Birational Maps of Moduli Spaces of Vector Bundles on $K 3$ Surfaces

Masanori KIMURA and Kōta YOSHIOKA

Kobe University
(Communicated by M. Tsuzuki)

Abstract

In this note, we construct a birational map of a moduli space of stable sheaves on a $K 3$ surface induced by a reflection functor.

0. Introduction

Let X be a $K 3$ surface defined over \mathbb{C} and H an ample line bundle on X. Let $\left(H^{*}(X, \mathbb{Z}),\langle\rangle,\right)$ be the Mukai lattice of X : for $x^{i}=\left(r^{i}, \xi^{i}, a^{i}\right) \in H^{*}(X, \mathbb{Z}), i=1,2$,

$$
\left\langle x^{1}, x^{2}\right\rangle:=\left(\xi^{1}, \xi^{2}\right)-r^{1} a^{2}-a^{1} r^{2} \in \mathbb{Z} .
$$

For a coherent sheaf E on X,

$$
\begin{aligned}
v(E): & =\operatorname{ch}(E) \sqrt{\operatorname{td}_{X}} \\
& =\left(\operatorname{rk} E, c_{1}(E), \chi(E)-\operatorname{rk}(E)\right) \in H^{*}(X, \mathbb{Z})
\end{aligned}
$$

is the Mukai vector of E, where td_{X} is the Todd class of X and we identify $H^{4}(X, \mathbb{Z})$ with \mathbb{Z}. We denote the moduli space of stable sheaves E of $v(E)=v$ by $M_{H}(v)$. If H is general and v is primitive, then $M_{H}(v)$ is a smooth projective scheme.

Definition 0.1 . For an object $\mathcal{E} \in \mathbf{D}(X \times X)$, we define an integral functor

$$
\begin{array}{cccc}
\Phi_{\mathcal{E}}: & \mathbf{D}(X) & \rightarrow & \mathbf{D}(X) \tag{0.1}\\
x & \mapsto & \mathbf{R} p_{2 *}\left(\mathcal{E} \otimes p_{1}^{*}(x)\right),
\end{array}
$$

where $p_{1}, p_{2}: X \times X \rightarrow X$ are projections. The Fourier-Mukai transform of X is an equivalence $\mathbf{D}(X) \rightarrow \mathbf{D}(X)$ of this form $\Phi_{\mathcal{E}}$.

Let I_{Δ} be the ideal of the diagonal $\Delta \subset X \times X$. Then we have the Fourier-Mukai transform $\Phi_{I_{\Delta}}$ whose inverse is given by $\Phi_{I_{\Delta}^{*}}[2]: \mathbf{D}(X) \rightarrow \mathbf{D}(X)$ with

$$
\begin{equation*}
\Phi_{I_{\Delta}^{*}}(x):=\mathbf{R} \operatorname{Hom}_{p_{2}}\left(I_{\Delta}, p_{1}^{*}(x)\right), x \in \mathbf{D}(X), \tag{0.2}
\end{equation*}
$$

where $I_{\Delta}^{*}=\mathbf{R} \mathcal{H o m}_{\mathcal{O}_{X \times X}}\left(I_{\Delta}, \mathcal{O}_{X \times X}\right)$. The Fourier-Mukai transform $\Phi_{\mathcal{E}}$ induces an isometry $\Phi_{\mathcal{E}}^{H}$ of the Mukai lattice and we have a commutative diagram:

If $\mathcal{E}=I_{\Delta}$, then $-\Phi_{\mathcal{E}}^{H}$ coincides with the reflection by the (-2)-vector $v\left(\mathcal{O}_{X}\right)=(1,0,1)$:

$$
\begin{equation*}
-\Phi_{\mathcal{E}}^{H}((r, \xi, a))=(a,-\xi, r)=x+\left\langle x, v\left(\mathcal{O}_{X}\right)\right\rangle v\left(\mathcal{O}_{X}\right) \tag{0.4}
\end{equation*}
$$

where $x=(r, \xi, a)$.
Let E be a stable sheaf on X with $v(E)=v$. Assume that there is an integer i such that
(a) $H^{i}\left(\Phi_{I_{\Delta}^{*}}(E)\right)$ is a stable sheaf.
(b) $H^{j}\left(\Phi_{I_{\Delta}^{*}}(E)\right)=0$ for $j \neq i$.

Then we have a rational map $M_{H}(v) \cdots \rightarrow M_{H}(w)$ which becomes birational by the properties of the Fourier-Mukai transform, where $w=v(F)$. In this note, we give some conditions for E to satisfy (a) and (b).

Theorem 0.1. Let X be a K3 surface with $\operatorname{Pic}(X)=\mathbb{Z} H$. Let $v=(r, d H, a)$ be the Mukai vector of a coherent sheaf with $\left\langle v^{2}\right\rangle=d^{2}\left(H^{2}\right)-2 r a>0$.
(1) Assume that $a \leq 0$.
(a) If $r+a \geq 0$, then $\Phi_{I_{\Delta}[1]}$ induces a birational map

$$
M_{H}(r, d H, a) \cdots \rightarrow M_{H}(-a, d H,-r)
$$

(b) If $r+a \leq 0$, then $\Phi_{I_{\Delta}^{*}[1]}$ induces a birational map

$$
M_{H}(r, d H, a) \cdots \rightarrow M_{H}(-a, d H,-r)
$$

(2) Assume that a $=0,1$, then $\mathcal{D} \circ \Phi_{I_{\Delta}}$ induces a birational map

$$
M_{H}(r, d H, a) \cdots \rightarrow M_{H}(a, d H, r)
$$

unless $\left(H^{2}\right)=2$ and $v=(2 d-1, d H, 1), d \geq 2$, where $\mathcal{D}(E):=$ $\mathbf{R} \mathcal{H o m}_{\mathcal{O}_{X}}\left(E, \mathcal{O}_{X}\right), E \in \mathbf{D}(X)$.
(3) If $\left(H^{2}\right)=2$, then there is an auto-equivalence $\Phi: \mathbf{D}(X) \rightarrow \mathbf{D}(X)$ such that $\mathcal{D} \circ \Phi$ induces a birational map

$$
M_{H}(2 d-1, d H, 1) \cdots \rightarrow M_{H}(1, d H, 2 d-1), d \geq 2
$$

Corollary 0.2. Let (X, H) be a pair of a $K 3$ surface X and an ample divisor H on X. Let $v=(r, d H, a)$ be the Mukai vector of a coherent sheaf with $\left\langle v^{2}\right\rangle=d^{2}\left(H^{2}\right)-2 r a>0$.

If $a \leq 1$ and $\operatorname{gcd}\left(r, d\left(H^{2}\right), a\right)=1$, then we have a birational map $M_{H}(r, d H, a) \cdots \rightarrow$ $M_{H}(a, d H, r)$.

Proof. We first assume that $a \leq 0$. We take a flat family $(\mathcal{X}, \mathcal{H}) \rightarrow S$ of polarized $K 3$ surfaces over a smooth curve S such that $(\mathcal{X}, \mathcal{H})_{s_{0}}=(X, H), s_{0} \in S$ and $\operatorname{Pic}\left(\mathcal{X}_{s_{1}}\right)=\mathbb{Z} \mathcal{H}_{s_{1}}$, $s_{1} \in S$. Then we have flat families $\mathcal{M}_{i} \rightarrow S, i=1,2$ of moduli spaces where $\mathcal{M}_{1}:=$ $\mathcal{M}_{\mathcal{H}}(r, d \mathcal{H}, a)$ and $\mathcal{M}_{2}:=\mathcal{M}_{\mathcal{H}}(-a, d \mathcal{H},-r)$. By our assumption, they are smooth and projective families. By the openness of the stability condition, the Fourier-Mukai transform induces a birational map $f: \mathcal{M}_{1} \cdots \rightarrow \mathcal{M}_{2}$. Then [4, Theorem 4.3] implies the claim.

Remark 0.1. Related results are obtained by Zuo [17], Ballico and Chiantini [1], Nakashima [8] and Costa [2].

It is conjectured that an irreducible symplectic manifold M is birationally equivalent to an irreducible symplectic manifold with a Lagrangean fibration, if there is a line bundle which is isotropic with respect to Beauville bilinear form (cf. [3], [5], [9]). The following corollary supports this conjecture.

Corollary 0.3. Let (X, H) be a pair of a $K 3$ surface X and an ample divisor H on X. If $\operatorname{gcd}\left(r, d\left(H^{2}\right)\right)=1$, then $M_{H}(r, d H, 0), d>0$ is birationally equivalent to a holomorphic symplectic manifold with a Lagrangean fibration.

1. Preliminaries

Let $\mathcal{M}(v)$ be the moduli stack of coherent sheaves E on X with $v(E)=v$. Let $\mathcal{M}_{H}(v)^{s s}$ (resp. $\left.\mathcal{M}_{H}(v)^{s}\right)$ be the open substack of $\mathcal{M}(v)$ consisting of H-semi-stable sheaves (resp. H-stable sheaves). From now on, we assume that $\operatorname{Pic}(X)=\mathbb{Z} H$. Then, H is a general polarization, that is,

$$
\begin{equation*}
\frac{\left(c_{1}(F), H\right)}{\mathrm{rk} F}=\frac{\left(c_{1}(E), H\right)}{\mathrm{rk} E} \text { if and only if } \frac{c_{1}(F)}{\mathrm{rk} F}=\frac{c_{1}(E)}{\mathrm{rk} E} \tag{1.1}
\end{equation*}
$$

for any subsheaf F of a μ-semi-stable sheaf E with $v(E)=v$.
Proposition 1.1. Let \mathcal{M} be an irreducible component of $\mathcal{M}(v)$. Then $\operatorname{dim} \mathcal{M} \geq$ $\left\langle v^{2}\right\rangle+1$.

