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Rational Solutions of Difference Painlevé Equations

Shun SHIMOMURA

Keio University

Abstract. We capture all the rational solutions of some difference Painlevé equations of PI and PII types. For
non-autonomous cases, it is shown that all the rational solutions of the difference PII are ones generated by successive
application of auto-Bäcklund transformations to the seed solution vanishing identically, and that the other equations
of PI type admit no rational solutions. For autonomous cases, all the nontrivial rational solutions are obtained, and
they exist under a certain condition on a fixed point of the equation. If such a condition is not satisfied, there exist
solutions that are rational in an exponential function.

1. Introduction

The Painlevé equations are characterised by the Painlevé property: that, for every solu-
tion, all the movable singularities are poles. Discrete analogues of Painlevé equations, which
are called discrete Painlevé equations, were discovered in various problems in mathematical
physics. The non-autonomous mapping

dPII yn+1 + yn−1 = (αn + β)yn + γ

1 − y2
n

,

which appears in connection with unitary matrix models of two-dimensional quantum gravity

[7], is known as the discrete PII [1, 11, 12]. Indeed, the continuous limit n = ε−1t, yn =
εu(t), α = ε3, β = 2, γ = aε3 (ε → 0) maps dPII to the second Painlevé equation PII:

u′′ = 2u3 + tu + a. Furthermore, as in the case of continuous Painlevé equations, by the
degeneration procedure yn = zn/δ, αn + β = −(α′n + β ′)/δ2, γ = −γ ′/δ3 (δ → 0),
equation dPII is reduced to the discrete PI

dPI zn+1 + zn−1 = α′n+ β ′

zn
+ γ ′

z2
n

,

which is also obtained from Bäcklund transformations for the third Painlevé equation [1]. If

α′ = −1, the continuous limit n = ε−1t, zn = −ε−5/2+ε−1/2u(t), β ′ = 6ε−5, γ ′ = 4ε−15/2

(ε → 0) yields the first Painlevé equation PI: u′′ = 6u2 + t . In general, discrete Painlevé
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equations admit the singularity confinement property [12], which has been considered to cor-
respond to the Painlevé property.

Particular solutions of dPII including rational solutions were presented by [4, 5, 13]. In
particular, if γ /α ∈ Z, successive application of auto-Bäcklund transformations to the seed
solution yn ≡ 0 of dPII with γ = 0 yields a sequence of rational solutions of dPII. These
rational solutions are expressible in terms of τ -functions constructed based on the bilinear
formalism of dPII [5, 13]. In view of the fact that, for the continuous PII, all the rational
solutions are known [6], it seems important to check whether all the rational solutions of dPII

are obtained in this way.
For the nature of our problem, instead of discrete equations, we consider the difference

versions of them that are obtained by replacing n with the complex variable x. The purpose
of this paper is to capture all the rational solutions of the difference Painlevé equations

y(x + 1)+ y(x − 1) = αx + β

y(x)
+ γ ,(1.1)

y(x + 1)+ y(x)+ y(x − 1) = αx + β

y(x)
+ γ ,(1.2)

y(x + 1)+ y(x − 1) = αx + β

y(x)
+ γ

y(x)2
,(1.3)

y(x + 1)+ y(x − 1) = (αx + β)y(x)+ γ

1 − y(x)2
(1.4)

with α, β, γ ∈ C. Equation (1.3) (respectively, (1.4)) corresponds to dPI (respectively, dPII)
mentioned above, and the discrete versions of (1.1) and (1.2) are known as other types of
discrete PI [11]. Our results are stated in Section 2. For non-autonomous cases, all the rational
solutions of (1.4) coincide with ones mentioned above, and the other equations admit no
rational solutions. For autonomous cases, we present all the nontrivial rational solutions, and
they exist under a certain condition on a fixed point of the equation. If such a condition is not
satisfied, we may find exact solutions that are rational in an exponential function.

2. Results

2.1. Non-autonomous cases. For non-autonomous cases we have the following re-
sults.

THEOREM 2.1. Suppose that α �= 0. Then (1.1), (1.2) and (1.3) admit no rational
solutions.

