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Abstract. We consider the stationary Navier-Stokes equations with nonhomogeneous boundary condition in a
domain with several boundary components. If the boundary value satisfies only the necessary flux condition (GOC),
Leray’s inequality does not holds true in general and we cannot prove the existence of a solution. But for a 2-D domain
which is symmetric with respect to a line and where the data is also symmetric, C. Amick showed the existence
of solutions by reduction to absurdity; later H. Fujita proved Leray-Fujita’s inequality and hence the existence of
symmetric solutions. In this paper we give a new short proof of Leray-Fujita’s inequality and hence a proof of the
existence of weak solutions.

1. Introduction

Suppose Ω is a two-dimensional Lipschitz bounded domain symmetric with respect
to the x2 -axis and such that the boundary ∂Ω consists of several connected components,
Γ0, Γ1, . . . , ΓN (N ≥ 1). Consider the stationary Navier-Stokes equations




(u · ∇)u = ν∆u − ∇p in Ω,

div u = 0 in Ω,

u = β on ∂Ω,

(NS)

where u = (u1, u2) is the fluid velocity, p the pressure, ν > 0 the kinematic viscosity
constant, and β is a given vector function on ∂Ω .

Suppose the boundary value β satisfies the stringent outflow condition∫
Γi

β · ndσ = 0 (0 ≤ i ≤ N) (SOC)

where n is the unit outward normal vector to ∂Ω . Then, for every ε > 0, we can find a

solenoidal extension bε ∈ H 1(Ω) of β which satisfies the inequality (Leray’s inequality)

|((v · ∇)v, bε)| ≤ ε||∇v||2 for all v ∈ V (Ω) , (L)
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where (·, ·) is the inner product of L2(Ω), ‖ · ‖ the L2-norm and V (Ω) = {u ∈
H 1

0 (Ω); div u = 0}. Using this inequality, we obtain an a priori estimate of solutions to
(NS), and the Leray-Schauder principle assures the existence of solutions. See Leray [9],
Hopf [6], Fujita [3], Ladyzhenskaya [8].

If the boundary value β satisfies only the general outflow condition∫
∂Ω

β · n dσ = 0 (GOC)

the inequality (L) does not hold: in many cases, the validity of (L) for all ε > 0 implies
(SOC), cf. Takeshita [13], Farwig-Kozono-Yanagisawa [2].

Nevertheless, if the two-dimensional domain is symmetric with respect to a line, with
all the boundary components intersecting the line of symmetry, and if β is also symmetric,
then, firstly Amick [1] proved the existence of stationary solutions by reduction to absurdity.
Later, Fujita [4] succeeded to construct an extension of β which satisfies an estimate similar
to (L) for symmetric functions and to prove the existence of solutions by the Leray-Schauder
principle. In [10], there is a simple approach to prove Leray’s inequality yielding a solution

with a decomposition into a weak part (in H 1) and very weak part (in L2).
The main idea in this paper is to find b – as in the non-symmetric case – in the form

b = ∇⊥(hϕ) = (
∂(hϕ)
∂x2

,− (∂hϕ)
∂x1

)
with a stream function ϕ ∈ H 2 and a cut-off function h.

However, in the case of a symmetric domain with the x2-axis as symmetry axis and boundary
values satisfying only (GOC), the cut-off function h is based on the regularized distance to
∂Ω multiplied by the term ±x1. This very special construction will lead to the inequality (L).

As for the nonsymmetric case, Morimoto-Ukai [11] and Fujita-Morimoto [5] considered
boundary values of the form µ∇h + β1. Here h is a harmonic function, µ ∈ R, and β1

satisfies (GOC). They obtained, using properties of compact operators, an existence result for
all µ ∈ R \ M with small β1, where M is an at most countable set. Recently, Kozono-
Yanagisawa [7] proved a more precise result in terms of a smallness condition using harmonic
vector fields.

2. Notation and Results

In order to state our results, we need for a bounded domain Ω ⊂ R2 with Lipschitz
boundary the function spaces C∞

0,σ (Ω) = {v ∈ C∞
0 (Ω); div v = 0} and

V (Ω) = completion of C∞
0,σ (Ω) under the Dirichlet norm ‖∇ · ‖ .

