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Abstract. We consider real-valued twice differentiable functions defined on an open interval. Our main result
states that if a function f satisfies some inequalities then a map x �→ f (x) exp(−cx) is convex, where c is an arbitrary
point of R or of R \ (c1, c2) for some real c1, c2.

1. Introduction

The exponential mapping is one of the most important functions in mathematics and in
the literature one can find several different approaches how to define formally the exponential
mapping on an undergraduate course of advanced calculus. One of the possibilities is to
consider the following equation:

f ′(x) = f (x) (1)

with the initial condition f (0) = 1; S. Lang’s book [8] may serve as a possible illustration of
this approach.

Since the significance of equation (1) is self-evident there is no need to justify the im-
portance of examining its behavior and, in particular, its asymptotic and stability properties.
In 1998 C. Alsina and R. Ger [1] studied the Hyers-Ulam stability questions for equation
(1). This work proved to be of use for future research since it builds a bridge between two
significant and rapidly developing branches of mathematics, namely the theory of differential
and functional-differential equations (broadly understood) and the theory of the Hyers-Ulam
stability of functional equations. Paper [1] played an important role being a motivation for
the recent research of a numbers of authors. Several stability problems for differential and
functional-differential equations has been considered recently by H. Choda, S.-M. Jung, T.
Miura, S. Miyajima, H. Oka, Th. M. Rassias, H. Takagi, S.-E. Takahasi (see [2], [3], [4], [5],
[6], [7], [9], [10], [11], [12], [13], [14], [15]), among others.

The present work yields a contribution to this stream of research. Our goal is to follow
and modify the approach from [1]. Some characterizations of solutions of certain inequalities
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in terms of convexity are obtained. Equivalently, it can be said that we examine “how convex”
is a solution of the inequality studied in comparison to the exponential mapping.

Throughout the paper R stands for the set of all real numbers, I ⊂ R is a nonempty open
interval, round and square brackets are used to denote open and closed intervals, respectively.

Finally denote by C2 the set of all twice differentiable real functions from I and by C2+ the set

of all nonnegative functions from C2.

2. Results

We begin with an elementary result which is a slight modification of [1, Lemma 1].

PROPOSITION 1. Let f : I → R be a differentiable function and M ∈ R an arbitrary
constant. Then

f ′(x) ≤ Mf (x) for all x ∈ I ,

if and only if there exists a non-increasing and differentiable map d : I → R such that

f (x) = d(x) exp(Mx) for all x ∈ I.

PROOF. To prove the sufficiency define a map d : I → R by the formula

d(x) = f (x) exp(−Mx) for all x ∈ I. (2)

Clearly, d is differentiable and for every x ∈ I we have

d ′(x) = f ′(x) exp(−Mx) − Mf(x) exp(−Mx)

= (f ′(x) − Mf (x)) exp(−Mx) ≤ 0 .

Thus, d is non-increasing and obviously f (x) = d(x) exp(Mx) for every x ∈ I . The neces-
sity is straightforward. �

Assume that f : I → R is a twice differentiable mapping. If we define d : I → R by (2)
we get

d ′′(x) = (f ′(x) − Mf (x))′ exp(−Mx) − M(f ′(x) − Mf (x)) exp(−Mx)

= (f ′′(x) − 2Mf ′(x) + M2f (x)) exp(−Mx) .

This means that d is convex if and only if the following inequality holds true:

f ′′(x) ≥ 2Mf ′(x) − M2f (x) for all x ∈ I. (3)

On the other hand, assume that M ∈ R, f : I → R is twice differentiable, f ≥ 0, f satisfies
(3) and

f ′(x) ≥ Mf(x) for all x ∈ I .

