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Birational Maps of Moduli Spaces of Vector Bundles on K3 Surfaces

Masanori KIMURA and Kōta YOSHIOKA
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Abstract. In this note, we construct a birational map of a moduli space of stable sheaves on a K3 surface
induced by a reflection functor.

0. Introduction

Let X be a K3 surface defined over C and H an ample line bundle on X. Let
(H ∗(X,Z), 〈 , 〉) be the Mukai lattice of X: for xi = (ri , ξ i , ai) ∈ H ∗(X,Z), i = 1, 2,

〈x1, x2〉 := (ξ1, ξ2)− r1a2 − a1r2 ∈ Z .

For a coherent sheaf E on X,

v(E) := ch(E)
√

tdX

=(rkE, c1(E), χ(E)− rk(E)) ∈ H ∗(X,Z)

is the Mukai vector of E, where tdX is the Todd class of X and we identifyH 4(X,Z) with Z.
We denote the moduli space of stable sheaves E of v(E) = v by MH(v). If H is general and
v is primitive, then MH(v) is a smooth projective scheme.

DEFINITION 0.1. For an object E ∈ D(X ×X), we define an integral functor

(0.1)
ΦE : D(X) → D(X)

x �→ Rp2∗(E ⊗ p∗
1(x)) ,

where p1, p2 : X × X → X are projections. The Fourier-Mukai transform of X is an
equivalence D(X) → D(X) of this form ΦE .

Let I∆ be the ideal of the diagonal ∆ ⊂ X × X. Then we have the Fourier-Mukai
transform ΦI∆ whose inverse is given by ΦI ∗

∆
[2] : D(X) → D(X) with

(0.2) ΦI ∗
∆
(x) := R Homp2(I∆, p

∗
1(x)), x ∈ D(X) ,
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where I∗
∆ = RHomOX×X(I∆,OX×X). The Fourier-Mukai transformΦE induces an isometry

ΦHE of the Mukai lattice and we have a commutative diagram:

(0.3)

D(X)
ΦE−−−−→ D(X)

v

⏐⏐� ⏐⏐�v
H ∗(X,Z)

ΦHE−−−−→ H ∗(X,Z)

If E = I∆, then −ΦHE coincides with the reflection by the (−2)-vector v(OX) = (1, 0, 1):

(0.4) −ΦHE ((r, ξ, a)) = (a,−ξ, r) = x + 〈x, v(OX)〉v(OX) ,

where x = (r, ξ, a).
Let E be a stable sheaf on X with v(E) = v. Assume that there is an integer i such that

(a) Hi(ΦI ∗
∆
(E)) is a stable sheaf.

(b) Hj(ΦI ∗
∆
(E)) = 0 for j 	= i.

Then we have a rational mapMH(v) · · · → MH(w) which becomes birational by the proper-
ties of the Fourier-Mukai transform, where w = v(F ). In this note, we give some conditions
for E to satisfy (a) and (b).

THEOREM 0.1. Let X be a K3 surface with Pic(X) = ZH . Let v = (r, dH, a) be the

Mukai vector of a coherent sheaf with 〈v2〉 = d2(H 2)− 2ra > 0.

(1) Assume that a ≤ 0.

(a) If r + a ≥ 0, then ΦI∆[1] induces a birational map

MH(r, dH, a) · · · → MH(−a, dH,−r) .
(b) If r + a ≤ 0, then ΦI ∗

∆[1] induces a birational map

MH(r, dH, a) · · · → MH(−a, dH,−r) .
(2) Assume that a = 0, 1, then D ◦ΦI∆ induces a birational map

MH(r, dH, a) · · · → MH(a, dH, r)

unless (H 2) = 2 and v = (2d − 1, dH, 1), d ≥ 2, where D(E) :=
R HomOX

(E,OX), E ∈ D(X).

(3) If (H 2) = 2, then there is an auto-equivalenceΦ : D(X) → D(X) such that D ◦Φ
induces a birational map

MH(2d − 1, dH, 1) · · · → MH(1, dH, 2d − 1), d ≥ 2 .

COROLLARY 0.2. Let (X,H) be a pair of aK3 surfaceX and an ample divisorH on

X. Let v = (r, dH, a) be the Mukai vector of a coherent sheaf with 〈v2〉 = d2(H 2)−2ra > 0.
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If a ≤ 1 and gcd(r, d(H 2), a) = 1, then we have a birational map MH(r, dH, a) · · · →
MH(a, dH, r).

PROOF. We first assume that a ≤ 0. We take a flat family (X ,H) → S of polarizedK3
surfaces over a smooth curve S such that (X ,H)s0 = (X,H), s0 ∈ S and Pic(Xs1) = ZHs1 ,
s1 ∈ S. Then we have flat families Mi → S, i = 1, 2 of moduli spaces where M1 :=
MH(r, dH, a) and M2 := MH(−a, dH,−r). By our assumption, they are smooth and
projective families. By the openness of the stability condition, the Fourier-Mukai transform
induces a birational map f : M1 · · · → M2. Then [4, Theorem 4.3] implies the claim. �

REMARK 0.1. Related results are obtained by Zuo [17], Ballico and Chiantini [1],
Nakashima [8] and Costa [2].

It is conjectured that an irreducible symplectic manifold M is birationally equivalent to
an irreducible symplectic manifold with a Lagrangean fibration, if there is a line bundle which
is isotropic with respect to Beauville bilinear form (cf. [3], [5], [9]). The following corollary
supports this conjecture.

COROLLARY 0.3. Let (X,H) be a pair of a K3 surface X and an ample divisor H

on X. If gcd(r, d(H 2)) = 1, then MH(r, dH, 0), d > 0 is birationally equivalent to a
holomorphic symplectic manifold with a Lagrangean fibration.

1. Preliminaries

Let M(v) be the moduli stack of coherent sheavesE onX with v(E) = v. Let MH(v)
ss

(resp. MH(v)
s ) be the open substack of M(v) consisting of H -semi-stable sheaves (resp.

