we study how the product of uv,
u,v € S’'(R) acts on Dunkl-Besov spaces. This could be well useful in nonlinear partial
differential-difference equations. Letu € S’ (RY) andu = > p Dpt be the Dunkl-Littlewood-
Paley decomposition of u. This implies that the partial sum

Squ = Z Apu
p=q-1
converges to u € S’ (R?). Let us consider two tempered distributions
u = ZApu and v = ZAqv.
p q
Formally, the product uv can be written as
uv = Z Apulgv.

pP.q

We introduce the paraproduct and the remainder operators associated with the Dunkl opera-
tors.
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DEFINITION 5.1. (1) The paraproduct operator I (u, v): S'(R%) x S'(R?) — S'(RY)
is defined by I1(u, v) = I1,(v) and

IT,v = ZSq_zu “Agv.
g=1

(2) The remainder operator R(u, v) : S’ (R?) x &’'(R?) — S'(R?) is defined by

Ruw,v)= Y Apudg.
lp—ql=1

Then Bony’s paraproduct decomposition of uv is given as
uv = IT,v + IMyu + R(u, v) .

The following theorems describe paraproduct estimates in the Dunkl-Besov spaces, that is,
the estimates of the action of the paraproduct and remainder operators on the Dunkl-Besov
spaces. Their proofs are given by using the equivalent norms of the Dunkl-Besov spaces and
Bernstein’s estimates in (3.1) (see [7]).

THEOREM 5.5. Letl < p,r <ocoands € R.

() Ifs > 0, then IT is a bilinear continuous from L°(R?) x B;lﬁ (R?) to B;,li (R%)
and there exists a positive constant C such that
< CS+1.

171 ”L(L;?(Rd)xBZ,’i(R%,B;:’;(Rd)) =

) Ifs >0,t <0,s+t>0and1 <r,ri,rn < oo,%: %—G—%,thenﬂisabilinear

continuous from Bé’o]frl (RY) x B;’fﬁz (R 10 B;}ﬁt’k (R and there exists a positive constant C
such that
CS—H

s 5 <
17 ”ﬁ(Bé*o’i,l (RY)x By, RY), By H(RE)) = T

THEOREM 5.6 (Morse type estimate). Let (s1,52) € RZand 1 < P, P1, P2, 1,11,
ry < 00. Assume that

1 1 1
<1 and 31+32>(d+2y)(—+___>,
noon pL p2p

Then R is a bilinear continuous from B;‘l’f;l (RY) x B;ZZI;Z (R 10 B;)l,’,z (RY) and there exists

a positive constant C such that

Csl+sz+1

IR sk

57,k
L(Byr, ”

o1 ok <—
R, B2 RD.BTRY)) = g 45y

where s12 =51+ 52 — (d + 2)/)(% + é - %)
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Combining these estimates of the paraproducts and the remainders, we can deduce the
following.

COROLLARY 5.7. (1) Lets > 0and1 < p,r < oo. Then B;;’;(Rd) N L (RY) is
an algebra and there exists a positive constant C such that

||uv||3;'7:/;(Rd) = C(||“||L,‘:O(Rd)||v||3;'7:/;(Rd) + ||M||B]A;’/;(Rd)||U||L,fO(Rd)) :

(2) Let (s1,8) € R% 1< P2, < 00,81 + 852 > d';% and s1 < d‘;%. Then
vl ey < (0o gy 100t oy 00t 100t )
where s = s| + 52 — d;#.

(3) Let (s1,52) € R% 1 < pi,pa,pori,ra < 00, p = max(pi, p2), §j < d;fy and
J

s+ > (d+29) (G + 5 — ). Then

l[uv| P < Cllul| Bk vl Bt

Rd) — | (RD) , (R4’

where 512 = 51 + 52 — (d—l—Zy)( + - — ;) and r = max(ry, r).

6. Application to differential-difference equations

In this section we treat differential-difference equations, given by replacing the Laplacian
A in a differential equation with the Dunkl-Laplacian A, and consider some basic properties
of the solutions in Dunkl-Besov spaces. Though the process is a standard way, we sketch their
proofs to understand the essential parts.