Proof. The claim is an easy consequence of the deformation theory of a coherent sheaf. For a proof, see the proof of [13, Prop. 3.4].

For the open substack $\mathcal{M}_{H}(v)^{s s}$, we have $\operatorname{dim} \mathcal{M}_{H}(v)^{s s}=\left\langle v^{2}\right\rangle+1$. Moreover we have the following claims.

Theorem 1.2. [13, Thm. 0.1, Prop. 3.4], [15, Cor. 3.5] Assume that $\left\langle v^{2}\right\rangle>0$. Then
(1) $\mathcal{M}_{H}(v)^{s s}$ is an irreducible normal stack of $\operatorname{dim} \mathcal{M}_{H}(v)^{s s}=\left\langle v^{2}\right\rangle+1$.
(2) $\mathcal{M}_{H}(v)^{s}$ is an open dense substack of $\mathcal{M}_{H}(v)^{s s}$.

DEFINITION 1.1. For $v=(r, d H, a) \in \mathbb{Q} \oplus \mathbb{Q} H \oplus \mathbb{Q}$, we set $v \geq 0$, if (i) $r>0$, or (ii) $r=0$ and $d>0$ or (iii) $r=d=0$ and $a \geq 0$. If $v-w \geq 0$, then we write $v \geq w$.

DEFINITION 1.2. For $v_{i}:=\left(r_{i}, d_{i} H, a_{i}\right), 1 \leq i \leq s$ with $v_{1} / r_{1} \geq v_{2} / r_{2} \geq \cdots \geq$ v_{s} / r_{s}, let $\mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ be the substack of $\mathcal{M}(v)$ whose element F has the HarderNarasimhan filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=F \tag{1.2}
\end{equation*}
$$

such that $v_{i}=v\left(F_{i} / F_{i-1}\right), i=1,2, \ldots, s$.
By the properties of Harder-Narasimhan filtration and the Serre duality,

$$
\begin{equation*}
\operatorname{Ext}^{2}\left(F_{j} / F_{j-1}, F_{i} / F_{i-1}\right)=\operatorname{Hom}\left(F_{i} / F_{i-1}, F_{j} / F_{j-1}\right)^{\vee}=0, i<j \tag{1.3}
\end{equation*}
$$

Then the following lemma holds (cf. [16, Lemma, 5.3]).
Lemma 1.3.

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)=\sum_{i<j}\left\langle v_{j}, v_{i}\right\rangle+\sum_{i \geq 1} \operatorname{dim} \mathcal{M}_{H}\left(v_{i}\right)^{s s} \tag{1.4}
\end{equation*}
$$

Lemma 1.4. Let $v=l v^{\prime}$ be a Mukai vector such that $l>0$ and v^{\prime} is primitive. Then

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}_{H}(v)^{s s} \leq\left\langle v^{2}\right\rangle+l^{2} \tag{1.5}
\end{equation*}
$$

Proof. We note that

$$
\begin{equation*}
\operatorname{dim} \operatorname{Ext}^{2}(E, E)=\operatorname{dim} \operatorname{Hom}(E, E) \leq l^{2} \tag{1.6}
\end{equation*}
$$

for $E \in \mathcal{M}_{H}(v)^{s s}$. Hence $\operatorname{dim} \mathcal{M}_{H}(v)^{s s} \leq\left\langle v^{2}\right\rangle+l^{2}$ by the deformation theory of a coherent sheaf.
1.1. Brill-Noether locus. We set $v:=(r, d H, a), r \geq 0, d>0, a \leq 0$. Let E be a stable sheaf with $v(E)=v$. Then $\chi(E)=r+a$. By the stability of E and $d>0$, Serre duality implies that $H^{2}(X, E)=\operatorname{Hom}\left(E, \mathcal{O}_{X}\right)^{\vee}=0$.

Definition 1.3. We set

$$
\begin{equation*}
\mathcal{M}_{H}(v)_{0}^{s}:=\left\{E \in \mathcal{M}_{H}(v)^{s} \mid H^{0}(X, E)=0\right\} \tag{1.7}
\end{equation*}
$$

By the Brill-Noether theory, it is expected that $\mathcal{M}_{H}(v)_{0}^{s} \neq \emptyset$ if $r+a \leq 0$. In this subsection, we shall prove this expectation is true.

Proposition 1.5. Let $v=(r, d H, a)$ be a Mukai vector such that $r \geq 0, d>0$ and $r+a \leq 0$. Then $\mathcal{M}_{H}(v)_{0}^{s} \neq \emptyset$.

Before proving this proposition, we shall explain that $\Phi_{I_{\Delta}^{*}}(E)[1]$ is a coherent sheaf defined as the universal extension of E by \mathcal{O}_{X} for $E \in \mathcal{M}_{H}(v)_{0}^{s}$. Assume that $r+a \leq 0$.

For $E \in \mathcal{M}_{H}(v)_{0}^{S}$, we consider the Fourier-Mukai transform $\Phi_{I_{\Delta}^{*}}(E)$. By using the exact sequence

$$
\begin{equation*}
0 \rightarrow I_{\Delta} \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{\Delta} \rightarrow 0 \tag{1.8}
\end{equation*}
$$

we have an exact sequence
(1.9)

$$
\begin{aligned}
0 \longrightarrow \operatorname{Hom}_{p_{2}}\left(\mathcal{O}_{\Delta}, p_{1}^{*}(E)\right) \longrightarrow H^{0}(X, E) \otimes \mathcal{O}_{X} \longrightarrow \operatorname{Hom}_{p_{2}}\left(I_{\Delta}, p_{1}^{*}(E)\right) \\
\longrightarrow \operatorname{Ext}_{p_{2}}^{1}\left(\mathcal{O}_{\Delta}, p_{1}^{*}(E)\right) \longrightarrow \operatorname{Ext}_{p_{2}}^{1}\left(I_{\Delta}, p_{1}^{*}(E)\right) \\
\longrightarrow \operatorname{Ext}_{p_{2}}^{2}\left(\mathcal{O}_{\Delta}, p_{1}^{*}(E)\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \operatorname{Ext}_{p_{2}}^{2}\left(I_{\Delta}, p_{1}^{*}(E)\right) \longrightarrow H^{2}(X, E) \otimes \mathcal{O}_{X} \longrightarrow 0
\end{aligned}
$$

Since $\mathbf{R} \mathcal{H o m}_{\mathcal{O}_{X \times X}}\left(\mathcal{O}_{\Delta}, \mathcal{O}_{X \times X}\right)=\mathcal{O}_{\Delta}[-2]$, we have

$$
\operatorname{Ext}_{p_{2}}^{i}\left(\mathcal{O}_{\Delta}, p_{1}^{*}(E)\right)=R p_{2 *}^{i-2}\left(\mathcal{O}_{\Delta} \otimes p_{1}^{*}(E)\right)= \begin{cases}E, & i=2 \tag{1.10}\\ 0, & i \neq 2\end{cases}
$$

Since $H^{i}(X, E)=0$ for $i \neq 1$, we see that $H^{i}\left(\Phi_{I_{\Delta}^{*}}(E)\right)=0$ for $i \neq 1$ and $F:=H^{1}\left(\Phi_{I_{\Delta}^{*}}(E)\right)$ fits in an exact sequence

$$
\begin{equation*}
0 \rightarrow H^{1}(X, E) \otimes \mathcal{O}_{X} \rightarrow F \rightarrow E \rightarrow 0 \tag{1.11}
\end{equation*}
$$

Since $\Phi_{I_{\Delta}^{*}}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{X}$, we have

$$
\begin{equation*}
\operatorname{Hom}\left(F, \mathcal{O}_{X}\right)=\operatorname{Hom}\left(\Phi_{I_{\Delta}^{*}}(E)[1], \Phi_{I_{\Delta}^{*}}\left(\mathcal{O}_{X}\right)\right)=\operatorname{Hom}\left(E[1], \mathcal{O}_{X}\right)=0 \tag{1.12}
\end{equation*}
$$

By Lemma 3.1, (1.11) is the universal extension of E by \mathcal{O}_{X}. In the next section, we shall prove that F is stable for a general E. Then we have a rational map $M_{H}(v) \cdots \rightarrow M_{H}(w)$ which becomes birational by the properties of the Fourier-Mukai transform, where $w=v(F)$. Thus we get Theorem 0.1 (1) for $r+a \leq 0$.

Proof of Proposition 1.5. We first treat the case where $r=0$. In this case, we can take a smooth curve $C \in|d H|$. Then it is easy to find a line bundle L on C with $H^{0}(C, L)=0$ and $\operatorname{dim} H^{1}(C, L)=a$. Since C is reduced and irreducible, L is stable. Thus the claim holds.

We next treat the case where $r>0$. We start with a special case.
Lemma 1.6. Let $v=(r, d H, a)$ be a Mukai vector such that $r>0, d>0,(r, d)=1$ and $r+a \leq 0$. Then $\mathcal{M}_{H}(v)_{0}^{S} \neq \emptyset$.