Assume that Ω is symmetric with respect to the x2-axis, i.e., x = (x1, x2) ∈ Ω if and only if
(−x1, x2) ∈ Ω . The vector function v = (v1, v2) is called symmetric with respect to the x2-
axis (“symmetric” in short) if and only if v1 is an odd function of x1 and v2 an even function
of x1, i.e.,

v1(−x1, x2) = −v1(x1, x2), v2(−x1, x2) = v2(x1, x2)



LERAY’S INEQUALITY FOR FLUID FLOW 65

hold true.

REMARK 1. If v = (v1, v2) is smooth and symmetric, then v1(0, x2) = 0 for (0, x2) ∈
Ω .

Then we need the following symmetric function spaces:

C
∞,S
0,σ (Ω) = {v ∈ C∞

0 (Ω); v is symmetric, div v = 0} ,

V S(Ω) = completion of C
∞,S
0,σ (Ω) under the Dirichlet norm .

Our main theorem is as follows.

THEOREM 1. Let Ω be a 2-dimensional bounded Lipschitz domain, symmetric with
respect to the x2-axis such that every boundary component intersects the x2-axis. Further as-

sume that the boundary value β ∈ H
1
2 (∂Ω) is symmetric with respect to the x2-axis satisfying

(GOC). Then, for every positive ε, there exists a symmetric solenoidal extension bε ∈ H 1(Ω)

of β such that the inequality

|((v · ∇)v, bε)| ≤ ε||∇v||2 (v ∈ V S(Ω)) (LF)

holds true.

REMARK 2. An a priori estimate for symmetric solutions to (NS) follows from the
inequality (LF). Indeed, if u is a symmetric solution and w = u − bε, then w ∈ V S(Ω) and
it must solve the variational problem

(1) (∇w,∇v) + ((∇w · ∇)w, v) + ((w · ∇)bε, v) + ((bε · ∇)w, v) = (f , v)

for all v ∈ V S(Ω) and a known external force f . For v = w we get that

‖∇w‖2 + ((w · ∇)bε,w) = (f ,w) .

Under the condition (LF) we deduce an a priori estimate for ‖∇w‖ in terms of f , and the
Leray-Schauder principle yields a solution w ∈ V S(Ω) of (1). Since (∇w · ∇)w, (w · ∇)bε

and (bε · ∇)w are symmetric, we easily get that (1) is even satisfied for all test functions
v ∈ V (Ω). We can also obtain the solution using the Galerkin method, cf., e.g., Fujita [3].

3. Proof of Theorem 1

Let

Ω+ = {(x1, x2) ∈ Ω; x1 > 0} , Ω− = {(x1, x2) ∈ Ω; x1 < 0} .

Suppose that β ∈ H
1
2 (∂Ω) is symmetric with respect to the x2-axis and satisfies (GOC).

Then there exists a solenoidal extension b = (b1, b2) in H 1(Ω), symmetric with respect to
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the x2-axis, i.e.,

div b = 0 in Ω, b|∂Ω = β .

REMARK 3. Note that b1(0, x2) = 0 for (0, x2) ∈ Ω , and∫
∂Ω+

b · n dσ =
∫

∂Ω−
b · n dσ = 0

where n is the unit outward normal vector to the boundary of Ω+, or Ω−.

Since Ω+ is simply connected, there exists a scalar function (stream function) ϕ ∈
H 2(Ω+) such that

b = ∇⊥ϕ =
(

∂ϕ

∂x2
,− ∂ϕ

∂x1

)
in Ω+ .

Let h(t) = h(t; κ, δ) be a C∞ function in t ≥ 0, depending on the parameters δ > 0 and
1/4 > κ > 0, and satisfying

h(t) =
{

1 (0 ≤ t ≤ κδ)

0 (t ≥ (1 − κ)δ)
, 0 ≤ h ≤ 1 ,

(2) sup
0≤t≤δ

|t h′(t)| → 0 (κ → 0) uniformly in δ > 0 .

Furthermore, let d(x) be the regularized distance from ∂Ω , i.e., d(x) is a smooth function on
Ω , equivalent to the Euclidean distance function to ∂Ω , and its gradient ∇d(x) is bounded;
see Stein [12, p.171, Theorem 2]. Therefore, there exists a constant M such that

0 ≤ d(x) < M, |∇d(x)| < M (x ∈ Ω) .