THEOREM 2.2. Suppose that α �= 0. Then (1.4) admits rational solutions if and only
if γ /α ∈ Z. If γ = 0, then (1.4) admits the unique rational solution y(x) ≡ 0. If N =
γ /α ∈ Z\{0}, then (1.4) admits a unique rational solution P(x)/Q(x) such that degP +1 =
degQ = N2, where the polynomials P(x) andQ(x) are relatively prime.
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REMARK 2.1. As will be shown in the proof, these rational solutions of (1.4) are gen-
erated by successive application of auto-Bäcklund transformations to the solution y(x) ≡ 0.

2.2. Autonomous cases. Suppose that α = 0, and write (1.l) (1 ≤ l ≤ 4) in the form

y(x + 1)+ y(x − 1) = Rl(y(x))

with

R1(y) := β

y
+ γ , R2(y) := −y + β

y
+ γ , R3(y) := β

y
+ γ

y2 , R4(y) := βy + γ

1 − y2 .

To exclude the cases where the equation is linear or is reducible to another equation, we
impose the conditions:

β �= 0 on R1(y) and R2(y) ;
γ �= 0 on R3(y) ;
(β, γ ) �= (0, 0) , β ± γ �= 0 on R4(y)

(2.1)

(for example, if β ± γ = 0, then (1.4) is reducible to (1.1)). Then all the nontrivial rational
solutions are given as follows.

THEOREM 2.3. (1) Each equation (1.l) (1 ≤ l ≤ 4) admits nontrivial rational solu-
tions if and only if Rl(y) satisfies condition (C.l) given in the list:

(C.1) γ = ± 2
√−2β in R1(y) ;

(C.2) γ = ± 2
√−3β in R2(y) ;

(C.3) γ = ± √
6β3/2/9 in R3(y) ;

(C.4) γ = ± √
6(2 − β)3/2/9, β �= −4, 1/2 in R4(y) .

(2) Under condition (C.l), all the nontrivial rational solutions of (1.l) are given by

{φ±
l (x − c) | c ∈ C} with

φ±
1 (x) = ±√−β/2

(
1 − 3

x2 − 1

)
,

φ±
2 (x) = ±√−β/3

(
1 − 8

4x2 − 1

)
,

φ±
3 (x) = ∓√

β/6

(
1 − 1

x2

)
,

φ±
4 (x) =




±√
(2 − β)/6

(
1 + 2(β + 4)

2(2 − β)x2 − 3

)
if β �= 2 ,

± 1

x
if β = 2 .



88 SHUN SHIMOMURA

Let us call y0 ∈ C a fixed point of Rl(y)/2 if Rl(y0)/2 = y0. As will be mentioned in
Lemma 4.1 the function Rl(y)/2 possesses a fixed point y0 such that R′

l (y0) = 2 if and only
if condition (C.l) is satisfied. In the complementary cases, there exist exact solutions that are
rational in an exponential function with its period not equal to 1.

THEOREM 2.4. Suppose that Rl(y) (1 ≤ l ≤ 4) does not satisfy condition (C.l). Then
Rl(y)/2 always possesses a fixed point y0 satisfying

R′
l (y0) �=

{
−1 if l = 1 ,

−2 if l = 2, 4

in addition to R′
l (y0) �= 2 (1 ≤ l ≤ 4). For each fixed point with this property, equation (1.l)

admits a family of solutions {Fl(y0; e−σ(x−c)) | c ∈ C}. Here σ = σ(y0) is a complex number
such that e−σ + eσ = R′

l (y0), and Fl(y0;X) is a rational function expressed as follows:
(1) for 1 ≤ l ≤ 3,

Fl(y0;X) = y0

(
1 + X

(X − al)(X − bl)

)

with al, bl given by

a1 = − e−σ

(e−σ − 1)(e−3σ − 1)
, b1 = − e−3σ

(e−σ − 1)(e−3σ − 1)
,

a2 = − 1

(e−σ + 1)(e−σ + eσ − 2)
, b2 = − e−σ

(e−σ + 1)(e−σ + eσ − 2)
,

a3 = b3 = − 1

e−σ + eσ − 2
;

(2) for l = 4,

F4(y0;X) =



y0

(
1 + X

(X − a4)(X − b4)

)
if y0 �= 0 ,

X

(X − a0
4)(X − b0

4)
if y0 = 0 ,

with a4, b4, a
0
4, b

0
4 given by

a4 + b4 = 2Y0

e−σ + eσ − 2
, a4b4 = Y0(4Y0 + 2 − e−σ − eσ )

(e−σ + eσ − 2)(e−2σ + e2σ − 2)
, Y0 = y2

0

1 − y2
0

,

a0
4 = − 1

e−σ − eσ
, b0

4 = 1

e−σ − eσ
.