Proof. We shall prove our claim by induction on r. (I) Assume that $r=1$. Then $\mathcal{M}_{H}(v)^{s}$ consists of $I_{Z}(d H)$, where I_{Z} is the ideal sheaf of a 0 -dimensional subscheme of length $\left\langle v^{2}\right\rangle / 2+1$, that is, I_{Z} belongs to $\operatorname{Hilb}_{X}^{\left\langle v^{2}\right\rangle / 2+1}$. Since $\chi\left(I_{Z}(d H)\right)=1+a \leq 0$, we have $H^{0}\left(X, I_{Z}(d H)\right)=0$ for a general I_{Z}. Moreover the same assertion also holds for $d=0$.
(II) Let $\left(r_{1}, d_{1}\right)$ be a pair of integers such that $d_{1} r-d r_{1}=1$ and $0<r_{1}<r$. We set $\left(r_{2}, d_{2}\right):=\left(r-r_{1}, d-d_{1}\right)$. Then $d_{1}>0$ and $d-d_{1} \geq 0$. Moreover if $d-d_{1}=0$, then
$r-r_{1}=1$. We shall choose Mukai vectors $v_{i}:=\left(r_{i}, d_{i} H, a_{i}\right), i=1,2$ such that $r_{i}+a_{i} \leq 0$, $i=1,2$. We shall choose $E_{i} \in \mathcal{M}_{H}\left(v_{i}\right)_{0}, i=1,2$. Then $H^{0}\left(X, E_{1} \oplus E_{2}\right)=0$. We shall prove that $E_{1} \oplus E_{2}$ deforms to a stable sheaf. We set

$$
\mathcal{M}(v)^{\prime}:=\mathcal{M}_{H}(v)^{s s} \cup \cup_{b \geq 0} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right)
$$

where $\omega=(0,0,1)$. We first prove that $\mathcal{M}(v)^{\prime}$ is an open substack of $\mathcal{M}(v)$.
Proof of the claim: If $E \in \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right)$ belongs to the closure of $\mathcal{F}^{H N}\left(u_{1}, u_{2}, \ldots, u_{s}\right)$, then the Harder-Narasimhan polygon of $u_{1}, u_{2}, \ldots, u_{s}$ is contained in the Harder-Narasimhan polygon of $v_{1}-b \omega, v_{2}+b \omega$. Then we see that $s=2$ and $u_{1}=v_{1}-b^{\prime} \omega, b^{\prime} \geq b$. Therefore the claim holds.

We shall prove that

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right)<\left\langle v^{2}\right\rangle+1 \tag{1.13}
\end{equation*}
$$

Since every irreducible component of $\mathcal{M}(v)$ is at least of dimension $\left\langle v^{2}\right\rangle+1$ (Prop. 1.1) and $\mathcal{M}_{H}(v)^{s s}$ is irreducible, (1.13) implies that $\mathcal{M}(v)^{\prime}$ is also irreducible. Since $E_{1} \oplus E_{2}$ belongs to $\mathcal{M}(v)^{\prime}$, we get our claim $\mathcal{M}_{H}(v)_{0}^{s} \neq \emptyset$.

Proof of (1.13):
We shall first estimate $\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right)$.

$$
\begin{align*}
& \operatorname{dim} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right) \\
= & \operatorname{dim} \mathcal{M}_{H}\left(v_{1}-b \omega\right)^{s s}+\operatorname{dim} \mathcal{M}_{H}\left(v_{2}+b \omega\right)^{s s}+\left\langle v_{1}-b \omega, v_{2}+b \omega\right\rangle \tag{1.14}\\
= & \left\langle\left(v_{1}-b \omega\right)^{2}\right\rangle+\left\langle\left(v_{2}+b \omega\right)^{2}\right\rangle+\left\langle v_{1}-b \omega, v_{2}+b \omega\right\rangle+2
\end{align*}
$$

Hence

$$
\begin{align*}
\left(\left\langle v^{2}\right\rangle+1\right)-\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right) & =\left\langle v_{1}-b \omega, v_{2}+b \omega\right\rangle-1 \tag{1.15}\\
& =d_{1} d_{2}\left(H^{2}\right)-r_{2} a_{1}-r_{1} a_{2}+\left(r_{2}-r_{1}\right) b-1
\end{align*}
$$

We note that $a_{1}+a_{2} \leq-r_{1}-r_{2}=-r$ and $a_{2}+b \leq\left(d_{2}^{2}\left(H^{2}\right)+2\right) / 2 r_{2}$. If $r_{1} \geq r_{2}$, then we see that

$$
\begin{align*}
\left\langle v^{2}\right\rangle+1-\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right)= & d_{1} d_{2}\left(H^{2}\right)-r_{2}\left(a_{1}+a_{2}\right) \tag{1.16}\\
& -\left(r_{1}-r_{2}\right)\left(a_{2}+b\right)-1 \\
\geq & d_{1} d_{2}\left(H^{2}\right)+r_{2} r-\left(r_{1}-r_{2}\right) \frac{d_{2}^{2}\left(H^{2}\right)+2}{2 r_{2}}-1 \\
= & d_{1} d_{2}\left(H^{2}\right)\left(1-\frac{\left(r_{1}-r_{2}\right)}{2 r_{2}} \frac{d_{2}}{d_{1}}\right)+r_{2} r-\frac{r_{1}}{r_{2}} \\
> & d_{1} d_{2} \frac{r}{2 r_{1}}\left(H^{2}\right)+r_{2} r-\frac{r_{1}}{r_{2}}>0
\end{align*}
$$

where we used the inequality $d_{1} / r_{1}>d_{2} / r_{2}$. If $r_{1} \leq r_{2}$, then since $a_{1} \leq-r_{1}$, we see that

$$
\begin{aligned}
\left\langle v^{2}\right\rangle+1-\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}-b \omega, v_{2}+b \omega\right)= & d_{1} d_{2}\left(H^{2}\right)-\left(r_{2}-r_{1}\right)\left(a_{1}-b\right) \\
& -r_{1}\left(a_{1}+a_{2}\right)-1 \\
\geq & d_{1} d_{2}\left(H^{2}\right)+\left(r_{2}-r_{1}\right) r_{1}+r_{1} r-1>0
\end{aligned}
$$

By using Lemma 1.6, we treat the general case. We set $v:=\left(l r^{\prime}, l d^{\prime} H, a\right)$, where $l:=\operatorname{gcd}(r, d)$. We choose integers $a_{1}, a_{2}, \ldots, a_{l}$ such that $\sum_{i=1}^{l} a_{i}=a$ and $r^{\prime}+a_{i} \leq 0$ for $1 \leq i \leq l$. We set $v_{i}:=\left(r^{\prime}, d^{\prime} H, a_{i}\right)$. By Lemma $1.6, \mathcal{M}_{H}\left(v_{i}\right)_{0}^{s} \neq \emptyset, 1 \leq i \leq l$. We choose elements $E_{i} \in \mathcal{M}_{H}\left(v_{i}\right)_{0}^{s}, 1 \leq i \leq l$ and set $E:=\oplus_{i=1}^{l} E_{i}$. Then E is μ-semi-stable and $H^{0}(X, E)=0$. Since $\left\langle v^{2}\right\rangle \geq 2 l^{2}$, [11, Lem. 4.4] implies that our proposition holds.

2. Proof of Theorem 0.1

2.1. Estimates on the Mukai pairing. In order to estimate the dimension of the loci of unstable sheaves, we prepare some estimates of the Mukai pairing.

LEMMA 2.1. Let $v_{1}:=\left(r_{1}, d_{1} H, a_{1}\right), r_{1}>0$, and $v_{2}:=\left(r_{2}, d_{2} H, a_{2}\right), r_{2}>0$ be Mukai vectors such that

$$
\begin{equation*}
d_{1} / r_{1} \geq d_{2} / r_{2}>0 \tag{2.1}
\end{equation*}
$$

We set $l:=\operatorname{gcd}\left(r_{2}, d_{2}, a_{2}\right)$. Assume that $a_{1} \leq 0, a_{1}+a_{2} \leq 0$ and $\left\langle v_{2}^{2}\right\rangle \geq-2 l^{2}$. Then

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle-1>0 . \tag{2.2}
\end{equation*}
$$

Moreover, if $\left\langle v_{2}^{2}\right\rangle \leq 0$, then

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle-l^{2}>0 \tag{2.3}
\end{equation*}
$$

Proof. Assume that $\left\langle v_{2}^{2}\right\rangle>0$. Then $a_{2}<r_{2} d_{2}^{2}\left(H^{2}\right) / 2$. By our assumption, we have $d_{1} \geq r_{1} d_{2} / r_{2}$. If $r_{1} \geq r_{2}$, then we see that

$$
\begin{align*}
\left\langle v_{1}, v_{2}\right\rangle-1 & =d_{1} d_{2}\left(H^{2}\right)-\left(r_{1}-r_{2}\right) a_{2}-r_{2}\left(a_{1}+a_{2}\right)-1 \\
& \geq d_{1} d_{2}\left(H^{2}\right)-\frac{\left(r_{1}-r_{2}\right) d_{2}^{2}}{r_{2}} \frac{\left(H^{2}\right)}{2}-1 \tag{2.4}\\
& \geq d_{2}^{2} \frac{r_{1}+r_{2}}{2 r_{2}}\left(H^{2}\right)-1 \\
& \geq d_{2}^{2}\left(H^{2}\right)-1>0 .
\end{align*}
$$

If $r_{1}<r_{2}$, then

$$
\begin{align*}
\left\langle v_{1}, v_{2}\right\rangle-1 & =d_{1} d_{2}\left(H^{2}\right)-\left(r_{2}-r_{1}\right) a_{1}-r_{1}\left(a_{1}+a_{2}\right)-1 \\
& \geq d_{1} d_{2}\left(H^{2}\right)-1>0 . \tag{2.5}
\end{align*}
$$