Finally, we define

ρ(x) = x1d(x) (x ∈ Ω+) .

Then, ρ(x) is smooth, ρ(x) > 0 for x ∈ Ω+, ρ(x) = 0 for x ∈ ∂Ω+ and its first order
derivatives are

(3)
∂

∂x1
ρ(x) = d(x) + x1

∂

∂x1
d(x)

(4)
∂

∂x2
ρ(x) = x1

∂

∂x2
d(x) .

Let 0 < δ be small and r0 = sup{x1; (x1, x2) ∈ Ω+}. Put

Ω+,2 =
{
x ∈ Ω+; d(x) <

√
δ

r0

}
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Ω+,1 = {x ∈ Ω+ \ Ω+,2; x1 < r0
√

δ} .

Then, we have

(5)

√
δ

r0
x1 ≤ ρ(x) = x1d(x) < x1M (x ∈ Ω+,1) ,

(6) ρ(x) = x1d(x) ≥ r0
√

δ ·
√

δ

r0
= δ (x ∈ Ω+ \ Ω+,1 ∪ Ω+,2) .

Therefore, ρ(x) ∼ x1 in Ω+,1 and h(ρ(x)) = 0 in Ω+ \ Ω+,1 ∪ Ω+,2.
Using (3) and (4), we see,∣∣∣∣ ∂

∂x1
ρ(x)

∣∣∣∣ ≤ d(x) + x1

∣∣∣∣ ∂

∂x1
d(x)

∣∣∣∣ ≤ M(1 + r0
√

δ) (x ∈ Ω+,1)

∣∣∣∣ ∂

∂x2
ρ(x)

∣∣∣∣ ≤ x1M ≤ r0
√

δM (x ∈ Ω+,1) .

Put

(7) b̃(x) = ∇⊥{h(ρ(x))ϕ(x)} (x ∈ Ω+)

where the derivative is taken in the sense of distribution. Then div b̃ = 0,

(8) b̃(x) = h(ρ(x))∇⊥ϕ(x) + h′(ρ){∇⊥ρ(x)}ϕ(x) ,

and we see b̃ ∈ H 1(Ω+). Furthermore, we have

b̃|∂Ω+ = b|∂Ω+

because h′(t) ≡ 0 in a neighbourhood of t = 0.
Let ε be an arbitrary positive number. Our aim is to show that if we choose δ > 0 and

κ > 0 sufficiently small, then the estimate

(9) |(v · ∇v, b̃)Ω+| ≤ ε||∇v||2Ω+ (∀v ∈ V S(Ω))

holds. Since C
∞,S
0,σ (Ω) is dense in V S(Ω), we need prove (9) only for C

∞,S
0,σ (Ω). Suppose

v ∈ C
∞,S
0,σ (Ω). Using the formula (v · ∇)v = 1

2∇|v|2 − ωv⊥ where

v = (v1, v2) , ω = ∂v2

∂x1
− ∂v1

∂x2
, v⊥ = (v2,−v1) , |v|2 = v2

1 + v2
2 ,

we have

(10) ((v · ∇)v, b̃)Ω+ =
∫

Ω+

1

2
∇|v|2 · b̃ dx −

∫
Ω+

ωv⊥ · b̃ dx .
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Since b̃ belongs to L2(Ω+) and div b̃ = 0, it holds that

|v|2b̃ ∈ L2(Ω+), div(|v|2b̃) = ∇|v|2 · b̃ ∈ L2(Ω+) .

Furthermore, |v|2b̃ · n = 0 on the boundary ∂Ω+. Therefore Gauss’ divergence theorem
proves that the first term of the right-hand side of (10) vanishes. As for the second term of the

right-hand side of (10), using the expression (8) for b̃, we have

(11)

∫
Ω+

ωv⊥ · b̃ dx =
∫

Ω+
ωv⊥h(ρ)∇⊥ϕ dx +

∫
Ω+

ωv⊥h′(ρ)ϕ∇⊥ρ dx .