H -stable sheaves). From now on, we assume that Pic(X) = ZH . Then, H is a general
polarization, that is,

(1.1)
(c1(F ),H)

rkF
= (c1(E),H)

rkE
if and only if

c1(F )

rkF
= c1(E)

rkE

for any subsheaf F of a µ-semi-stable sheaf E with v(E) = v.

PROPOSITION 1.1. Let M be an irreducible component of M(v). Then dimM ≥
〈v2〉 + 1.

PROOF. The claim is an easy consequence of the deformation theory of a coherent
sheaf. For a proof, see the proof of [13, Prop. 3.4]. �

For the open substack MH(v)
ss , we have dimMH(v)

ss = 〈v2〉 + 1. Moreover we have
the following claims.

THEOREM 1.2. [13, Thm. 0.1, Prop. 3.4], [15, Cor. 3.5] Assume that 〈v2〉 > 0. Then

(1) MH(v)
ss is an irreducible normal stack of dimMH(v)

ss = 〈v2〉 + 1.
(2) MH(v)

s is an open dense substack of MH(v)
ss .
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DEFINITION 1.1. For v = (r, dH, a) ∈ Q ⊕ QH ⊕ Q, we set v ≥ 0, if (i) r > 0, or
(ii) r = 0 and d > 0 or (iii) r = d = 0 and a ≥ 0. If v −w ≥ 0, then we write v ≥ w.

DEFINITION 1.2. For vi := (ri, diH, ai), 1 ≤ i ≤ s with v1/r1 ≥ v2/r2 ≥ · · · ≥
vs/rs , let FHN(v1, v2, . . . , vs ) be the substack of M(v) whose element F has the Harder-
Narasimhan filtration

(1.2) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F

such that vi = v(Fi/Fi−1), i = 1, 2, . . . , s.

By the properties of Harder-Narasimhan filtration and the Serre duality,

(1.3) Ext2(Fj /Fj−1, Fi/Fi−1) = Hom(Fi/Fi−1, Fj /Fj−1)
∨ = 0, i < j .

Then the following lemma holds (cf. [16, Lemma, 5.3]).

LEMMA 1.3.

(1.4) dimFHN(v1, v2, . . . , vs) =
∑
i<j

〈vj , vi〉 +
∑
i≥1

dimMH(vi)
ss .

LEMMA 1.4. Let v = lv′ be a Mukai vector such that l > 0 and v′ is primitive. Then

(1.5) dimMH(v)
ss ≤ 〈v2〉 + l2 .

PROOF. We note that

(1.6) dim Ext2(E,E) = dim Hom(E,E) ≤ l2

for E ∈ MH(v)
ss . Hence dimMH(v)

ss ≤ 〈v2〉+ l2 by the deformation theory of a coherent
sheaf. �

1.1. Brill-Noether locus. We set v := (r, dH, a), r ≥ 0, d > 0, a ≤ 0. Let E be
a stable sheaf with v(E) = v. Then χ(E) = r + a. By the stability of E and d > 0, Serre

duality implies that H 2(X,E) = Hom(E,OX)
∨ = 0.

DEFINITION 1.3. We set

(1.7) MH(v)
s
0 := {E ∈ MH(v)

s |H 0(X,E) = 0} .
By the Brill-Noether theory, it is expected that MH (v)

s
0 	= ∅ if r + a ≤ 0. In this

subsection, we shall prove this expectation is true.

PROPOSITION 1.5. Let v = (r, dH, a) be a Mukai vector such that r ≥ 0, d > 0 and
r + a ≤ 0. Then MH (v)

s
0 	= ∅.

Before proving this proposition, we shall explain that ΦI ∗
∆
(E)[1] is a coherent sheaf

defined as the universal extension of E by OX for E ∈ MH(v)
s
0. Assume that r + a ≤ 0.
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For E ∈ MH(v)
s
0, we consider the Fourier-Mukai transform ΦI ∗

∆
(E). By using the exact

sequence

(1.8) 0 → I∆ → OX×X → O∆ → 0 ,

we have an exact sequence
(1.9)

0 −−−−−→ Homp2 (O∆,p∗
1 (E)) −−−−−→ H 0(X,E)⊗ OX −−−−−→ Homp2 (I∆, p

∗
1 (E))

−−−−−→ Ext1p2
(O∆,p∗

1 (E)) −−−−−→ H 1(X,E)⊗ OX −−−−−→ Ext1p2
(I∆, p

∗
1(E))

−−−−−→ Ext2p2
(O∆,p∗

1 (E)) −−−−−→ H 2(X,E)⊗ OX −−−−−→ Ext2p2
(I∆, p

∗
1(E)) −−−−−→ 0 .

Since RHomOX×X(O∆,OX×X) = O∆[−2], we have

(1.10) Extip2
(O∆, p

∗
1(E)) = Rpi−2

2∗ (O∆ ⊗ p∗
1(E)) =

{
E, i = 2

0, i 	= 2 .

Since Hi(X,E) = 0 for i 	= 1, we see that Hi(ΦI ∗
∆
(E)) = 0 for i 	= 1 and

F := H 1 (ΦI ∗
∆
(E)) fits in an exact sequence

(1.11) 0 → H 1(X,E)⊗ OX → F → E → 0 .

Since ΦI ∗
∆
(OX) = OX, we have

(1.12) Hom(F,OX) = Hom(ΦI ∗
∆
(E)[1],ΦI ∗

∆
(OX)) = Hom(E[1],OX) = 0 .

By Lemma 3.1, (1.11) is the universal extension ofE by OX. In the next section, we shall
prove that F is stable for a general E. Then we have a rational map MH(v) · · · → MH(w)

which becomes birational by the properties of the Fourier-Mukai transform, wherew = v(F ).
Thus we get Theorem 0.1 (1) for r + a ≤ 0.

PROOF OF PROPOSITION 1.5. We first treat the case where r = 0. In this case, we can
take a smooth curveC ∈ |dH |. Then it is easy to find a line bundleL onC withH 0(C,L) = 0

and dimH 1(C,L) = a. Since C is reduced and irreducible,L is stable. Thus the claim holds.
We next treat the case where r > 0. We start with a special case.