If $\left\langle v_{2}^{2}\right\rangle \leq 0$, then we set $v_{2}=l\left(r_{2}^{\prime}, d_{2}^{\prime} H, a_{2}^{\prime}\right)$. Then a_{2}^{\prime} satisfies the inequality

$$
\begin{equation*}
\frac{\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)}{2 r_{2}^{\prime}} \leq a_{2}^{\prime} \leq \frac{\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)+2}{2 r_{2}^{\prime}} \tag{2.6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle-l^{2}=l\left(d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)-l\right) \tag{2.7}
\end{equation*}
$$

we shall prove that

$$
\begin{equation*}
d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)>l \tag{2.8}
\end{equation*}
$$

$$
\begin{aligned}
d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right) & \geq d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(-r_{2}^{\prime} l a_{2}^{\prime}+r_{1} a_{2}^{\prime}\right) \\
& \geq d_{1} d_{2}^{\prime}\left(H^{2}\right)-r_{1} a_{2}^{\prime}+r_{2}^{\prime} a_{2}^{\prime} l \\
& =d_{1} d_{2}^{\prime}\left(\left(H^{2}\right)-\frac{r_{1}}{d_{1} d_{2}^{\prime}} a_{2}^{\prime}\right)+r_{2}^{\prime} a_{2}^{\prime} l \\
& =d_{1} d_{2}^{\prime}\left(\left(H^{2}\right)-\frac{r_{1}}{d_{1} d_{2}^{\prime}} a_{2}^{\prime}\right)+d_{2}^{\prime 2} \frac{\left(H^{2}\right)}{2} l .
\end{aligned}
$$

By using (2.1) and the inequality (2.6), we see that

$$
\begin{align*}
\left(H^{2}\right)-\frac{r_{1}}{d_{1} d_{2}^{\prime}} a_{2}^{\prime} & \geq\left(H^{2}\right)-\frac{r_{2}^{\prime} a_{2}^{\prime}}{\left(d_{2}^{\prime}\right)^{2}} \\
& =\frac{1}{\left(d_{2}^{\prime}\right)^{2}}\left(\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)-r_{2}^{\prime} a_{2}^{\prime}\right) \\
& =\frac{1}{\left(d_{2}^{\prime}\right)^{2}}\left(\frac{\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)}{2}+\frac{1}{2}\left(\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)-2 r_{2}^{\prime} a_{2}^{\prime}\right)\right) \tag{2.10}\\
& \geq \frac{1}{\left(d_{2}^{\prime}\right)^{2}}\left(\frac{\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)}{2}-1\right) \geq 0
\end{align*}
$$

If $d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)=l$, then we have $r_{2}^{\prime} a_{2}^{\prime}=\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right) / 2=1$. Thus $r_{2}^{\prime}=a_{2}^{\prime}=$ $d_{2}^{\prime}=\left(H^{2}\right) / 2=1$. Since $d_{1} / r_{1} \geq d-2^{\prime} / r_{2}^{\prime}=1, d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)=2 d_{1}-r_{1}+l>l$, which is a contradiction. Therefore we get (2.8).

LEMMA 2.2. Let $v_{1}:=\left(r_{1}, d_{1} H, a_{1}\right), r_{1}>0$ and $v_{2}:=\left(r_{2}, d_{2} H, a_{2}\right), r_{2}>0$ be Mukai vectors. Assume that $a_{1} \leq 0, a_{1}+a_{2}=1$ and $d_{1} / r_{1}>d_{2} / r_{2}>0$.
(1) If $\left\langle v_{2}^{2}\right\rangle \geq-2$, then $\left\langle v_{1}, v_{2}\right\rangle-1>0$, unless $\left(H^{2}\right)=2, v_{1}=\left(2 d_{1}-1, d_{1} H, 0\right)$ and $v_{2}=(2, H, 1)$.
(2) If $l:=\operatorname{gcd}\left(r_{2}, d_{2}, a_{2}\right) \geq 2$ and $-2 l^{2} \leq\left\langle v_{2}^{2}\right\rangle \leq 0$, then $\left\langle v_{1}, v_{2}\right\rangle-l^{2}>0$.

Proof. (1) (i) We first assume that $a_{2} \geq 2$. If $r_{1} \geq r_{2}$, then

$$
\begin{align*}
\left\langle v_{1}, v_{2}\right\rangle-1 & =d_{1} d_{2}\left(H^{2}\right)-r_{2} a_{1} r_{1} a_{2} \\
& =d_{1} d_{2}\left(H^{2}\right)-\left(r_{2}-r_{1}\right) a_{2}-r_{2}\left(a_{1}+a_{2}\right)-1 \\
& \geq d_{1} d_{2}\left(H^{2}\right)\left(1-\frac{\left(r_{1}-r_{2}\right)}{2 r_{2}} \frac{d_{2}}{d_{1}}\right)-r_{2}-\frac{r_{1}}{r_{2}} \\
& \geq d_{1} d_{2} \frac{r_{1}+r_{2}}{2 r_{1}}\left(H^{2}\right)-r_{2}-\frac{r_{1}}{r_{2}} \tag{2.11}\\
& =\left(d_{1} d_{2} \frac{\left(H^{2}\right)}{2}-\frac{d_{1}}{d_{2}}\right)+\left(\frac{d_{1} d_{2} r_{2}\left(H^{2}\right)}{2 r_{1}}-r_{2}\right) \\
& >\frac{d_{2}^{2}\left(H^{2}\right)}{2}-r_{2} \\
& \geq\left(a_{2}-1\right) r_{2}-1 \geq 0 .
\end{align*}
$$

If $r_{1}<r_{2}$, then

$$
\begin{align*}
\left\langle v_{1}, v_{2}\right\rangle-1 & =d_{1} d_{2}\left(H^{2}\right)-\left(r_{1}-r_{2}\right) a_{2}-r_{2}\left(a_{1}+a_{2}\right)-1 \\
& \geq d_{1} d_{2}\left(H^{2}\right)-2 r_{1}+r_{2}-1 \\
& >\frac{r_{1}}{r_{2}} d_{2}^{2}\left(H^{2}\right)+r_{2}-2 r_{1}-1 \tag{2.12}\\
& \geq \frac{r_{1}}{r_{2}}\left(4 r_{2}-2\right)+r_{2}-2 r_{1}-1 \\
& =\frac{2\left(r_{2}-1\right) r_{1}+r_{2}\left(r_{2}-1\right)}{r_{2}} \geq 0
\end{align*}
$$

(ii) We next treat the case of $a_{2}=1$. In this case, $a_{1}=0$. (a) If $r_{1}, r_{2} \geq 3$, then

$$
\begin{aligned}
\left\langle v_{1}, v_{2}\right\rangle-1 & =d_{1} d_{2}\left(H^{2}\right)-r_{1}-1 \\
& >r_{1}\left(\frac{d_{2}^{2}}{r_{2}}\left(H^{2}\right)-1\right)-1 \\
& \geq r_{1}\left(1-\frac{2}{r_{2}}\right)-1 \geq 0 .
\end{aligned}
$$

(b) If $r_{2} \geq 3$ and $r_{1} \leq 2$, then $d_{2}^{2}\left(H^{2}\right) \geq 4$, and hence $d_{2}\left(H^{2}\right) \geq 4$. Then we see that

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle-1=d_{1} d_{2}\left(H^{2}\right)-r_{1}-1 \geq 4 d_{1}-3>0 \tag{2.14}
\end{equation*}
$$

(c) If $r_{2}=1$, then $d_{1}>r_{1} d_{2}$. Hence we see that
(2.15) $\quad\left\langle v_{1}, v_{2}\right\rangle-1=d_{1} d_{2}\left(H^{2}\right)-r_{1}-1>r_{1} d_{2}^{2}\left(H^{2}\right)-r_{1}-1 \geq r_{1}-1 \geq 0$.
(d) If $r_{2}=2$, then $d_{1}>r_{1} d_{2} / 2$. (d-1) If $d_{2}^{2}\left(H^{2}\right) \geq 4$, then same computation as in (c)
implies our claim. (d-2) If $d_{2}^{2}\left(H^{2}\right)=2$, that is, $d_{2}=1$ and $\left(H^{2}\right)=2$, then

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle-1=d_{1} d_{2}\left(H^{2}\right)-r_{1}-1=2 d_{1}-r_{1}-1 \geq 0 \tag{2.16}
\end{equation*}
$$

If $\left\langle v_{1}, v_{2}\right\rangle-1=0$, then $a_{1}=0$ and $2 d_{1}-r_{1}-1=0$. Thus $v_{1}=\left(2 d_{1}-1, d_{1} H, 0\right)$ and $v_{2}=(2, H, 1)$.
(2) Since

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle-l^{2}=l\left(d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)-l\right) \tag{2.17}
\end{equation*}
$$

we shall prove that

$$
\begin{equation*}
d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)>l \tag{2.18}
\end{equation*}
$$

$$
\begin{aligned}
d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right) & =d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime}\left(1-l a_{2}^{\prime}\right)+r_{1} a_{2}^{\prime}\right) \\
& =d_{1} d_{2}^{\prime}\left(H^{2}\right)-r_{1} a_{2}^{\prime}+r_{2}^{\prime}\left(-1+l a_{2}^{\prime}\right) \\
& =d_{1} d_{2}^{\prime}\left(\left(H^{2}\right)-\frac{r_{1}}{d_{1} d_{2}^{\prime}} a_{2}^{\prime}\right)+r_{2}^{\prime}\left(-1+l a_{2}^{\prime}\right) .
\end{aligned}
$$