REMARK 2.2. These exponential type solutions and the rational solutions in Theorem
2.3 appear to be degenerate cases of exact solutions expressed in terms of elliptic functions
(cf. [2, 8, 9]).
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3. Proofs of Theorems 2.1 and 2.2

3.1. Proof of Theorem 2.2. Suppose that α �= 0. Let φ(x) be a rational solution of

(1.4). Supposing that φ(x) = C0x
m +O(xm−1) around x = ∞, where C0 �= 0, m ∈ Z, and

substituting y(x) = φ(x) into (1.4), we easily have m = −1 and αC0 + γ = 0. This fact
implies the following:

LEMMA 3.1. Any rational solution φ(x) of (1.4) satisfies φ(x) = −(γ /α)x−1 +
O(x−2) around x = ∞. In particular, if γ = 0, then (1.4) admits the unique rational solution
y(x) ≡ 0.

Furthermore we have

LEMMA 3.2. If φ(x0 − 1) = ∞ and if φ(x0 − 3) �= ∞, then x = x0 + 1 is not a pole
of φ(x).

PROOF. This lemma is nothing but the singularity confinement property. Supposing
φ(x0 − 1) = ∞ and φ(x0 − 3) �= ∞, from (1.4) with y(x) = φ(x0 − 2 + t) we derive

φ(x0 − 2 + t) = ±1 + ε(t)

and

φ(x0 − 1 + t) = −g(t)
2
ε(t)−1 +O(1) ,(3.1)

g(t) := α(x0 − 2 + t)+ β ± γ ,

where ε(t) = O(t) as t → 0. Similarly we have

(3.2) φ(x0 + t) = ∓1 + α(x0 + t)+ β ∓ γ

g(t)
ε(t)+O(ε(t)2) .

From (3.1) and (3.2) it follows that φ(x0 + 1 + t) = O(1) as t → 0, which implies the
lemma. �

Suppose that γ �= 0, and that (1.4) admits a rational solution written in the form φ(x) =
P(x)/Q(x), where P(x) and Q(x) are relatively prime. By Lemma 3.1, we may write

P(x) = −(γ /α)xq−1 + b1x
q−2 + · · · ,

Q(x) = xq + c1x
q−1 + c2x

q−2 + · · ·
with q = degQ ∈ N. Substituting P(x)/Q(x) into (1.4), we have

P(x + 1)Q(x − 1)− P(x − 1)Q(x + 1)

Q(x − 1)Q(x + 1)
= Q(x)((αx + β)P (x)+ γQ(x))

Q(x)2 − P(x)2
.

Then the numerator and the denominator on the left-hand side are relatively prime. Indeed, if
this is not the case, there exists x0 satisfyingQ(x0 −1) = Q(x0 +1) = 0 and φ(x0 −3) �= ∞,
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which contradicts Lemma 3.2. Comparing the degrees of denominators on both sides, we have

Q(x − 1)Q(x + 1) = Q(x)2 − P(x)2 ,

which yields

(2c2 + c2
1 − q)x2q−2 + · · · = (2c2 + c2

1 − γ 2/α2)x2q−2 + · · · ,
and hence γ 2/α2 = q. Let yγ (x) be a solution of (1.4). Recall the auto-Bäcklund transfor-
mations with respect to the parameter γ :

yγ+α(x) =T +
γ yγ (x) := −yγ (x)+ (2γ + α)(1 + yγ (x))

2(yγ (x)+ 1)(1 − yγ (x + 1))− αx − β + γ
,

y−γ (x) =Sγ yγ (x) := −yγ (x)
and

yγ−α(x) = T −
γ yγ (x) := (S−γ+α ◦ T +−γ ◦ Sγ )yγ (x)

(see [10, 13], and note that γ corresponds to −a of [13, equation (8)]). The denominator
of T +

γ φ(x) does not vanish identically, since, by Lemma 3.1, it is −αx + O(1) near x =
∞. Hence T +

γ φ(x) is also a rational solution of (1.4) with γ + α instead of γ . Under the

supposition γ + α �= 0, by the same argument as above, we obtain (γ + α)2/α2 = q ′ ∈ N. If

γ /α = ±√
q �∈ Z, then (±√

q+ 1)2 = q+ 1 ± 2
√
q = q ′, implying that q − 1/4 ∈ Z, which

is a contradiction. Thus we conclude that γ /α = N ∈ Z, and that degQ = degP + 1 = N2.