LEMMA 1.6. Let v = (r, dH, a) be a Mukai vector such that r > 0, d > 0, (r, d) = 1
and r + a ≤ 0. Then MH(v)

s
0 	= ∅.

PROOF. We shall prove our claim by induction on r . (I) Assume that r = 1. Then
MH(v)

s consists of IZ(dH), where IZ is the ideal sheaf of a 0-dimensional subscheme of

length 〈v2〉/2+1, that is, IZ belongs to Hilb〈v2〉/2+1
X . Since χ(IZ(dH)) = 1+a ≤ 0, we have

H 0(X, IZ(dH)) = 0 for a general IZ . Moreover the same assertion also holds for d = 0.
(II) Let (r1, d1) be a pair of integers such that d1r − dr1 = 1 and 0 < r1 < r . We set

(r2, d2) := (r − r1, d − d1). Then d1 > 0 and d − d1 ≥ 0. Moreover if d − d1 = 0, then
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r − r1 = 1. We shall choose Mukai vectors vi := (ri , diH, ai), i = 1, 2 such that ri + ai ≤ 0,
i = 1, 2. We shall choose Ei ∈ MH(vi)0, i = 1, 2. Then H 0(X,E1 ⊕ E2) = 0. We shall
prove that E1 ⊕E2 deforms to a stable sheaf. We set

M(v)′ := MH(v)
ss ∪ ∪b≥0FHN(v1 − bω, v2 + bω) ,

where ω = (0, 0, 1). We first prove that M(v)′ is an open substack of M(v).
Proof of the claim: If E ∈ FHN(v1 − bω, v2 + bω) belongs to the closure of

FHN(u1, u2, . . . , us), then the Harder-Narasimhan polygon of u1, u2, . . . , us is contained
in the Harder-Narasimhan polygon of v1 − bω, v2 + bω. Then we see that s = 2 and
u1 = v1 − b′ω, b′ ≥ b. Therefore the claim holds.

We shall prove that

(1.13) dimFHN(v1 − bω, v2 + bω) < 〈v2〉 + 1 .

Since every irreducible component of M(v) is at least of dimension 〈v2〉 + 1 (Prop. 1.1) and
MH(v)

ss is irreducible, (1.13) implies that M(v)′ is also irreducible. Since E1 ⊕E2 belongs
to M(v)′, we get our claim MH(v)

s
0 	= ∅.

Proof of (1.13):
We shall first estimate dimFHN(v1 − bω, v2 + bω).

dimFHN(v1 − bω, v2 + bω)

= dimMH(v1 − bω)ss + dimMH (v2 + bω)ss + 〈v1 − bω, v2 + bω〉
=〈(v1 − bω)2〉 + 〈(v2 + bω)2〉 + 〈v1 − bω, v2 + bω〉 + 2

(1.14)

Hence

(〈v2〉 + 1)− dimFHN(v1 − bω, v2 + bω) =〈v1 − bω, v2 + bω〉 − 1

=d1d2(H
2)− r2a1 − r1a2 + (r2 − r1)b − 1.

(1.15)

We note that a1 + a2 ≤ −r1 − r2 = −r and a2 + b ≤ (d2
2 (H

2)+ 2)/2r2. If r1 ≥ r2, then we
see that

〈v2〉 + 1 − dimFHN(v1 − bω, v2 + bω) = d1d2(H
2)− r2(a1 + a2)

− (r1 − r2)(a2 + b)− 1

≥ d1d2(H
2)+ r2r − (r1 − r2)

d2
2 (H

2)+ 2

2r2
− 1

= d1d2(H
2)

(
1 − (r1 − r2)

2r2

d2

d1

)
+ r2r − r1

r2

> d1d2
r

2r1
(H 2)+ r2r − r1

r2
> 0,

(1.16)
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where we used the inequality d1/r1 > d2/r2. If r1 ≤ r2, then since a1 ≤ −r1, we see that

〈v2〉 + 1 − dimFHN(v1 − bω, v2 + bω) = d1d2(H
2)− (r2 − r1)(a1 − b)

− r1(a1 + a2)− 1

≥ d1d2(H
2)+ (r2 − r1)r1 + r1r − 1 > 0 . �

By using Lemma 1.6, we treat the general case. We set v := (lr ′, ld ′H, a), where

l := gcd(r, d). We choose integers a1, a2, . . . , al such that
∑l
i=1 ai = a and r ′ + ai ≤ 0 for

1 ≤ i ≤ l. We set vi := (r ′, d ′H, ai). By Lemma 1.6, MH(vi)
s
0 	= ∅, 1 ≤ i ≤ l. We choose

elements Ei ∈ MH (vi)
s
0, 1 ≤ i ≤ l and set E := ⊕l

i=1Ei . Then E is µ-semi-stable and

H 0(X,E) = 0. Since 〈v2〉 ≥ 2l2, [11, Lem. 4.4] implies that our proposition holds. �

2. Proof of Theorem 0.1

2.1. Estimates on the Mukai pairing. In order to estimate the dimension of the loci
of unstable sheaves, we prepare some estimates of the Mukai pairing.

LEMMA 2.1. Let v1 := (r1, d1H, a1), r1 > 0, and v2 := (r2, d2H, a2), r2 > 0 be
Mukai vectors such that

(2.1) d1/r1 ≥ d2/r2 > 0 .

We set l := gcd(r2, d2, a2). Assume that a1 ≤ 0, a1 + a2 ≤ 0 and 〈v2
2〉 ≥ −2l2. Then

(2.2) 〈v1, v2〉 − 1 > 0 .

Moreover, if 〈v2
2〉 ≤ 0, then

(2.3) 〈v1, v2〉 − l2 > 0 .

PROOF. Assume that 〈v2
2〉 > 0. Then a2 < r2d

2
2 (H

2)/2. By our assumption, we have
d1 ≥ r1d2/r2. If r1 ≥ r2, then we see that

〈v1, v2〉 − 1 = d1d2(H
2)− (r1 − r2)a2 − r2(a1 + a2)− 1

≥ d1d2(H
2)− (r1 − r2)d

2
2

r2

(H 2)

2
− 1

≥ d2
2
r1 + r2

2r2
(H 2)− 1

≥ d2
2 (H

2)− 1 > 0 .