By Proposition 1 applied for −f we get that x �→ f (x) exp(−Mx) is non-decreasing and
then we may calculate that for each c ≤ M the map x �→ f (x) exp(−cx) is convex (or
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equivalently: for c ≤ M there exists a convex map fc such that f (x) = fc(x) exp(cx)).
Indeed, denote fM(x) := f (x) exp(−Mx). We have to show that for every t ≥ 0 the map
x �→ fM(x) exp(tx) is convex. Using (3) we can observe that f ′′

M(x) ≥ 0 for all x ∈ I .
Then, using this jointly with the fact that fM is nondecreasing and with f ≥ 0 we deduce the
estimation

[fM(x) exp(tx)]′′ = f ′′
M(x) exp(tx) + 2tf ′

M(x) exp(tx) + t2fM(x) exp(tx) ≥ 0 ,

for each x ∈ I as claimed.
The purpose of the present paper is to obtain an analogous effect under some more flex-

ible assumptions.

THEOREM 2. Let f ∈ C2+ and denote I+ = {x ∈ I : f (x) > 0}. Suppose that there
exist constants M1,M2 ∈ R such that∣∣∣∣f

′(x)

f (x)

∣∣∣∣ ≤ M1 and M2 ≤ f ′′(x)

f (x)
for all x ∈ I+ . (4)

(a) If M2
1 − M2 ≤ 0, then for each c ∈ R there exists a convex map fc ∈ C2+ such that

f (x) = fc(x) exp(cx) for all x ∈ I .

(b) If M2
1 − M2 > 0, then there exist constants c1, c2 ∈ R with −T ≤ c1 ≤ c2 ≤ T

such that for each c ∈ R \ (c1, c2) there exists a convex map fc ∈ C2+ satisfying

f (x) = fc(x) exp(cx) for all x ∈ I , where T = M1 +
√
M2

1 − M2.

PROOF. Let F : I ×R → R be a function defined by F(x, t) := f (x) exp(−tx). Then
f (x) = F(x, t) exp(tx) for all x ∈ I and t ∈ R. By a straightforward calculation we see that

∂2F

∂x2 (x, t) exp(tx) = f (x)t2 − 2f ′(x)t + f ′′(x) .

We will prove that:

(a) if M2
1 − M2 ≤ 0, then F(x, c) is convex for every c ∈ R, and

(b) if M2
1 − M2 > 0, then there exist constants c1, c2 ∈ R such that F(x, c) is convex

for every c ∈ R \ (c1, c2).

To prove the convexity of F(x, c) it is enough to show that ∂2F
∂x2 ≥ 0, or equivalently

f (x)c2 − 2f ′(x)c + f ′′(x) ≥ 0 . (5)

We first show that if x ∈ I \ I+, then (5) holds for all c ∈ R. Let x ∈ I \ I+. Since f (x) ≥ 0,
we have f (x) = 0. First, we will show that f ′(x) = 0. Let n ∈ N. Since f ≥ 0 and
f (x) = 0, we deduce that

0 ≤ f
(
x + 1

n

)
1
n

= f
(
x + 1

n

) − f (x)

1
n

n→∞−→ f ′(x)
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and thus f ′(x) ≥ 0. Analogously

0 ≥ f
(
x − 1

n

)
− 1

n

= f
(
x − 1

n

) − f (x)

− 1
n

n→∞−→ f ′(x)

and consequently, f ′(x) = 0 as claimed. Finally, we will prove that f ′′(x) ≥ 0. By the mean

value theorem, there exists an such that x < an < x + 1
n

and that

f ′(an) = f
(
x + 1

n

) − f (x)

1
n

= f
(
x + 1

n

)
1
n

≥ 0 .

Set bn = an−x, then bn > 0, an = x+bn and bn → 0 as n → ∞. Note that from f ′(an) ≥ 0
it follows that

0 ≤ f ′(an)

bn

= f ′(x + bn) − f ′(x)

bn

n→∞−→ f ′′(x) ,

and therefore f ′′(x) ≥ 0 as claimed. Thus, (5) holds for all x ∈ I \ I+ and all c ∈ R.
Fix x ∈ I+ arbitrarily and define

∆(x) = [f ′(x)]2 − f (x)f ′′(x) .