Conversely suppose that γ /α = N ∈ Z. If N > 0, starting from the seed solution
φ0(x) ≡ 0 of (1.4) with γ = 0, we get the rational solution

φN(x) = (T +
(N−1)α ◦ T +

(N−2)α ◦ · · · ◦ T +
α ◦ T +

0 )φ0(x)

of (1.4) with γ = Nα. Furthermore let φ(x) be a rational solution of (1.4) with γ = Nα,

N > 0. By Lemma 3.1,

(T −
α ◦ T −

2α ◦ · · · ◦ T −
(N−1)α ◦ T −

Nα)φ(x) = φ0(x) ≡ 0 ,

and hence φ(x) = φN(x), since T +
γ−α ◦ T −

γ = id. This fact implies the uniqueness of the

rational solution φN(x). The case N < 0 is treated in a similar way. Thus Theorem 2.2 is
proved.

REMARK 3.1. The uniqueness property above also follows from the fact that the co-
efficients of the Laurent series expansion of φ(x) around x = ∞ are uniquely determined.

REMARK 3.2. For a solution of difference equations, it is not easy to know its local
behaviour around a pole located in C. In our arguments, we have used the singularity confine-
ment property in place of the series expansion around a movable pole for continuous Painlevé
equations (cf. [6]).
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3.2. Proof of Theorem 2.1. Suppose that α �= 0. Considering the Laurent series
expansion around x = ∞, we easily see that (1.1) and (1.2) admits no rational solutions.
Similarly equation (1.3) with γ = 0 admits no rational solutions. If αγ �= 0, a rational
solution of (1.3) may be written as P(x)/Q(x), where P(x) and Q(x) are relatively prime
polynomials satisfying degQ = degP + 1 ≥ 1. Substitution of this into (1.3) yields

P(x + 1)Q(x − 1)− P(x − 1)Q(x + 1)

Q(x − 1)Q(x + 1)
= Q(x)((αx + β)P (x)+ γQ(x))

P (x)2
.

The numerator and the denominator on the left-hand side are relatively prime, since this ratio-
nal solution has the same property as in Lemma 3.2. Indeed, supposing y(x0 − 3) �= ∞ and
y(x0 − 1) = ∞, we have

y(x0 − 2 + t) = ε(t) ,

y(x0 − 1 + t) = γ ε(t)−2 + α(x0 − 2 + t)ε(t)−1 +O(1) ,

y(x0 + t) = −ε(t)+ (α/γ )(x0 − 1 + t)ε(t)2 +O(ε(t)3) ,

y(x0 + 1 + t) = O(1) ,

where ε(t) → 0 as t → 0. Hence degP 2 ≥ 2 degQ, which is a contradiction. This implies
that (1.3) admits no rational solutions provided that α �= 0.

4. Proof of Theorem 2.3

To prove Theorem 2.3, we examine a fixed point of Rl(y)/2 (1 ≤ l ≤ 4).

LEMMA 4.1. Suppose that Rl(y) satisfies (2.1). There exists a fixed point y0 of
Rl(y)/2 such that R′

l (y0) = 2, if and only if Rl(y) satisfies condition (C.l) in Theorem 2.3.

In each case all the fixed points such that R′
l (y0) = 2 are listed as follows:

y±
0 = ± √−β/2 for R1(y) under (C.1) ;
y±

0 = ± √−β/3 for R2(y) under (C.2) ;
y±

0 = ∓ √
β/6 for R3(y) under (C.3) ;

y±
0 = ± √

(2 − β)/6 for R4(y) under (C.4) .