(2.4)

If r1 < r2, then

〈v1, v2〉 − 1 =d1d2(H
2)− (r2 − r1)a1 − r1(a1 + a2)− 1

≥d1d2(H
2)− 1 > 0 .

(2.5)
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If 〈v2
2〉 ≤ 0, then we set v2 = l(r ′2, d ′

2H, a
′
2). Then a′

2 satisfies the inequality

(2.6)
(d ′

2)
2(H 2)

2r ′2
≤ a′

2 ≤ (d ′
2)

2(H 2)+ 2

2r ′2
.

Since

(2.7) 〈v1, v2〉 − l2 = l(d1d
′
2(H

2)− (r ′2a1 + r1a
′
2)− l) ,

we shall prove that

(2.8) d1d
′
2(H

2)− (r ′2a1 + r1a
′
2) > l .

d1d
′
2(H

2)− (r ′2a1 + r1a
′
2) ≥ d1d

′
2(H

2)− (−r ′2la′
2 + r1a

′
2)

≥ d1d
′
2(H

2)− r1a
′
2 + r ′2a′

2l

= d1d
′
2

(
(H 2)− r1

d1d
′
2
a′

2

)
+ r ′2a′

2l

= d1d
′
2

(
(H 2)− r1

d1d
′
2
a′

2

)
+ d ′2

2
(H 2)

2
l .

(2.9)

By using (2.1) and the inequality (2.6), we see that

(H 2)− r1

d1d
′
2
a′

2 ≥ (H 2)− r ′2a′
2

(d ′
2)

2

= 1

(d ′
2)

2

(
(d ′

2)
2(H 2)− r ′2a′

2

)

= 1

(d ′
2)

2

(
(d ′

2)
2(H 2)

2
+ 1

2
((d ′

2)
2(H 2)− 2r ′2a′

2)

)

≥ 1

(d ′
2)

2

(
(d ′

2)
2(H 2)

2
− 1

)
≥ 0 .

(2.10)

If d1d
′
2(H

2) − (r ′2a1 + r1a
′
2) = l, then we have r ′2a′

2 = (d ′
2)

2(H 2)/2 = 1. Thus r ′2 = a′
2 =

d ′
2 = (H 2)/2 = 1. Since d1/r1 ≥ d−2′/r ′2 = 1, d1d

′
2(H

2)−(r ′2a1+r1a′
2) = 2d1−r1+l > l,

which is a contradiction. Therefore we get (2.8). �

LEMMA 2.2. Let v1 := (r1, d1H, a1), r1 > 0 and v2 := (r2, d2H, a2), r2 > 0 be
Mukai vectors. Assume that a1 ≤ 0, a1 + a2 = 1 and d1/r1 > d2/r2 > 0.

(1) If 〈v2
2〉 ≥ −2, then 〈v1, v2〉 − 1 > 0, unless (H 2) = 2, v1 = (2d1 − 1, d1H, 0) and

v2 = (2,H, 1).
(2) If l := gcd(r2, d2, a2) ≥ 2 and −2l2 ≤ 〈v2

2〉 ≤ 0, then 〈v1, v2〉 − l2 > 0.

PROOF. (1) (i) We first assume that a2 ≥ 2. If r1 ≥ r2, then
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〈v1, v2〉 − 1 = d1d2(H
2)− r2a1r1a2

= d1d2(H
2)− (r2 − r1)a2 − r2(a1 + a2)− 1

≥ d1d2(H
2)

(
1 − (r1 − r2)

2r2

d2

d1

)
− r2 − r1

r2

≥ d1d2
r1 + r2

2r1
(H 2)− r2 − r1

r2

=
(
d1d2

(H 2)

2
− d1

d2

)
+
(
d1d2r2(H

2)

2r1
− r2

)

>
d2

2 (H
2)

2
− r2

≥ (a2 − 1)r2 − 1 ≥ 0 .

(2.11)

If r1 < r2, then

〈v1, v2〉 − 1 = d1d2(H
2)− (r1 − r2)a2 − r2(a1 + a2)− 1

≥ d1d2(H
2)− 2r1 + r2 − 1

>
r1

r2
d2

2 (H
2)+ r2 − 2r1 − 1

≥ r1

r2
(4r2 − 2)+ r2 − 2r1 − 1

= 2(r2 − 1)r1 + r2(r2 − 1)

r2
≥ 0 .

(2.12)

(ii) We next treat the case of a2 = 1. In this case, a1 = 0. (a) If r1, r2 ≥ 3, then

〈v1, v2〉 − 1 = d1d2(H
2)− r1 − 1

> r1

(
d2

2

r2
(H 2)− 1

)
− 1

≥ r1

(
1 − 2

r2

)
− 1 ≥ 0 .

(2.13)

(b) If r2 ≥ 3 and r1 ≤ 2, then d2
2 (H

2) ≥ 4, and hence d2(H
2) ≥ 4. Then we see that

(2.14) 〈v1, v2〉 − 1 = d1d2(H
2)− r1 − 1 ≥ 4d1 − 3 > 0 .

(c) If r2 = 1, then d1 > r1d2. Hence we see that

(2.15) 〈v1, v2〉 − 1 = d1d2(H
2)− r1 − 1 > r1d2

2 (H
2)− r1 − 1 ≥ r1 − 1 ≥ 0 .

(d) If r2 = 2, then d1 > r1d2/2. (d-1) If d2
2 (H

2) ≥ 4, then same computation as in (c)
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implies our claim. (d-2) If d2
2 (H

2) = 2, that is, d2 = 1 and (H 2) = 2, then

(2.16) 〈v1, v2〉 − 1 = d1d2(H
2)− r1 − 1 = 2d1 − r1 − 1 ≥ 0 .