(i) If $a_{2}^{\prime} \geq 2$ or $r_{2}^{\prime} \geq 1$, then $r_{2}^{\prime}\left(-1+l a_{2}^{\prime}\right) \geq l$. On the other hand, we see that

$$
\begin{align*}
\left(H^{2}\right)-\frac{r_{1}}{d_{1} d_{2}^{\prime}} a_{2}^{\prime} & >\left(H^{2}\right)-\frac{r_{2}^{\prime} a_{2}^{\prime}}{\left(d_{2}^{\prime}\right)^{2}} \\
& =\frac{1}{\left(d_{2}^{\prime}\right)^{2}}\left(\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)-r_{2}^{\prime} a_{2}^{\prime}\right) \tag{2.20}\\
& \geq \frac{1}{\left(d_{2}^{\prime}\right)^{2}}\left(\frac{\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right)}{2}-1\right) \geq 0
\end{align*}
$$

Hence we get (2.18). (ii) If $a_{2}^{\prime}=1$ and $r_{2}=1$, then $\left(d_{2}^{\prime}\right)^{2}\left(H^{2}\right) \leq 2 r_{2}^{\prime}=2$. Hence $d_{2}^{\prime}=1$ and $\left(H^{2}\right)=2$. Since $d_{1} / r_{1}>1$, we see that

$$
\begin{equation*}
d_{1} d_{2}^{\prime}\left(H^{2}\right)-\left(r_{2}^{\prime} a_{1}+r_{1} a_{2}^{\prime}\right)-l=2 d_{1}-r_{1}-1>r_{1}-1 \geq 0 \tag{2.21}
\end{equation*}
$$

2.2. Proof of Theorem 0.1 (1). (I) We shall first prove (b). So we assume that $r+a \leq$ 0 . By Proposition $1.5, \mathcal{M}_{H}(v)_{0}^{s} \neq \emptyset$. For $E \in \mathcal{M}_{H}(v)_{0}^{s}$, we shall consider the universal extension

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus n} \rightarrow F \rightarrow E \rightarrow 0 \tag{2.22}
\end{equation*}
$$

where $n=\operatorname{dim} \operatorname{Ext}^{1}\left(E, \mathcal{O}_{X}\right)=\left\langle v, v\left(\mathcal{O}_{X}\right)\right\rangle$. We shall prove that F is a semi-stable sheaf for a general $E \in \mathcal{M}_{H}(v)_{0}^{S}$.
(Step 1) Assume that F is not semi-stable. For the Harder-Narasimhan filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=F \tag{2.23}
\end{equation*}
$$

of F, we set

$$
\begin{align*}
E_{i} & :=F_{i} / F_{i-1}, \\
v_{i} & :=v\left(E_{i}\right)=\left(r_{i}, d_{i} H, a_{i}\right) . \tag{2.24}
\end{align*}
$$

Then we get

$$
\begin{equation*}
\frac{d_{1}}{r_{1}} \geq \frac{d_{2}}{r_{2}} \geq \cdots \geq \frac{d_{s}}{r_{s}}>0 \tag{2.25}
\end{equation*}
$$

Proof of (2.25): By the property of the Harder-Narasimhan filtration, it is sufficient to prove $d_{s} / r_{s}>0$. We shall consider the quotient $q: F \rightarrow E_{S}$ and the following diagram.

If $d_{s} / r_{s}<0$, then $q\left(\mathcal{O}_{X}^{\oplus n}\right)=0$. Thus q induces a surjective homomorphism $E \rightarrow E_{S}$. Since E is stable and $d>0, q$ must be 0 , which is a contradiction. If $d_{s} / r_{s}=0$, then $q\left(\mathcal{O}_{X}^{\oplus n}\right)$ is a semi-stable sheaf of $c_{1}\left(q\left(\mathcal{O}_{X}^{\oplus n}\right)\right)=0$. By Lemma 3.2, $q\left(\mathcal{O}_{X}^{\oplus n}\right)=\mathcal{O}_{X}^{\oplus m}$ for some $m>0$. Since $c_{1}\left(E_{S} / \mathcal{O}_{X}^{\oplus m}\right)=0$ and $E_{S} / \mathcal{O}_{X}^{\oplus m}$ is a quotient of $E, E_{S} / \mathcal{O}_{X}^{\oplus m}$ is a torsion sheaf of dimension 0 . Since E_{s} is torsion free and $\mathcal{O}_{X}^{\oplus m}$ is a locally free subsheaf of E_{S}, we get $E_{S} / \mathcal{O}_{X}^{\oplus m}=0$. Then we get a splitting $F \cong \mathcal{O}_{X}^{\oplus m} \oplus F^{\prime}$, which contradicts the choice of extension class. Therefore (2.25) holds.
(Step 2) We shall next prove that

$$
\begin{array}{r}
a_{1} \leq 0, \\
a_{1}+a_{2} \leq 0, \tag{2.27}\\
\vdots \\
a_{1}+a_{2}+\cdots+a_{s} \leq 0,
\end{array}
$$

In particular,

$$
\begin{align*}
\left\langle v_{1}^{2}\right\rangle & \geq d_{1}^{2}\left(H^{2}\right)>0 \\
\left\langle\left(v_{1}+v_{2}\right)^{2}\right\rangle & \geq\left(d_{1}+d_{2}\right)^{2}\left(H^{2}\right)>0, \tag{2.28}\\
\vdots & \\
\left\langle\left(v_{1}+v_{2}+\cdots+v_{s}\right)^{2}\right\rangle & \geq\left(d_{1}+d_{2}+\cdots+d_{s}\right)^{2}\left(H^{2}\right)>0 .
\end{align*}
$$

Proof of (2.27): We shall consider an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus n} \cap F_{i} \rightarrow F_{i} \rightarrow F_{i} /\left(\mathcal{O}_{X}^{\oplus n} \cap F_{i}\right) \rightarrow 0 \tag{2.29}
\end{equation*}
$$

Since F_{i} is a filter of the Harder-Narasimhan filtration of $F, F_{i} /\left(\mathcal{O}_{X}^{\oplus n} \cap F_{i}\right) \neq 0$. Since $F_{i} /\left(\mathcal{O}_{X}^{\oplus n} \cap F_{i}\right)$ is a subsheaf of E and $H^{0}(X, E)=0, H^{0}\left(X, F_{i} /\left(\mathcal{O}_{X}^{\oplus n} \cap F_{i}\right)\right)=0$. Since $\mathcal{O}_{X}^{\oplus n} \cap F_{i}$ is a subsheaf of $\mathcal{O}_{X}^{\oplus n}, H^{0}\left(X, \mathcal{O}_{X}^{\oplus n} \cap F_{i}\right) \otimes \mathcal{O}_{X}$ is a subsheaf of $\mathcal{O}_{X}^{\oplus n} \cap F_{i}$. Therefore $\operatorname{dim} H^{0}\left(X, F_{i}\right) \leq \operatorname{rk}\left(\mathcal{O}_{X}^{\oplus n} \cap F_{i}\right) \leq \operatorname{rk}\left(F_{i}\right)$. Since $\chi\left(F_{i}\right)=\operatorname{rk}\left(F_{i}\right)+\sum_{j=1}^{i} a_{j}$, we get (2.27).
(Step 3) We shall prove that

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right) \leq\left\langle v^{2}\right\rangle \tag{2.30}
\end{equation*}
$$

Proof of (2.30): By Lemma 1.3, we have

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)=\sum_{i<j}\left\langle v_{j}, v_{i}\right\rangle+\sum_{i \geq 1} \operatorname{dim} \mathcal{M}_{H}\left(v_{i}\right)^{s s} \tag{2.31}
\end{equation*}
$$

Since $\left\langle v_{1}^{2}\right\rangle>0, \operatorname{dim} \mathcal{M}_{H}\left(v_{1}\right)^{s s}=\left\langle v_{1}^{2}\right\rangle+1$ by Theorem 1.2. Applying Lemma 2.1 and Lemma 1.4, we see that

$$
\begin{equation*}
\left(\left\langle v_{1}^{2}\right\rangle+1\right)+\operatorname{dim} \mathcal{M}_{H}\left(v_{2}\right)^{s s}+\left\langle v_{2}, v_{1}\right\rangle<\left\langle\left(v_{1}+v_{2}\right)^{2}\right\rangle+1 \tag{2.32}
\end{equation*}
$$

We set $v_{2}^{\prime}:=v_{1}+v_{2}$ and $v_{i}^{\prime}:=v_{i}, i>2$. Then we get that
(2.33) $\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)<\sum_{2 \leq i<j}\left\langle v_{j}^{\prime}, v_{i}^{\prime}\right\rangle+\left(\left\langle\left(v_{2}^{\prime}\right)^{2}\right\rangle+1\right)+\sum_{i \geq 3} \operatorname{dim} \mathcal{M}_{H}\left(v_{i}^{\prime}\right)^{s s}$.