PROOF. If Rl(y0)/2 = y0 and if R′
l (y0) = 2, then y0 is at least a double zero of the

function Rl(y)− 2y. For example, suppose that y0 is a double zero of R4(y)− 2y. Then y0 is

a zero of the polynomials βy+ γ − 2y(1 − y2) and 6y2 + (β− 2). They have a common zero

if and only if γ = ±√
6(2 − β)3/2/9; and then y0 = ±√

(2 − β)/6. Noting that β ± γ = 0
(cf. (2.1)) holds if and only if β = −4, 1/2, we obtain condition (C.4). In a similar way, for
Rl(y) (1 ≤ l ≤ 3), we have the conditions and the corresponding fixed points. �
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Suppose that φ(x) is a nontrivial rational solution of (1.4) with α = 0. Then the Laurent
series expansion around x = ∞ satisfies φ(x) = y0 + O(x−1), where y0 is a fixed point of
R4(y)/2.

Suppose that R′
4(y0) = 2. Then γ satisfies (C.4) and y0 = y±

0 are as in Lemma 4.1. Let

φ±(x) denote the rational solutions corresponding to the fixed points y0 = y±
0 , respectively.

Then they satisfy

y(x + 1)+ y(x − 1) = βy(x)± √
6(2 − β)3/2/9

1 − y(x)2
.

Under the condition β �= 2, set φ±(x) = y±
0 (1 + ψ(x)). Then ψ(x) satisfies

ψ(x + 1)+ ψ(x − 1) = 2ψ(x)((2 − β)ψ(x)+ β + 4)

−(2 − β)ψ(x)2 − 2(2 − β)ψ(x)+ β + 4
.

Supposing ψ(x) = λ/(x2 − µ) and substituting this into the equation above, we obtain

λ = (β + 4)/(2 − β), µ = 3/(2(2 − β)). In this way we find the rational solutions φ±
4 (x). If

β = 2, then (1.4) is

y(x + 1)+ y(x − 1) = 2y(x)

1 − y(x)2
.

Supposing y(x) = λ/x, we obtain φ±
4 (x) = ±1/x as in the theorem.

To show the uniqueness of φ±
4 (x) for each fixed point, we set φ±(x) = y±

0 + Ψ±(x)
with Ψ ±(x) = ∑

j≥1 c
±
j x

−j around x = ∞. Since R′
4(y

±
0 ) = 2, z(x) = Ψ±(x) satisfy

(4.1) z(x + 1)+ z(x − 1)− 2z(x) =
∑
j≥2

a±
j z(x)

j

with

a±
2 = R′′

4 (y
±
0 )

2
= 36y±

0

β + 4
= ±36

√
(2 − β)/6

β + 4
,

where the right-hand side is convergent if |z(x)| is sufficiently small. Here we note that

(y±
0 )

2 − 1 �= 0 for R4(y), because the case (β, γ ) = (−4,±4) is excluded by (2.1).

Suppose that β �= 2, namely a±
2 �= 0. Substitute Ψ ±(x) into (4.1) and observe that

(x + 1)−j − 2x−j + (x − 1)−j = j (j + 1)x−j−2
(

1 +
∑
k≥1

2 (j + 2)2k
(2k + 2)! x

−2k
)

with (j+2)2k = (j+2)(j+3) · · · (j+2k+1). Comparing the coefficients of x−2, x−3, x−4

and x−5 on both sides of (4.1), we have c±1 = 0, 6c±2 = a±
2 (c

±
2 )

2 and 12c±3 = a±
2 · 2c±2 c

±
3 ,

which imply that c±2 = 6(a±
2 )

−1 and that c±3 = c is arbitrary. For j ≥ 4, observing the



RATIONAL SOLUTIONS OF DIFFERENCE PAINLEVÉ EQUATIONS 93

coefficients of x−j−2 on both sides, we have the relations

j (j + 1)c±j = Q±
j (c

±
2 , c

±
3 , . . . , c

±
j−1) ,

by which c±j (j ≥ 4) are uniquely determined, where Q±
j are polynomials in c±2 , . . . , c

±
j−1.