If 〈v1, v2〉 − 1 = 0, then a1 = 0 and 2d1 − r1 − 1 = 0. Thus v1 = (2d1 − 1, d1H, 0) and
v2 = (2,H, 1).

(2) Since

(2.17) 〈v1, v2〉 − l2 = l(d1d
′
2(H

2)− (r ′2a1 + r1a
′
2)− l) ,

we shall prove that

(2.18) d1d
′
2(H

2)− (r ′2a1 + r1a
′
2) > l .

d1d
′
2(H

2)− (r ′2a1 + r1a
′
2) = d1d

′
2(H

2)− (r ′2(1 − la′
2)+ r1a

′
2)

= d1d
′
2(H

2)− r1a
′
2 + r ′2(−1 + la′

2)

= d1d
′
2

(
(H 2)− r1

d1d
′
2
a′

2

)
+ r ′2(−1 + la′

2) .

(2.19)

(i) If a′
2 ≥ 2 or r ′2 ≥ 1, then r ′2(−1 + la′

2) ≥ l. On the other hand, we see that

(H 2)− r1

d1d
′
2
a′

2 > (H 2)− r ′2a′
2

(d ′
2)

2

= 1

(d ′
2)

2

(
(d ′

2)
2(H 2)− r ′2a′

2

)

≥ 1

(d ′
2)

2

(
(d ′

2)
2(H 2)

2
− 1

)
≥ 0 .

(2.20)

Hence we get (2.18). (ii) If a′
2 = 1 and r2 = 1, then (d ′

2)
2(H 2) ≤ 2r ′2 = 2. Hence d ′

2 = 1 and

(H 2) = 2. Since d1/r1 > 1, we see that

�(2.21) d1d
′
2(H

2)− (r ′2a1 + r1a
′
2)− l = 2d1 − r1 − 1 > r1 − 1 ≥ 0 .

2.2. Proof of Theorem 0.1 (1). (I) We shall first prove (b). So we assume that r+a ≤
0. By Proposition 1.5, MH(v)

s
0 	= ∅. For E ∈ MH(v)

s
0, we shall consider the universal

extension

(2.22) 0 → O⊕n
X → F → E → 0,

where n = dim Ext1(E,OX) = 〈v, v(OX)〉. We shall prove that F is a semi-stable sheaf for
a general E ∈ MH(v)

s
0.

(Step 1) Assume that F is not semi-stable. For the Harder-Narasimhan filtration

(2.23) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F
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of F , we set

Ei := Fi/Fi−1,

vi := v(Ei) = (ri , diH, ai) .
(2.24)

Then we get

(2.25)
d1

r1
≥ d2

r2
≥ · · · ≥ ds

rs
> 0 .

Proof of (2.25): By the property of the Harder-Narasimhan filtration, it is sufficient to
prove ds/rs > 0. We shall consider the quotient q : F → Es and the following diagram.

(2.26)

0 −−−−→ O⊕n
X −−−−→ F −−−−→ E −−−−→ 0⏐⏐� ⏐⏐�q ⏐⏐�

0 −−−−→ q(O⊕n
X ) −−−−→ Es −−−−→ Es/q(O⊕n

X ) −−−−→ 0

If ds/rs < 0, then q(O⊕n
X ) = 0. Thus q induces a surjective homomorphism E → Es .

Since E is stable and d > 0, q must be 0, which is a contradiction. If ds/rs = 0, then
q(O⊕n

X ) is a semi-stable sheaf of c1(q(O⊕n
X )) = 0. By Lemma 3.2, q(O⊕n

X ) = O⊕m
X for

some m > 0. Since c1(Es/O⊕m
X ) = 0 and Es/O⊕m

X is a quotient of E, Es/O⊕m
X is a torsion

sheaf of dimension 0. Since Es is torsion free and O⊕m
X is a locally free subsheaf of Es , we

get Es/O⊕m
X = 0. Then we get a splitting F ∼= O⊕m

X ⊕ F ′, which contradicts the choice of
extension class. Therefore (2.25) holds.

(Step 2) We shall next prove that

a1 ≤ 0 ,

a1 + a2 ≤ 0 ,

...

a1 + a2 + · · · + as ≤ 0 .

(2.27)

In particular,

〈v2
1〉 ≥ d2

1 (H
2) > 0 ,

〈(v1 + v2)
2〉 ≥ (d1 + d2)

2(H 2) > 0 ,

...

〈(v1 + v2 + · · · + vs)
2〉 ≥ (d1 + d2 + · · · + ds)

2(H 2) > 0 .

(2.28)

Proof of (2.27): We shall consider an exact sequence

(2.29) 0 → O⊕n
X ∩ Fi → Fi → Fi/(O⊕n

X ∩ Fi) → 0 .
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Since Fi is a filter of the Harder-Narasimhan filtration of F , Fi/(O⊕n
X ∩ Fi) 	= 0. Since

Fi/(O⊕n
X ∩ Fi) is a subsheaf of E and H 0(X,E) = 0, H 0(X, Fi/(O⊕n

X ∩ Fi)) = 0. Since

O⊕n
X ∩Fi is a subsheaf of O⊕n

X ,H 0(X,O⊕n
X ∩Fi)⊗OX is a subsheaf of O⊕n

X ∩Fi . Therefore

dimH 0(X, Fi) ≤ rk(O⊕n
X ∩ Fi) ≤ rk(Fi). Since χ(Fi) = rk(Fi)+∑i

j=1 aj , we get (2.27).

(Step 3) We shall prove that

(2.30) dimFHN(v1, v2, . . . , vs) ≤ 〈v2〉 .
Proof of (2.30): By Lemma 1.3, we have

(2.31) dimFHN(v1, v2, . . . , vs) =
∑
i<j

〈vj , vi〉 +
∑
i≥1

dimMH(vi)
ss .

Since 〈v2
1〉 > 0, dimMH(v1)

ss = 〈v2
1〉 + 1 by Theorem 1.2. Applying Lemma 2.1 and

Lemma 1.4, we see that

(2.32) (〈v2
1〉 + 1)+ dimMH(v2)

ss + 〈v2, v1〉 < 〈(v1 + v2)
2〉 + 1 .