By induction on s, we get (2.30).
(Step 4) By Step 3 and Theorem 1.2, $\Phi_{I_{\Delta}^{*}[1]}^{-1}\left(\mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)\right) \cap \mathcal{M}_{H}(v)^{s s}$ is a locally closed substack of $\mathcal{M}_{H}(v)^{s s}$ such that $\operatorname{dim} \Phi_{I_{\Delta}^{*}[1]}^{-1}\left(\mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)\right) \cap \mathcal{M}_{H}(v)^{s s}<$ $\operatorname{dim} \mathcal{M}_{H}(v)^{s s}$. Combining this with Theorem 1.2, we have $\Phi_{I_{\Delta}^{*}[1]}\left(\mathcal{M}_{H}(v)^{s s}\right) \cap \mathcal{M}_{H}(w)^{s} \neq$ \emptyset. We set

$$
\begin{align*}
M_{H}(v)^{*} & :=\left\{E \in M_{H}(v) \mid \Phi_{I_{\Delta}^{*}[1]}(E) \in M_{H}(w)\right\}, \tag{2.34}\\
M_{H}(w)^{*} & :=\left\{F \in M_{H}(w) \mid \Phi_{I_{\Delta}[1]}(F) \in M_{H}(v)\right\} .
\end{align*}
$$

Then $M_{H}(v)^{*}$ and $M_{H}(w)^{*}$ are non-empty open subschemes of $M_{H}(v)$ and $M_{H}(w)$ respectively and $\Phi_{I_{\Delta}^{*}[1]}$ induces an isomorphism $M_{H}(v)^{*} \cong M_{H}(w)^{*}$. Since $M_{H}(v)^{*}$ and $M_{H}(w)^{*}$ are irreducible by Theorem 1.2, we get Theorem 0.1 (1) (b).
(II) We next assume that $r+a \geq 0$. Since $(-a)+(-r) \leq 0$ and $w:=(-a, d H,-r)$ is $\Phi_{I_{\Delta}^{*}}^{H}(v), \Phi_{I_{\Delta}^{*}[1]}$ induces a birational map $M_{H}(w) \cdots \rightarrow M_{H}(v)$. Since the inverse of $\Phi_{I_{\Delta}^{*}[1]}$ is $\Phi_{I_{\Delta}[1]}$, we get (1) (a).

REMARK 2.1. For $F \in M_{H}(r, d H, a)$ with $d>0$ and $r+a \geq 0, \Phi_{I_{\Delta}[1]}(F)$ fits in the exact sequence

$$
\begin{align*}
0 \longrightarrow H^{-1}\left(\Phi_{I_{\Delta}[1]}(F)\right) \longrightarrow H^{0}(X, F) \otimes \mathcal{O}_{X} \longrightarrow F \\
\longrightarrow H^{0}\left(\Phi_{I_{\Delta}[1]}(F)\right) \longrightarrow H^{1}(X, F) \otimes \mathcal{O}_{X} \longrightarrow \tag{2.35}
\end{align*}
$$

If $\Phi_{I_{\Delta}[1]}(F)$ is a semi-stable sheaf, then $H^{1}(X, F)=0$ and $H^{0}(X, F) \otimes \mathcal{O}_{X} \rightarrow F$ is injective.
2.3. Proof of Theorem $\mathbf{0 . 1}$ (2). We note that $\left(\mathcal{D} \circ \Phi_{I_{\Delta}}\right)^{-1}=\mathcal{D} \circ \Phi_{I_{\Delta}}$. Hence we shall prove that $\mathcal{D} \circ \Phi_{I_{\Delta}}$ induces a birational map

$$
\begin{equation*}
M_{H}(a, d H, r) \cdots \rightarrow M_{H}(r, d H, a) \tag{2.36}
\end{equation*}
$$

for $a=0,1$.
Proposition 2.3. Let $v=(0, d H, r), r \geq 0, d>0$ be a Mukai vector. Then $\mathcal{D} \circ \Phi_{I_{\Delta}}=\Phi_{I_{\Delta}^{*}[2]} \circ \mathcal{D}$ induces a birational map $M_{H}(0, d H, r) \cdots \rightarrow M_{H}(r, d H, 0)$. Thus Theorem 0.1 (2) holds for $a=0$.

Proof. We note that \mathcal{D} induces an isomorphism $M_{H}(0, d H, a) \rightarrow M_{H}(0, d H,-a)$ by sending L to $\mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(L, \mathcal{O}_{X}\right)$. Hence the claim follows from Theorem 0.1 (1).

In order to treat the case where $a=1$, we study the properties of $\mathcal{D} \circ \Phi_{I_{\Delta}}$. For a coherent sheaf E on X,

$$
\begin{equation*}
\mathcal{D} \circ \Phi_{I_{\Delta}}(E)=\Phi_{I_{\Delta}^{*}[2]} \circ \mathcal{D}(E)=\mathbf{R} \operatorname{Hom}_{p_{2}}\left(I_{\Delta} \otimes p_{1}^{*}(E), \mathcal{O}_{X \times X}\right)[2] \tag{2.37}
\end{equation*}
$$

and we have an exact triangle
(2.38) $\quad \mathbf{R} \operatorname{Hom}_{p_{2}}\left(\mathcal{O}_{\Delta} \otimes p_{1}^{*}(E), \mathcal{O}_{X \times X}\right) \xrightarrow{\phi} \mathbf{R} \operatorname{Hom}\left(E, \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X} \rightarrow$

$$
\mathbf{R} \operatorname{Hom}_{p_{2}}\left(I_{\Delta} \otimes p_{1}^{*}(E), \mathcal{O}_{X \times X}\right) \rightarrow \mathbf{R} \operatorname{Hom}_{p_{2}}\left(\mathcal{O}_{\Delta} \otimes p_{1}^{*}(E), \mathcal{O}_{X \times X}\right)[1]
$$

Since $\mathbf{R} \operatorname{Hom}_{p_{X}}\left(E \otimes \mathcal{O}_{\Delta}, \mathcal{O}_{X \times X}\right)=\mathbf{R} \mathcal{H} \operatorname{Hom}_{\mathcal{O}_{X}}\left(E, \mathcal{O}_{X}\right)$, we have an exact sequence (2.39)

$$
\begin{aligned}
& 0 \longrightarrow 0 \quad \longrightarrow \operatorname{Hom}\left(E, \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X} \longrightarrow H^{0}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right) \\
& \longrightarrow \quad 0 \quad \operatorname{Ext}^{1}\left(E, \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X} \longrightarrow H^{1}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right) \\
& \longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(E, \mathcal{O}_{X}\right) \xrightarrow{H^{2}(\phi)} \operatorname{Ext}^{2}\left(E, \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X} \longrightarrow H^{2}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right) \\
& \longrightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(E, \mathcal{O}_{X}\right) \longrightarrow 0 .
\end{aligned}
$$

Assume that E is a stable sheaf with $\left(c_{1}(E), H\right)>0$. Then $\operatorname{Hom}\left(E, \mathcal{O}_{X}\right)=0$, which implies that $H^{0}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right)=0$.

Lemma 2.4. (1) If $H^{0}(X, E) \otimes \mathcal{O}_{X} \rightarrow E$ is generically surjective, then $H^{1}\left(\Phi_{I_{\Delta}^{*}} \circ\right.$ $\mathcal{D}(E)) \cong \operatorname{Ext}^{1}\left(E, \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X}$.
(2) If E is a stable purely 1-dimensional sheaf on X, then $H^{1}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right) \cong$ $\operatorname{Ext}^{1}\left(E, \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X}$ and $H^{2}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right)$ is the universal extension of $\mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(E, \mathcal{O}_{X}\right)$ by \mathcal{O}_{X}.

Proof. (1) By the Serre duality, the dual of ϕ is the evaluation map ev : R Hom $\left(\mathcal{O}_{X}, E\right) \otimes \mathcal{O}_{X} \rightarrow E$. Since $H^{0}(\mathrm{ev})$ is generically surjective, $H^{2}(\phi)$ is generically injective. Since $\mathcal{H o m}_{\mathcal{O}_{X}}\left(E, \mathcal{O}_{X}\right)$ is locally free, $H^{2}(\phi)$ is injective. Therefore (1) holds.
(2) Since E is purely 1-dimensional, we can apply (1) to prove the first claim. For the second claim, we use Lemma 3.1. Since

$$
\begin{align*}
\operatorname{Hom}\left(H^{2}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)\right), \mathcal{O}_{X}\right) & =\operatorname{Hom}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)[2], \mathcal{O}_{X}\right) \\
& =\operatorname{Hom}\left(\Phi_{I_{\Delta}}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(E)[2]\right), \Phi_{I_{\Delta}}\left(\mathcal{O}_{X}\right)\right) \tag{2.40}\\
& =\operatorname{Hom}\left(\mathcal{D}(E), \mathcal{O}_{X}[-2]\right) \\
& =\operatorname{Hom}\left(\mathcal{O}_{X}, E[-2]\right)=0
\end{align*}
$$

we get our claim.
Proof of Theorem 0.1 (2). We take an irreducible and reduced curve $C \in|d H|$. Assume that there are distinct n points $p_{1}, p_{2}, \ldots, p_{n}$ of C such that $Z_{n}:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ satisfies $H^{1}\left(X, I_{Z_{n}}(d H)\right)=0$. This condition is equivalent to the surjectivity of the restriction map $\xi_{n}: H^{0}\left(X, \mathcal{O}_{X}(d H)\right) \rightarrow H^{0}\left(Z_{n}, \mathcal{O}_{Z_{n}}(d H)\right)$. If $\operatorname{dim} H^{0}\left(X, I_{Z_{n}}(d H)\right) \geq 2$, then there is a section of $H^{0}\left(X, I_{Z_{n}}(d H)\right)$ whose support D is not C. Then for $Z_{n+1}:=$ $Z_{n} \cup\left\{p_{n+1}\right\}$ with $p_{n+1} \in C \backslash D, H^{1}\left(X, I_{Z_{n+1}}(d H)\right)=0$. In this way, we can construct $I_{Z}(d H) \in \mathcal{M}_{H}(1, d H, r)^{s s}$ with a section $\phi: \mathcal{O}_{X} \rightarrow I_{Z}(d H)$ such that coker ϕ is a torsion free sheaf on an irreducible and reduced curve C and $H^{1}\left(X, I_{Z}(d H)\right)=0$. We shall study the relation of $\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}\left(I_{Z}(d H)\right)$ and $\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(\operatorname{coker} \phi)$. Since $\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{X}$, we have an exact sequence

$$
0 \longrightarrow H^{0}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(\operatorname{coker} \phi)\right) \longrightarrow H^{0}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}\left(I_{Z}(d H)\right)\right) \longrightarrow \mathcal{O}_{X}
$$

$$
\begin{equation*}
\longrightarrow H^{1}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(\operatorname{coker} \phi)\right) \longrightarrow H^{1}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}\left(I_{Z}(d H)\right)\right) \longrightarrow 0 \tag{2.41}
\end{equation*}
$$

$$
\longrightarrow H^{2}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}(\operatorname{coker} \phi)\right) \longrightarrow H^{2}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}\left(I_{Z}(d H)\right)\right) \longrightarrow 0
$$