Since

φ±
4 (x − c) = y±

0 + 6(a±
2 )

−1(x−2 + 2cx−3 + · · · ) ,
this fact implies that φ±(x) = y±

0 + Ψ±(x) coincide with φ±
4 (x − c), respectively, up to the

arbitrary constant c.
If β = 2, then γ = 0, y±

0 = 0, and hence a±
2 = 0, a±

3 = a3 = 2, a±
j = aj (j ≥ 4)

in (4.1). Substitution of Ψ (x) = ∑
j≥1 cjx

−j into (4.1) yields the relations 2c1 = 2c3
1 and

6c2 = 2 · 3c2
1c2, implying that c1 = ±1 and that c2 = c is arbitrary. By the same argument as

above, we conclude that φ±(x) coincide with ±1/(x ∓ c).
Consider the remaining case where the fixed point y0 satisfies R′

4(y0) �= 2. By (2.1) we
have y0 �= ±1. Then z(x) = φ(x)− y0 satisfies

z(x + 1)+ z(x − 1)− R′
4(y0)z(x) =

∑
j≥2

aj z(x)
j

around x = ∞. Substituting z(x) = ∑
j≥1 cjx

−j into this, we may inductively get cj = 0

for every j ≥ 1, which implies that (1.4) admits no rational solutions other than y(x) ≡ y0 if
R′

4(y0) �= 2. Thus we arrive at the conclusion for (1.4) of Theorem 2.3. The other equations
are treated in a similar manner.

5. Proof of Theorem 2.4

Suppose that condition (C.l) is not satisfied. By Lemma 4.1, every fixed point ofRl(y)/2
(1 ≤ l ≤ 4) satisfies R′

l (y0) �= 2. For l = 4, since the degree of the denominator ofR4(y) is 2,

by [3], there exists a fixed point y∗
0 of R4(y)/2 such that either |R′

4(y
∗
0 )| > 2 or R′

4(y
∗
0 ) = 2.

Then |R′
4(y

∗
0 )| > 2, and hence R′

4(y
∗
0 ) �= −2. For l = 1, supposing R1(y0)/2 = y0 and

R′
1(y0) = −1,we have β = γ 2, y0 = γ , and then there exists another fixed point y∗

0 = −γ /2
such that R′

1(y
∗
0 ) = −4. For l = 2 as well we may show the existence of y0 such that

R′
2(y0) �= −2 by direct computation or by using the result of [3]. At any rate the existence of
y0 as in Theorem 2.4 is guaranteed.

For (1.4), suppose that y0 �= 0, and put y(x) = y0(1 + z(x)). Since R4(y0)/2 = y0, we
have, from (1.4), that

(5.1) z(x + 1)+ z(x − 1) = R′
4(y0)z(x)+ 2Y0z(x)

2

1 − 2Y0z(x)− Y0z(x)2
, Y0 = y2

0

1 − y2
0

.
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Substitute z(x) = X(X − a4)
−1(X − b4)

−1 with X = e−σx into (5.1). Then the left-hand
side is

(e−σ + eσ )X3 − 2(a4 + b4)X
2 + (e−σ + eσ )a4b4X

(X2 − (a4e−σ + b4eσ )X + a4b4)(X2 − (a4eσ + b4e−σ )X + a4b4)
,

and the right-hand side is P4(X)/Q4(X) with

P4(X) = R′
4(y0)X

3 + (2Y0 − (a4 + b4)R
′
4(y0))X

2 + R′
4(y0)a4b4X ,

Q4(X) = X4 − 2(a4 + b4 + Y0)X
3

+ (a2
4 + b2

4 + 4a4b4 + 2Y0(a4 + b4)− Y0)X
2 − 2a4b4(a4 + b4 + Y0)X + a2

4b
2
4 .

Comparing the coefficients on both sides, we obtain the relation e−σ + eσ = R′
4(y0) �= ±2

and the desired expressions of a4 + b4 and a4b4 with e−σ �= ±1.
Suppose that y0 = 0 and that R′

4(0) = β �= ±2. Substitute y(x) = F4(0;X) = X(X −
a0

4)
−1(X − b0

4)
−1 with X = e−σx into (1.4). Since γ = 0, the right-hand side of (1.4) is

P 0
4 (X)/Q

0
4(X) with

P 0
4 (X) = R′

4(0)X(X
2 − (a0

4 + b0
4)X + a0

4b
0
4) ,

Q0
4(X) = X4 − 2(a0

4 + b0
4)X

3

+ ((a0
4)

2 + (b0
4)

2 + 4a0
4b

0
4 − 1)X2 − 2a0

4b
0
4(a

0
4 + b0

4)X + (a0
4)

2(b0
4)

2 .

Using this, we obtain the expressions of a0
4 and b0

4. The other equations are treated in a similar
way.
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