We set v′
2 := v1 + v2 and v′

i := vi , i > 2. Then we get that

(2.33) dimFHN(v1, v2, . . . , vs ) <
∑

2≤i<j
〈v′
j , v

′
i〉 + (〈(v′

2)
2〉 + 1)+

∑
i≥3

dimMH(v
′
i )
ss .

By induction on s, we get (2.30).

(Step 4) By Step 3 and Theorem 1.2, Φ−1
I ∗
∆[1](FHN(v1, v2, . . . , vs)) ∩ MH(v)

ss is a lo-

cally closed substack of MH(v)
ss such that dimΦ−1

I ∗
∆[1](FHN(v1, v2, . . . , vs))∩MH(v)

ss <

dimMH(v)
ss . Combining this with Theorem 1.2, we have ΦI ∗

∆[1](MH(v)
ss) ∩ MH(w)

s 	=
∅. We set

MH(v)
∗ :={E ∈ MH(v)|ΦI ∗

∆[1](E) ∈ MH(w)} ,
MH (w)

∗ :={F ∈ MH(w)|ΦI∆[1](F ) ∈ MH(v)} .
(2.34)

Then MH(v)
∗ and MH(w)

∗ are non-empty open subschemes of MH(v) and MH(w) respec-
tively and ΦI ∗

∆[1] induces an isomorphismMH(v)
∗ ∼= MH(w)

∗. Since MH(v)
∗ and MH(w)

∗

are irreducible by Theorem 1.2, we get Theorem 0.1 (1) (b).
(II) We next assume that r + a ≥ 0. Since (−a)+ (−r) ≤ 0 and w := (−a, dH,−r) is

ΦH
I ∗
∆
(v), ΦI ∗

∆[1] induces a birational map MH(w) · · · → MH(v). Since the inverse of ΦI ∗
∆[1]

is ΦI∆[1], we get (1) (a). �

REMARK 2.1. For F ∈ MH(r, dH, a) with d > 0 and r + a ≥ 0, ΦI∆[1](F ) fits in the
exact sequence

(2.35)
0 −−−−→ H−1(ΦI∆[1](F )) −−−−→ H 0(X, F )⊗ OX −−−−→ F

−−−−→ H 0(ΦI∆[1](F )) −−−−→ H 1(X, F )⊗ OX −−−−→ 0 .
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IfΦI∆[1](F ) is a semi-stable sheaf, thenH 1(X, F ) = 0 andH 0(X, F )⊗OX → F is injective.

2.3. Proof of Theorem 0.1 (2). We note that (D ◦ ΦI∆)−1 = D ◦ ΦI∆ . Hence we
shall prove that D ◦ΦI∆ induces a birational map

(2.36) MH(a, dH, r) · · · → MH(r, dH, a)

for a = 0, 1.

PROPOSITION 2.3. Let v = (0, dH, r), r ≥ 0, d > 0 be a Mukai vector. Then
D ◦ ΦI∆ = ΦI ∗

∆[2] ◦ D induces a birational map MH(0, dH, r) · · · → MH(r, dH, 0). Thus

Theorem 0.1 (2) holds for a = 0.

PROOF. We note that D induces an isomorphism MH(0, dH, a) → MH(0, dH,−a)
by sending L to Ext1OX

(L,OX). Hence the claim follows from Theorem 0.1 (1). �

In order to treat the case where a = 1, we study the properties of D◦ΦI∆ . For a coherent
sheaf E on X,

(2.37) D ◦ΦI∆(E) = ΦI ∗
∆[2] ◦ D(E) = R Homp2(I∆ ⊗ p∗

1(E),OX×X)[2]
and we have an exact triangle

(2.38) R Homp2(O∆ ⊗ p∗
1(E),OX×X)

φ→ R Hom(E,OX)⊗ OX →
R Homp2(I∆ ⊗ p∗

1(E),OX×X) → R Homp2(O∆ ⊗ p∗
1(E),OX×X)[1] .

Since R HompX(E ⊗ O∆,OX×X) = RHomOX
(E,OX), we have an exact sequence

(2.39)
0 −−−−→ 0 −−−−→ Hom(E,OX)⊗ OX −−−−→ H 0(ΦI ∗

∆
◦ D(E))

−−−−→ 0 −−−−→ Ext1(E,OX)⊗ OX −−−−→ H 1(ΦI ∗
∆

◦ D(E))

−−−−→ HomOX
(E,OX)

H 2(φ)−−−−→ Ext2(E,OX)⊗ OX −−−−→ H 2(ΦI ∗
∆

◦ D(E))
−−−−→ Ext1OX

(E,OX) −−−−→ 0.

Assume that E is a stable sheaf with (c1(E),H) > 0. Then Hom(E,OX) = 0, which implies

that H 0(ΦI ∗
∆

◦ D(E)) = 0.

LEMMA 2.4. (1) If H 0(X,E)⊗ OX → E is generically surjective, then H 1(ΦI ∗
∆

◦
D(E)) ∼= Ext1(E,OX)⊗ OX.

(2) If E is a stable purely 1-dimensional sheaf on X, then H 1(ΦI ∗
∆

◦ D(E)) ∼=
Ext1 (E,OX) ⊗ OX and H 2(ΦI ∗

∆
◦ D(E)) is the universal extension of

Ext1OX
(E,OX) by OX.
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PROOF. (1) By the Serre duality, the dual of φ is the evaluation map ev : R Hom
(OX,E)⊗ OX → E. Since H 0(ev) is generically surjective, H 2(φ) is generically injective.

Since HomOX
(E,OX) is locally free, H 2(φ) is injective. Therefore (1) holds.