6.1. The slowly hypoellipticity. We consider the linear equation

(6.1) —Aru + Z ¢i,jTiuTju+cu=0
1<i,j<d

with¢; ; € Rand ¢ > 0.
THEOREM 6.1. Ifu is a solution of (6.1) such that u in B1 2(Rd) N W1 "(RY), then
u e Bl ) (Rd) N LOO(Rd)for all n € N and in particular, u € £R?).

PROOF. Ifuin Bll § (RY), then each Tju € B?”é‘ (RY). Therefore, it follows from Corol-
lary 5.7, (1) that ¢; j TiuTju € B%‘ RYH N L,‘:O(Rd). Hence, we can deduce that

—Agu+cu € BS(R?).
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Since the operator —Ay + ¢/ is isomorphism from B;,’,]; (R%) in B;;z’k(Rd) for all s € R and

(p, q) € [1, 0o]?, it follows that u € Blzé‘ (RY). By iteration we deduce that u € B?f (R?) for

_d+2y
all n € N. Then it follows from the Theorem 5.1 that u € B;’Z 2 ’k(Rd). On the other hand,

the Sobolev imbedding theorem (see [7], Theorem 4.3) yields that HZS’ k(Rd ) = B;:’;(Rd ) —
CS_V_% R ifs > y + %. Thereby, the desired result follows. O
6.2. Dunkl-Schriodinger equation. Let / be an interval of R (bounded or un-

bounded). We shall consider a space-time estimate of the solutions u(z, x), (f,x) € I x RY,
of the Dunkl-Schrodinger equation

62) oru —ilgu = f,
u|l=0 = g

with initial data g and f. For any Banach space X, let L9(/, X) denote a mixed space-time
Banach space consisting of measurable functions u : I — X such that

1
q
lullLa,x) = </1 llue(t, ')”()I(dt) < 00

if 1 < g < ooand |lullpe x) = esssup,c/llu(t, -)|lx < ooif g = oco. In what follows we
shall consider a Strichartz type estimate of the solution u of (6.2) and obtain the L9 (1, X)-

norm of u when X = H}Y,k(Rd) and B;é‘ (RY). The special case of X = LZ(Rd) = Hr(?k (R%)
was treated in [8]. '

We suppose that g € X and f € L9(I, X') where X, X’ are Hik(Rd) and Bf”f(Rd). As
in the Euclidean case, we use the integral formulation of u

t
u(t,x) =ZIr(t)g(x) + / Ti(t —s)f(s,x)ds ,
0

(6.3) =Li(9)(t, x) + Dr ()1, x)

where 7y (t) = ¢/'2¢, t € R, is the Schrodinger semi-group. Moreover, the exponents ¢, r are
required to satisfy the so-called admissible condition:

DEFINITION 6.1. A pair (g, r) is called y + %-admissible ifg,r>2,(q,r,y+ %) #=
(2,00,1) and

q 2r = 4

L, d+2y _d+2y

In particular, whend + 2y > 2 and (¢, r) = (2, %), the equality holds.

THEOREM 6.2 (Strichartz type estimate).
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(1) Lets € Rand (g,r)beay + %-admissible pair. Then there exists a constant C such
that for all g € S'(R?),

||Ik(g)||Lq(1,H;k(Rd)) = C”Q”H:,,k(Rd),

”Ik(g)”Lq(I,B::é‘(Rd)) =< C”g”B:;{(Z(R‘]) .

(2) Lets eRand(q,r), (q1,51) bey + %-admissible pairs. Then there exists a constant C
such that for all f € S'(I x RY),

1P Lacr, 1

r,

d < C /
(RE)) = ||f||qu(]’HS/

R’
l'k

”¢k(f)”L‘1(I,B:;§(R‘1)) = C”f”Lq; (I,B‘Y,'kz(Rd)) .