By virtue of (6) and the properties of h, it is sufficient to calculate the integration only on the
domain Ω+,1 ∪ Ω+,2. Therefore,∫

Ω+
ωv⊥h(ρ)∇⊥ϕ dx =

∫
Ω+,1∪Ω+,2

ωv⊥h(ρ)∇⊥ϕ dx =: I .

Using Poincaré’s inequality for v ∈ V S(Ω), we see that we may choose δ > 0 sufficiently

small so that |I | is less than ε‖∇v‖2. We fix this δ.
Using (3) and (4), we have

ωv⊥h′(ρ)ϕ∇⊥ρ = ωϕh′(ρ)

(
v1

∂ρ

∂x1
+ v2

∂ρ

∂x2

)

(12) = ωϕ

{
v1(x)

d(x)

ρ(x)
+ x1

ρ

(
v1

∂d

∂x1
+ v2

∂d

∂x2

)}
ρh′(ρ)

= ωϕ

{
v1(x)

1

x1
+ 1

d(x)

(
v1

∂d

∂x1
+ v2

∂d

∂x2

)}
ρh′(ρ) .

Therefore,

(13)

∣∣∣
∫

Ω+
ωv⊥h′(ρ)ϕ∇⊥ρ dx

∣∣∣
≤ sup

ρ
|ρh′(ρ)| ‖ϕ‖∞‖ω‖

(∥∥∥v1

x1

∥∥∥
L2(Ω+,1∪Ω+,2)

+ M

∥∥∥v

d

∥∥∥
L2(Ω+,1∪Ω+,2)

)
.

As for the last term in (13) note that 1/d(x) ≤ r0/
√

δ for x ∈ Ω+,1 so that∥∥∥v

d

∥∥∥
L2(Ω+,1)

≤ C‖v‖ .

Moreover, since v1 = v2 = 0 on ∂Ω , we can apply Hardy’s inequality to v in Ω+,2 and obtain∥∥∥ v

d

∥∥∥
L2(Ω+,2)

≤ C‖∇v‖L2(Ω+) .

Hence ∥∥∥v

d

∥∥∥
L2(Ω+,1∪Ω+,2)

≤ C‖∇v‖L2(Ω+) .
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Concerning the norm
∥∥v1/x1

∥∥
L2(Ω+,1∪Ω+,2)

in (13) we use a slightly different decomposition

of the set Ω+,1 ∪ Ω+,2 and define

Ω+,12 = {x ∈ Ω+,2; x1 < r0
√

δ} .

Note that Ω+,1 ∪ Ω+,12 is a set of rectangular type with boundary components of class C0,1

and that v1 vanishes on the component {x1 = 0} of ∂(Ω+,1 ∪ Ω+,12). It is easy to see that

using a change of variables in the x2-variable for every 0 < x1 < r0
√

δ, we may apply
Hardy’s inequality to v1 on several subsets of Ω+,1 ∪ Ω+,12. Hence we obtain the estimate∥∥∥∥v1

x1

∥∥∥∥
L2(Ω+,1∪Ω+,12)

≤ C‖∇v1‖ .

On Ω+,2 \ Ω+,12 we have x1 > r0
√

δ and it holds the estimate∥∥∥∥v1

x1

∥∥∥∥
L2(Ω+,2\Ω+,12)

≤ 1

r0
√

δ
‖v1‖ .

Summing up the previous inequalities we see that (13) leads to the estimate

(14)

∣∣∣
∫

Ω+
ωv⊥h′(ρ)ϕ∇⊥ρ dx

∣∣∣ ≤ C sup
ρ

|ρh′(ρ)|‖ϕ‖∞‖ω‖‖∇v‖ .

If we choose κ sufficiently small, we have

(15)

∣∣∣
∫

Ω+
ωv⊥h′(ρ)ϕ∇⊥ρ dx

∣∣∣ ≤ ε‖∇v‖2 ,

and the estimate (9) holds true.
Put

bε(x1, x2) =
{

(b̃1(x1, x2), b̃2(x1, x2)) (x1, x2) ∈ Ω+
(−b̃1(−x1, x2), b̃2(−x1, x2)) (x1, x2) ∈ Ω−

.

Then bε ∈ H 1(Ω) is solenoidal in Ω , symmetric with respect to the x2-axis, extends the
boundary values β and satisfies (LF). �
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