(2) Since E is purely 1-dimensional, we can apply (1) to prove the first claim. For the
second claim, we use Lemma 3.1. Since

Hom(H 2(ΦI ∗
∆

◦ D(E)),OX) = Hom(ΦI ∗
∆

◦ D(E)[2],OX)

= Hom(ΦI∆(ΦI ∗
∆

◦ D(E)[2]),ΦI∆(OX))

= Hom(D(E),OX[−2])
= Hom(OX,E[−2]) = 0 ,

(2.40)

we get our claim. �

PROOF OF THEOREM 0.1 (2). We take an irreducible and reduced curve C ∈ |dH |.
Assume that there are distinct n points p1, p2, . . . , pn of C such that Zn := {p1, p2, . . . , pn}
satisfies H 1(X, IZn(dH)) = 0. This condition is equivalent to the surjectivity of the re-

striction map ξn : H 0(X,OX(dH)) → H 0(Zn,OZn(dH)). If dimH 0(X, IZn(dH)) ≥ 2,

then there is a section of H 0(X, IZn(dH)) whose support D is not C. Then for Zn+1 :=
Zn ∪ {pn+1} with pn+1 ∈ C \ D, H 1(X, IZn+1(dH)) = 0. In this way, we can construct
IZ(dH) ∈ MH(1, dH, r)ss with a section φ : OX → IZ(dH) such that cokerφ is a torsion
free sheaf on an irreducible and reduced curve C and H 1(X, IZ(dH)) = 0. We shall study
the relation of ΦI ∗

∆
◦D(IZ(dH)) and ΦI ∗

∆
◦D(cokerφ). Since ΦI ∗

∆
◦D(OX) = OX, we have

an exact sequence

(2.41)

0 −−−−→ H 0(ΦI ∗
∆

◦ D(cokerφ)) −−−−→ H 0(ΦI ∗
∆

◦ D(IZ(dH))) −−−−→ OX

−−−−→ H 1(ΦI ∗
∆

◦ D(cokerφ)) −−−−→ H 1(ΦI ∗
∆

◦ D(IZ(dH))) −−−−→ 0

−−−−→ H 2(ΦI ∗
∆

◦ D(cokerφ)) −−−−→ H 2(ΦI ∗
∆

◦ D(IZ(dH))) −−−−→ 0 .

By Lemma 2.4, F := ΦI ∗
∆[2] ◦ D(IZ(dH)) ∈ Coh(X) and is the universal extension of

L := Ext1OX
(cokerφ,OX) by OX

(2.42) 0 → Ext2(IZ(dH),OX)⊗ OX → H 2(ΦI ∗
∆

◦ D(IZ(dH))) → L → 0 .

We shall prove that F is a semi-stable sheaf for a general L.
(Step 1) Assume that F is not semi-stable. For the Harder-Narasimhan filtration

(2.43) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F

of F , we set

Ei := Fi/Fi−1 ,

vi := v(Ei) = (ri , diH, ai) .
(2.44)
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Then we see that

(2.45)
d1

r1
≥ d2

r2
≥ · · · ≥ ds

rs
> 0

and

(2.46)
ai

ri
>
ai+1

ri+1
, if

di

ri
= di+1

ri+1
.

by a similar way as in the proof of (2.25).
(Step 2) We shall next prove that

a1 ≤ 0 ,

a1 + a2 ≤ 0 ,

...

a1 + a2 + · · · + as−1 ≤ 0 .

(2.47)

Proof of (2.47): We shall consider an exact sequence

(2.48) 0 → O⊕r
X ∩ Fi → Fi → Fi/(O⊕r

X ∩ Fi) → 0 .

We shall prove that dimH 0(X, Fi) ≤ rk(Fi) for i ≤ s − 1. We note that Fi/(O⊕r
X ∩ Fi)

is regarded as a subsheaf of L. Since dimH 0(X,L) = 1, it is sufficient to prove

that dimH 0(X,O⊕r
X ∩ Fi) < rk(Fi). If dimH 0(X,O⊕r

X ∩ Fi) = rk(Fi), then since

H 0(X,O⊕r
X ∩ Fi) ⊗ OX is a subsheaf of O⊕r

X ∩ Fi , we get O⊕r
X ∩ Fi = O⊕ rk(Fi)

X . Since

Fi is a filter of the Harder-Narasimhan filtration of F , Fi/(O⊕r
X ∩ Fi) 	= 0. We note that L is

a torsion free sheaf on an irreducible and reduced curve C. Hence c1(Fi/(O⊕r
X ∩Fi)) = dH .

Then F/Fi is a torsion free sheaf with c1(F/Fi) = 0. Since ds/rs > 0, this is impossible.

Therefore dimH 0(X,O⊕r
X ∩ Fi) < rk(Fi).

(Step 3) We shall prove that

(2.49)
ds

rs
<

∑s−1
i=1 di∑s−1
i=1 ri

.

Proof of (2.49): By (2.45), ds/rs ≤ (
∑s−1
i=1 di)/(

∑s−1
i=1 ri ). If the equality holds, then

(2.45) and (2.46) imply that di/ri = ds/rs for all i and as/rs < (
∑s−1
i=1 ai)/(

∑s−1
i=1 ri ). By

(2.47), we have as ≤ 0. On the other hand,
∑s
i=1 ai = 1. Therefore (2.49) holds.

(Step 4) We shall prove that

(2.50) dimFHN(v1, v2, . . . , vs) < dimMH(v)
ss

unless (H 2) = 2, v = (2d − 1, dH, 1), d ≥ 2, s = 2, v1 = (2d − 3, (d − 1)H, 0) and
v2 = (2,H, 1).
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Proof of (2.50): We set v′ := ∑s−1
i=1 vi . By (2.47), we can apply Lemma 2.1 successively

to prove

(2.51) dimFHN(v1, v2, . . . , vs ) ≤ 〈vs , v′〉 + (〈v′, v′〉 + 1)+ dimMH(vs)
ss

as in the proof of Theorem 0.1 (1). Moreover if the equality holds, then we have s = 2.
Applying Lemma 2.2 to the pair v′ and vs , we get

(2.52) 〈vs , v′〉 + (〈v′, v′〉 + 1)+ dimMH(vs)
ss ≤ 〈v2〉 + 1 = dimMH(v)

ss .