Then ∆(x) is the discriminant of the quadratic equation

f (x)c2 − 2f ′(x)c + f ′′(x) = 0

of a variable c. According to (4),

∆(x)

[f (x)]2
=

[
f ′(x)

f (x)

]2

− f ′′(x)

f (x)
≤ M2

1 − M2 . (6)

To prove (a) observe that if M2
1 −M2 ≤ 0, then ∆(x) ≤ 0. Since ∆(x) is the discriminant,

∆(x) ≤ 0 yields that (5) holds for all c ∈ R.

To prove (b) suppose that M2
1 − M2 > 0. In this case it is enough to consider the case

when ∆(x) > 0. Set

c±(x) := f ′(x) ± √
∆(x)

f (x)
.

Then by (4) and (6),

−M1 −
√
M2

1 − M2 ≤ c−(x) < c+(x) ≤ M1 +
√
M2

1 − M2 ,

and for each t ∈ R \ (c−(x), c+(x)) we have (5). We now set

c1 = inf{c−(x) ∈ R : x ∈ I+ with ∆(x) > 0} ,

c2 = sup{c+(x) ∈ R : x ∈ I+ with ∆(x) > 0} .
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If we write T = M1 +
√
M2

1 − M2, then −T ≤ c1 < c2 ≤ T so that (5) holds true for each
c ∈ R \ (c1, c2) and each x ∈ I+ with ∆(x) > 0. We thus conclude that (5) holds for all
c ∈ R \ (c1, c2).

Consequently, (5) holds for all x ∈ I and all c ∈ R if M2
1 − M2 ≤ 0; (5) holds for all

x ∈ I and all c ∈ R \ (c1, c2) if M2
1 − M2 > 0. This completes the proof. �

EXAMPLE. Take I = (0,+∞) and f (x) = x. If we put fc(x) = f (x) exp(−cx) for

each x ∈ I and each c ∈ R, then we have f ′′
c (x) = (c2x − 2c) exp(−cx). Clearly, for c ≤ 0

the map fc is convex whereas for c > 0 it is neither convex nor concave. Note that since

lim
x→0+

f ′(x)

f (x)
= +∞ ,

then assumptions of the theorem are not satisfied.

In the next theorem we assume that f satisfies a single inequality of the second degree
and we obtain an analogous effect.

THEOREM 3. If f ∈ C2+ and M ≥ 0 satisfy

[f ′(x)]2

f (x)
≤ f ′′(x) + M ,

for all x ∈ I such that f (x) 
= 0, then for each c ∈ R \ {0} there exists a convex function

gc ∈ C2+ such that

f (x) = −M

c2 + gc(x) exp(cx) for all x ∈ I.

PROOF. Let G : I × (R \ {0}) → R be a function defined by

G(x, t) =
(

f (x) + M

t2

)
exp(−tx).

Then we see that f (x) = −M
c2 + G(x, c) exp(cx) for all x ∈ R and c ∈ R \ {0} and

∂2G

∂x2 (x, c) exp(cx) = f (x)c2 − 2f ′(x)c + f ′′(x) + M

for all x ∈ I and c ∈ R. The discriminant of the quadratic equation

f (x)c2 − 2f ′(x)c + f ′′(x) + M = 0

of a variable c is

[f ′(x)]2 − f (x)[f ′′(x) + M] = f (x)

( [f ′(x)]2

f (x)
− f ′′(x) − M

)
≤ 0
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for every x ∈ I with f (x) 
= 0. This implies that if x ∈ I and f (x) 
= 0, then ∂2G

∂x2 (x, c) ≥ 0

for all c ∈ R. For x ∈ I with f (x) = 0, we see by the same arguments as in the proof of
Theorem 2 that f ′(x) = 0 and f ′′(x) ≥ 0, and therefore

∂2G

∂x2 (x, c) = f ′′(x) + M ≥ 0

for all c ∈ R. Consequently, G(x, c) is convex for all c ∈ R. �

We terminate the paper with two corollaries in which we drop the assumption that f is
nonnegative.