By Lemma 2.4, $F:=\Phi_{I_{\Delta}^{*}[2]} \circ \mathcal{D}\left(I_{Z}(d H)\right) \in \operatorname{Coh}(X)$ and is the universal extension of $L:=\mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\operatorname{coker} \phi, \mathcal{O}_{X}\right)$ by \mathcal{O}_{X}

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}^{2}\left(I_{Z}(d H), \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X} \rightarrow H^{2}\left(\Phi_{I_{\Delta}^{*}} \circ \mathcal{D}\left(I_{Z}(d H)\right)\right) \rightarrow L \rightarrow 0 \tag{2.42}
\end{equation*}
$$

We shall prove that F is a semi-stable sheaf for a general L.
(Step 1) Assume that F is not semi-stable. For the Harder-Narasimhan filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=F \tag{2.43}
\end{equation*}
$$

of F, we set

$$
\begin{align*}
E_{i} & :=F_{i} / F_{i-1}, \\
v_{i} & :=v\left(E_{i}\right)=\left(r_{i}, d_{i} H, a_{i}\right) \tag{2.44}
\end{align*}
$$

Then we see that

$$
\begin{equation*}
\frac{d_{1}}{r_{1}} \geq \frac{d_{2}}{r_{2}} \geq \cdots \geq \frac{d_{s}}{r_{s}}>0 \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{i}}{r_{i}}>\frac{a_{i+1}}{r_{i+1}}, \text { if } \frac{d_{i}}{r_{i}}=\frac{d_{i+1}}{r_{i+1}} . \tag{2.46}
\end{equation*}
$$

by a similar way as in the proof of (2.25).
(Step 2) We shall next prove that

$$
\begin{array}{r}
a_{1} \leq 0, \\
a_{1}+a_{2} \leq 0, \tag{2.47}\\
\vdots \\
a_{1}+a_{2}+\cdots+a_{s-1} \leq 0 .
\end{array}
$$

Proof of (2.47): We shall consider an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus r} \cap F_{i} \rightarrow F_{i} \rightarrow F_{i} /\left(\mathcal{O}_{X}^{\oplus r} \cap F_{i}\right) \rightarrow 0 \tag{2.48}
\end{equation*}
$$

We shall prove that $\operatorname{dim} H^{0}\left(X, F_{i}\right) \leq \operatorname{rk}\left(F_{i}\right)$ for $i \leq s-1$. We note that $F_{i} /\left(\mathcal{O}_{X}^{\oplus r} \cap F_{i}\right)$ is regarded as a subsheaf of L. Since $\operatorname{dim} H^{0}(X, L)=1$, it is sufficient to prove that $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}^{\oplus r} \cap F_{i}\right)<\operatorname{rk}\left(F_{i}\right)$. If $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}^{\oplus r} \cap F_{i}\right)=\operatorname{rk}\left(F_{i}\right)$, then since $H^{0}\left(X, \mathcal{O}_{X}^{\oplus r} \cap F_{i}\right) \otimes \mathcal{O}_{X}$ is a subsheaf of $\mathcal{O}_{X}^{\oplus r} \cap F_{i}$, we get $\mathcal{O}_{X}^{\oplus r} \cap F_{i}=\mathcal{O}_{X}^{\oplus \operatorname{rk}\left(F_{i}\right)}$. Since F_{i} is a filter of the Harder-Narasimhan filtration of $F, F_{i} /\left(\mathcal{O}_{X}^{\oplus r} \cap F_{i}\right) \neq 0$. We note that L is a torsion free sheaf on an irreducible and reduced curve C. Hence $c_{1}\left(F_{i} /\left(\mathcal{O}_{X}^{\oplus r} \cap F_{i}\right)\right)=d H$. Then F / F_{i} is a torsion free sheaf with $c_{1}\left(F / F_{i}\right)=0$. Since $d_{s} / r_{s}>0$, this is impossible. Therefore $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}^{\oplus r} \cap F_{i}\right)<\operatorname{rk}\left(F_{i}\right)$.
(Step 3) We shall prove that

$$
\begin{equation*}
\frac{d_{s}}{r_{s}}<\frac{\sum_{i=1}^{s-1} d_{i}}{\sum_{i=1}^{s-1} r_{i}} \tag{2.49}
\end{equation*}
$$

Proof of (2.49): By (2.45), $d_{s} / r_{s} \leq\left(\sum_{i=1}^{s-1} d_{i}\right) /\left(\sum_{i=1}^{s-1} r_{i}\right)$. If the equality holds, then (2.45) and (2.46) imply that $d_{i} / r_{i}=d_{s} / r_{s}$ for all i and $a_{s} / r_{s}<\left(\sum_{i=1}^{s-1} a_{i}\right) /\left(\sum_{i=1}^{s-1} r_{i}\right)$. By (2.47), we have $a_{s} \leq 0$. On the other hand, $\sum_{i=1}^{s} a_{i}=1$. Therefore (2.49) holds.
(Step 4) We shall prove that

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)<\operatorname{dim} \mathcal{M}_{H}(v)^{s s} \tag{2.50}
\end{equation*}
$$

unless $\left(H^{2}\right)=2, v=(2 d-1, d H, 1), d \geq 2, s=2, v_{1}=(2 d-3,(d-1) H, 0)$ and $v_{2}=(2, H, 1)$.

Proof of (2.50): We set $v^{\prime}:=\sum_{i=1}^{s-1} v_{i}$. By (2.47), we can apply Lemma 2.1 successively to prove

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right) \leq\left\langle v_{s}, v^{\prime}\right\rangle+\left(\left\langle v^{\prime}, v^{\prime}\right\rangle+1\right)+\operatorname{dim} \mathcal{M}_{H}\left(v_{s}\right)^{s s} \tag{2.51}
\end{equation*}
$$

as in the proof of Theorem 0.1 (1). Moreover if the equality holds, then we have $s=2$. Applying Lemma 2.2 to the pair v^{\prime} and v_{s}, we get

$$
\begin{equation*}
\left\langle v_{s}, v^{\prime}\right\rangle+\left(\left\langle v^{\prime}, v^{\prime}\right\rangle+1\right)+\operatorname{dim} \mathcal{M}_{H}\left(v_{s}\right)^{s s} \leq\left\langle v^{2}\right\rangle+1=\operatorname{dim} \mathcal{M}_{H}(v)^{s s} \tag{2.52}
\end{equation*}
$$

Moreover if the equality holds, then $\left(H^{2}\right)=2, v^{\prime}=\left(2 d_{1}-1, d_{1} H, 0\right)$ and $v_{s}=(2, H, 1)$. Therefore

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}^{H N}\left(v_{1}, v_{2}, \ldots, v_{s}\right)<\operatorname{dim} \mathcal{M}_{H}(v)^{s s} \tag{2.53}
\end{equation*}
$$

unless $\left(H^{2}\right)=2, v=(2 d-1, d H, 1), d \geq 2, s=2, v_{1}=(2 d-3,(d-1) H, 0)$ and $v_{2}=(2, H, 1)$. Thus Theorem 0.1 (2) holds.
2.4. Proof of Theorem 0.1 (3). Assume that $\left(H^{2}\right)=2$. We set $v:=(1, d H, 2 d-1)$ and assume that $d \geq 2$. For a simple and rigid vector bundle G on X, we set

$$
\begin{equation*}
\mathcal{E}_{G}:=\operatorname{ker}\left(G^{\vee} \boxtimes G \rightarrow \mathcal{O}_{\Delta}\right) \tag{2.54}
\end{equation*}
$$

$\Phi_{\mathcal{E}_{G}}$ is a generalization of $\Phi_{I_{\Delta}}$ and has similar properties. For example, if $\operatorname{Hom}(G, E)=$ $\operatorname{Ext}^{2}(G, E)=0, E \in \operatorname{Coh}(X)$, then $\Phi_{\mathcal{E}_{G}^{*}[1]}(E)$ is the universal extension of E by G.

We shall show that $\Phi_{\mathcal{E}_{\mathcal{O}_{X}(H)}[1]}$ induces a birational map

$$
\begin{equation*}
M_{H}(1, d H, 2 d-1) \cdots \rightarrow M_{H}(0, d H, 2 d-3) . \tag{2.55}
\end{equation*}
$$

In particular, a general member $I_{Z}(d H) \in M_{H}(1, d H, 2 d-1)$ fits in the following exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(H) \rightarrow I_{Z}(d H) \rightarrow L \rightarrow 0 \tag{2.56}
\end{equation*}
$$

where $L \in M_{H}(0,(d-1) H, 2 d-3)$ and $\operatorname{Ext}^{1}\left(L, \mathcal{O}_{X}(H)\right) \cong \mathbb{C}$.
Proof of the claim: We have isomorphisms $M_{H}(1, d H, 2 d-1) \cong M_{H}(1,(d-1) H, 0)$ and $M_{H}(0,(d-1) H, 2 d-3) \cong M_{H}(0,(d-1) H,-1)$ by the operation $E \mapsto E(-H)$. Since $\left(\Phi_{\mathcal{E}_{\mathcal{O}_{X}(H)}[1]}(E)\right)(-H)=\Phi_{I_{\Delta}[1]}(E(-H))$ for $E \in \operatorname{Coh}(X)$, the claim follows from Theorem 0.1 (1).