Moreover if the equality holds, then (H 2) = 2, v′ = (2d1 − 1, d1H, 0) and vs = (2,H, 1).
Therefore

(2.53) dimFHN(v1, v2, . . . , vs) < dimMH(v)
ss

unless (H 2) = 2, v = (2d − 1, dH, 1), d ≥ 2, s = 2, v1 = (2d − 3, (d − 1)H, 0) and
v2 = (2,H, 1). Thus Theorem 0.1 (2) holds. �

2.4. Proof of Theorem 0.1 (3). Assume that (H 2) = 2. We set v := (1, dH, 2d−1)
and assume that d ≥ 2. For a simple and rigid vector bundle G on X, we set

(2.54) EG := ker(G∨ �G → O∆) .

ΦEG is a generalization of ΦI∆ and has similar properties. For example, if Hom(G,E) =
Ext2(G,E) = 0, E ∈ Coh(X), then ΦE∗

G[1](E) is the universal extension of E by G.

We shall show that ΦEOX(H)[1] induces a birational map

(2.55) MH(1, dH, 2d − 1) · · · → MH(0, dH, 2d − 3) .

In particular, a general member IZ(dH) ∈ MH(1, dH, 2d − 1) fits in the following exact
sequence

(2.56) 0 → OX(H) → IZ(dH) → L → 0

where L ∈ MH(0, (d − 1)H, 2d − 3) and Ext1(L,OX(H)) ∼= C.
Proof of the claim: We have isomorphismsMH(1, dH, 2d − 1) ∼= MH(1, (d − 1)H, 0)

andMH(0, (d−1)H, 2d−3) ∼= MH(0, (d−1)H,−1) by the operationE �→ E(−H). Since
(ΦEOX(H)[1](E))(−H) = ΦI∆[1](E(−H)) for E ∈ Coh(X), the claim follows from Theorem

0.1 (1).
Applying Theorem 0.1 (2) to OX(H) and a general L ∈ MH(0, (d − 1)H, 2d − 3),

we get stable sheaves E1 := D ◦ ΦI∆(OX(H)) ∈ MH(2,H, 1) and F := D ◦ ΦI∆(L) ∈
MH(2d − 3, (d − 1)H, 0). Hence D ◦ΦI∆(IZ(dH)) fits in an exact sequence

(2.57) 0 → F → D ◦ΦI∆(IZ(dH)) → E1 → 0 .

Hence D ◦ΦI∆(IZ(dH)) is not stable.
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By the stability of E1 and F , Ext2(E1, F ) = 0. Since Hom(E1, F ) = Hom(L,OX

(H)) = 0, Ext1(E1, F ) ∼= C and ΦEE1 [1](F ) fits in an exact sequence

(2.58) 0 → F → ΦEE1 [1](F ) → Ext1(E1, F )⊗ E1 → 0 .

ThereforeΦEE1 [1](F ) = D ◦ΦI∆(IZ(dH)). On the other hand, since

(2.59) (rkE1)c1(F )− (rkF)c1(E1) = H ,

[11, Thm. 2.5] implies that ΦE∗
E1

[1] induces a birational map

(2.60) MH(2d − 3, (d − 1)H, 0) · · · → MH(2d − 1, dH, 1) .

We defineΦ : D(X) → D(X) byΦ := D ◦ΦE∗
E1

[1] ◦ΦE∗
E1

[1] ◦D ◦ΦI∆ = ΦEE1 [1] ◦ΦEE1 [1] ◦
ΦI∆ . Then (D ◦ Φ)−1 = D ◦ Φ gives a desired birational map MH(2d − 1, dH, 1) · · · →
MH(1, dH, 2d − 1). Thus Theorem 0.1 (3) holds. �

3. Appendix

LEMMA 3.1. Let E,G be coherent sheaves on X and V a finite dimensional vector
space. For an extension

(3.1) 0 → V ⊗G → F → E → 0

ofE by V⊗G, we assume that Hom(F,G) = 0. Then the extension class e ∈ Ext1(E,G)⊗V
induces an injective homomorphism V ∨ → Ext1(E,G). In particular, if Hom(F,G) = 0
and dimV = dim Ext1(E,G), then Then (3.1) is the universal extension of E by G, that is,
e ∈ Ext1(E,G)⊗ V induces an isomorphism V ∨ → Ext1(E,G).

PROOF. Assume that the induced homomorphism ε : V ∨ → Ext1(E,G) is not in-
jective. Then there is a non-zero homomorphism φ : V → C belonging to ker ε. For

V ⊗G
φ→ C ⊗G, we take the induced extension

(3.2)

0 −−−−→ V ⊗G −−−−→ F −−−−→ E −−−−→ 0

φ

⏐⏐� ⏐⏐� ∥∥∥
0 −−−−→ C ⊗G −−−−→ F ′ −−−−→ E −−−−→ 0 .

Since φ ∈ ker ε, the induced extension is trivial, that is, F ′ = C ⊗ G ⊕ E. Then we get
Hom(F,G) 	= 0. Therefore ε is injective. �

LEMMA 3.2. Let E be a µ-semi-stable sheaf with (c1(E),H) = 0. If there is a sur-
jective homomorphism ψ : O⊕n

X → E, then H 0(X,E)⊗ OX → E is an isomorphism.
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PROOF. We have a commutative diagram

(3.3)

H 0(X,O⊕n
X )⊗ OX

φ1−−−−→ O⊕n
X⏐⏐� ⏐⏐�ψ

H 0(X,E)⊗ OX
φ2−−−−→ E

where φ1 and φ2 are evaluation maps. Since φ1 is an isomorphism, the surjectivity of ψ
implies that φ2 is also surjective. We shall prove that φ2 is injective. Assume that kerφ2 	= 0.
Then kerφ2 is a µ-semi-stable locally free sheaf with (c1(kerφ2),H) = 0. We take a µ-stable
subsheaf F of kerφ2 with (c1(kerφ2),H) = 0. Then there is a non-zero homomorphism
F → OX, which is an isomorphism. Then kerφ2 contains OX, which is a contradiction.
Therefore φ2 is injective and we get our claim. �
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