1

PROOF. Letr #0,s € Rand2 < p < 0o. As in the Euclidean case (cf. Corollary 4.1
in [8]), we can deduce that

IZk (1) gl oo ey < g1l re)-

d
Ck|t|(1/+7)

Since ||Zy (t)g||LI%(Rd) = ||g||L]%(Rd), we see by interpolation that

6.4 Ti (¢ p < - ) .
(64) O = g e
On the other hand, For any v € S’(RY) it is easy to see that
(6.5) Fpl 0Fp@i()t. ) = L) F ' Fp(g)) .-
In particular, it follows from (6.4) that for 2 < p < oo,
_ 1 _
175! WFp @)t I p ey < IIFDl(v]:D(g))||L£/(Rd).

(@Glrr) a7
Therefore, the definitions of the Dunkl-Bessel potential and Dunkl-Besov norms yield that

IZe®gll s, rey < gl ®e)

1
(cRlrPr+dy2 77

IZe@gll gk gay < 9l B D)

()2

Then by using the standard argument, we can deduce the desired estimates. O
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6.3. Generalized heat equation. As in the previous section we shall obtain a space-

time estimate of the solution u(z, x), (t,x) € I x R, of the generalized heat equation

{B,M—Akuzf,

(6.6)
Uli=0=9.

As before, to estimate the solution u of (6.6), we use the integral formulation
t
(6.7) u(t, x) = H()g(x) +/ Hi(t — 1) f (7, x)d7,
0

where Hy (¢) is the generalized heat semi-group. Then by using the explicit form of the kernel
of Hj(t) obtained by Rosler [11] and the corresponding formula (6.5), we can deduce the
following (see [9]).

LEMMA 6.3. There exist positive constants k and C such that for all 1 < p < oo,
T>0and j €N,

— 22
14 (He @)l p ey < Ce™ 7T A jull ey -
THEOREM 6.4. Lets € R, T > 0and 1 < p,q,r < oo. We suppose that g €

s—2+42 k
B;,’,]i (R%) and f € LY((0, T), B;,,r T (RY)). Then (6.6) has a unique solution u belongs to

2

s+= .k
LI((0,T), Bp," " (RD) [ L™((0, T), Byk(RY))
and there exists a constant C such that for all ¢ < g1 < o0,

el

|I\)

s+-=k
L91((0,T),B,, "' (RY))

|

1 el _1
= C(A+T)lgl gy gy + A+ T 07D £

+%’k(th)) '

s—2
L4((0,T),B,,
If in addition r is finite, then u belongs to C ([0, T1], B;,li (R%)).

PROOF. Since g, f are tempered, (6.6) has a unique solution u in S'((0, T) x R%)
satisfying

t
Fpa)t, &) = eI Fp(g)©) + / TR Fp (£)(z, &)
0
Hence, applying A;, j > 1, to (6.7), we see that
t
Aju(t,”) = Hi(t)Ajg +/O Hi(t —1)Aj f(z, )dt
and thus, by Lemma 6.3, we can deduce that

t
||Aju(t’ ')||L£(Rd) = ”Hk(t)Ajg”L]’:(Rd) +/O | Hy (r — T)Ajf(f, ')”L]’:(Rd)df
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t
—,22%i — 122 (1 —
< Ce ™ t||Ajg”L,’:(Rd)+/o k2@ r)”Ajf(-[’ ')||L£(Rd)dt’

Then it follows from (2.3) that || A jul|; 4, ((0.T),L? (RY)) is dominated by

1 — e *Ta2 \ i | — e Ta22" \ 7
(©8) ( Kkq122%] ) ||Ajg”B}3’,'i(Rd)+< Kq222%] ) 145/ o o.m.2p @)

with qlz =1+ qll — é Moreover, similarly as above, we can obtain that

t

B0t My gy = 180911, gy + /O 180£ (2. L -

and thus, if 1 <¢g < g1 < o0,

IA

L L
(6.9) ||AOM||L41((0,T),L£(RLI)) C<T‘“ ||A09||L£(Rd) +Tx ||A0f||Lq((o,T),Llf(Rd))> .

Finally, taking the /”-norm with respect to j in (6.8) and (6.9) with the usual convention if
r = 00, we can deduce the desired estimate. O
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