Applying Theorem $0.1(2)$ to $\mathcal{O}_{X}(H)$ and a general $L \in M_{H}(0,(d-1) H, 2 d-3)$, we get stable sheaves $E_{1}:=\mathcal{D} \circ \Phi_{I_{\Delta}}\left(\mathcal{O}_{X}(H)\right) \in M_{H}(2, H, 1)$ and $F:=\mathcal{D} \circ \Phi_{I_{\Delta}}(L) \in$ $M_{H}(2 d-3,(d-1) H, 0)$. Hence $\mathcal{D} \circ \Phi_{I_{\Delta}}\left(I_{Z}(d H)\right)$ fits in an exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow \mathcal{D} \circ \Phi_{I_{\Delta}}\left(I_{Z}(d H)\right) \rightarrow E_{1} \rightarrow 0 \tag{2.57}
\end{equation*}
$$

Hence $\mathcal{D} \circ \Phi_{I_{\Delta}}\left(I_{Z}(d H)\right)$ is not stable.

By the stability of E_{1} and $F, \operatorname{Ext}^{2}\left(E_{1}, F\right)=0$. Since $\operatorname{Hom}\left(E_{1}, F\right)=\operatorname{Hom}\left(L, \mathcal{O}_{X}\right.$ $(H))=0, \operatorname{Ext}^{1}\left(E_{1}, F\right) \cong \mathbb{C}$ and $\Phi_{\mathcal{E}_{E_{1}}[1]}(F)$ fits in an exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow \Phi_{\mathcal{E}_{E_{1}}[1]}(F) \rightarrow \operatorname{Ext}^{1}\left(E_{1}, F\right) \otimes E_{1} \rightarrow 0 \tag{2.58}
\end{equation*}
$$

Therefore $\Phi_{\mathcal{E}_{E_{1}}[1]}(F)=\mathcal{D} \circ \Phi_{I_{\Delta}}\left(I_{Z}(d H)\right)$. On the other hand, since

$$
\begin{equation*}
\left(\operatorname{rk} E_{1}\right) c_{1}(F)-(\operatorname{rk} F) c_{1}\left(E_{1}\right)=H \tag{2.59}
\end{equation*}
$$

[11, Thm. 2.5] implies that $\Phi_{\mathcal{E}_{E_{1}}^{*}[1]}$ induces a birational map

$$
\begin{equation*}
M_{H}(2 d-3,(d-1) H, 0) \cdots \rightarrow M_{H}(2 d-1, d H, 1) \tag{2.60}
\end{equation*}
$$

We define $\Phi: \mathbf{D}(X) \rightarrow \mathbf{D}(X)$ by $\Phi:=\mathcal{D} \circ \Phi_{\mathcal{E}_{E_{1}}^{*}[1]} \circ \Phi_{\mathcal{E}_{E_{1}}^{*}[1]} \circ \mathcal{D} \circ \Phi_{I_{\Delta}}=\Phi_{\mathcal{E}_{E_{1}}[1]} \circ \Phi_{\mathcal{E}_{E_{1}}[1]} \circ$ $\Phi_{I_{\Delta}}$. Then $(\mathcal{D} \circ \Phi)^{-1}=\mathcal{D} \circ \Phi$ gives a desired birational map $M_{H}(2 d-1, d H, 1) \cdots \rightarrow$ $M_{H}(1, d H, 2 d-1)$. Thus Theorem 0.1 (3) holds.

3. Appendix

Lemma 3.1. Let E, G be coherent sheaves on X and V a finite dimensional vector space. For an extension

$$
\begin{equation*}
0 \rightarrow V \otimes G \rightarrow F \rightarrow E \rightarrow 0 \tag{3.1}
\end{equation*}
$$

of E by $V \otimes G$, we assume that $\operatorname{Hom}(F, G)=0$. Then the extension class $e \in \operatorname{Ext}^{1}(E, G) \otimes V$ induces an injective homomorphism $V^{\vee} \rightarrow \operatorname{Ext}^{1}(E, G)$. In particular, if $\operatorname{Hom}(F, G)=0$ and $\operatorname{dim} V=\operatorname{dim} \operatorname{Ext}^{1}(E, G)$, then Then (3.1) is the universal extension of E by G, that is, $e \in \operatorname{Ext}^{1}(E, G) \otimes V$ induces an isomorphism $V^{\vee} \rightarrow \operatorname{Ext}^{1}(E, G)$.

Proof. Assume that the induced homomorphism $\varepsilon: V^{\vee} \rightarrow \operatorname{Ext}^{1}(E, G)$ is not injective. Then there is a non-zero homomorphism $\phi: V \rightarrow \mathbb{C}$ belonging to $\operatorname{ker} \varepsilon$. For $V \otimes G \xrightarrow{\phi} \mathbb{C} \otimes G$, we take the induced extension

Since $\phi \in \operatorname{ker} \varepsilon$, the induced extension is trivial, that is, $F^{\prime}=\mathbb{C} \otimes G \oplus E$. Then we get $\operatorname{Hom}(F, G) \neq 0$. Therefore ε is injective.

Lemma 3.2. Let E be a μ-semi-stable sheaf with $\left(c_{1}(E), H\right)=0$. If there is a surjective homomorphism $\psi: \mathcal{O}_{X}^{\oplus n} \rightarrow E$, then $H^{0}(X, E) \otimes \mathcal{O}_{X} \rightarrow E$ is an isomorphism.

Proof. We have a commutative diagram

where ϕ_{1} and ϕ_{2} are evaluation maps. Since ϕ_{1} is an isomorphism, the surjectivity of ψ implies that ϕ_{2} is also surjective. We shall prove that ϕ_{2} is injective. Assume that $\operatorname{ker} \phi_{2} \neq 0$. Then $\operatorname{ker} \phi_{2}$ is a μ-semi-stable locally free sheaf with $\left(c_{1}\left(\operatorname{ker} \phi_{2}\right), H\right)=0$. We take a μ-stable subsheaf F of $\operatorname{ker} \phi_{2}$ with $\left(c_{1}\left(\operatorname{ker} \phi_{2}\right), H\right)=0$. Then there is a non-zero homomorphism $F \rightarrow \mathcal{O}_{X}$, which is an isomorphism. Then $\operatorname{ker} \phi_{2}$ contains \mathcal{O}_{X}, which is a contradiction. Therefore ϕ_{2} is injective and we get our claim.

References

[1] Ballico, E. and Chiantini, L., On some moduli spaces of rank 2 bundles over $K 3$ surfaces, Boll. Un. Mat. Ital. A (7) 7 (1993), 279-287.
[2] Costa, L., K3 surfaces: moduli spaces and Hilbert schemes. Dedicated to the memory of Fernando Serrano, Collect. Math. 49 (1998), 273-282.
[3] Hassett, B. and Tschinkel, Y., Abelian fibrations and rational points on symmetric products, Internat. J. Math. 11 (2000), 1163-1176.
[4] Huybrechts, D., Compact Hyperkähler Manifolds: Basic Results, alg-geom/9705025, Invent. Math. 135 (1999), 63-113.
[5] Markushevich, D., Rational Lagrangian fibrations on punctual Hilbert schemes of $K 3$ surfaces, math. AG/0509346.
[6] Mukai, S., Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175.
[7] MukaI, S., On the moduli space of bundles on $K 3$ surfaces I, Vector bundles on Algebraic Varieties, Oxford, 1987, 341-413.
[8] NAKAShima, T., Moduli of stable rank two bundles with ample c_{1} on $K 3$ surfaces, Arch. Math. (Basel) 61 (1993), 100-104.
[9] SAWON, J., Lagrangian fibrations on Hilbert schemes of points on $K 3$ surfaces, J. Algebraic Geom. 16 (2007), 477-497.
[10] Yoshioka, K., The Betti numbers of the moduli space of stable sheaves of rank 2 on \mathbb{P}^{2}, J. reine angew. Math. 453 (1994), 193-220.
[11] Yoshioka, K., Some examples of Mukai's reflections on K3 surfaces, J. reine angew. Math. 515 (1999), 97-123.
[12] Yoshioka, K., Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), 817-884, math.AG/0009001.
[13] Yoshioka, K., Twisted stability and Fourier-Mukai transform I, Compositio Math. 138 (2003), 261-288.
[14] Yoshioka, K., Twisted stability and Fourier-Mukai transform II, Manuscripta Math. 110 (2003), 433-465.
[15] Yoshioka, K., Stability and the Fourier-Mukai transform. II, Compos. Math. 145 (2009), 112-142.
[16] Kurihara, K. and Yoshioka, K., Holomorphic vector bundles on non-algebraic tori of dimension 2, Manuscripta Math. 126 (2008), 143-166.
[17] Zuo, K., The moduli spaces of some rank-2 stable vector bundles over algebraic $K 3$ surfaces, Duke Math. J. 64 (1991), 403-408.

Present Addresses:

Masanori Kimura
Department of mathematics, Faculty of Science,
Kobe University,
Kobe, 657 Japan.
Kōta Yoshioka
Department of mathematics, Faculty of Science,
Kobe University,
Kobe, 657 Japan.