COROLLARY 4. Let f ∈ C2 and M1,M2 ∈ R satisfy

|f ′(x)| ≤ M1 and M2 ≤ f ′′(x) + [f ′(x)]2

for all x ∈ I .

(a) If M2
1 − M2 ≤ 0, then for each c ∈ R there exists a convex map fc ∈ C2+ such that

f (x) = log(fc(x)) + cx for all x ∈ I .

(b) If M2
1 − M2 > 0, then there exist constants c1, c2 ∈ R with −T ≤ c1 ≤ c2 ≤ T

such that for each c ∈ R \ (c1, c2) there exists a convex map fc ∈ C2+ satisfying

f (x) = log(fc(x)) + cx for all x ∈ I , where T = M1 +
√
M2

1 − M2.

PROOF. Since exp ◦f ∈ C2+ satisfy

[exp(f (x))]′
exp(f (x))

= f ′(x) and
[exp(f (x))]′′

exp(f (x))
= f ′′(x) + [f ′(x)]2 ,

for each x ∈ I , we see that (4) from Theorem 2 holds for exp ◦f . According to Theorem 2,

there exists a convex map fc ∈ C2+ such that exp(f (x)) = fc(x) exp(cx), and thus f (x) =
log(fc(x)) + cx for all x ∈ I . �

COROLLARY 5. Let f ∈ C2 and M1,M2 ∈ R satisfy (4) from Theorem 2 for all x ∈ I

with f (x) 
= 0.

(a) If 2M2
1 − M2 ≤ 0, then for each c ∈ R there exists a convex map gc ∈ C2+ such

that |f (x)| = √
gc(x) exp( cx

2 ) for all x ∈ I .

(b) If M2
1 − M2 > 0, then there exist constants c1, c2 ∈ R with −T ′ ≤ c1 ≤ c2 ≤ T ′

such that for each c ∈ R \ (c1, c2) there exists a convex map gc ∈ C2+ satisfying

|f (x)| = √
gc(x) exp( cx

2 ) for all x ∈ I , where T ′ = 2M1 +
√

4M2
1 − 2M2.

PROOF. Set g := f 2. Then g ∈ C2+ and it satisfies

g ′(x) = 2f (x)f ′(x) and g ′′(x) = 2[f ′(x)]2 + 2f (x)f ′′(x)
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for all x ∈ I . Therefore, if x ∈ I with f (x) 
= 0, then∣∣∣∣g
′(x)

g(x)

∣∣∣∣ =
∣∣∣∣2f (x)f ′(x)

f 2(x)

∣∣∣∣ =
∣∣∣∣2f ′(x)

f (x)

∣∣∣∣ ≤ 2M1 ,

g ′′(x)

g(x)
= 2[f ′(x)]2 + 2f (x)f ′′(x)

f 2(x)
= 2

[
f ′(x)

f (x)

]2

+ 2
f ′′(x)

f (x)
≥ 2

f ′′(x)

f (x)
≥ 2M2 .

Thus
∣∣ g ′(x)
g(x)

∣∣ < 2M1 and 2M2 ≤ g ′′(x)
g(x)

for all x ∈ I with g(x) 
= 0. By Theorem 2, if

2M2
1 − M2 ≤ 0, then for each c ∈ R there exists a convex map gc ∈ C2+ such that g(x) =

gc(x) exp(cx) for all x ∈ I . Consequently, |f (x)| = √
gc(x) exp( cx

2 ) for all x ∈ I . If

2M2
1 − M2 > 0, then there exist constants c1, c2 ∈ R with −T ′ ≤ c1 ≤ c2 ≤ T ′ such that

for each c ∈ R \ (c1, c2) there exists a convex map gc ∈ C2+ satisfying g(x) = gc(x) exp(cx)

for all x ∈ I , where T ′ = 2M1 +
√

4M2
1 − 2M2. Therefore, |f (x)| = √

gc(x) exp( cx
2 ) for all

x ∈ I . �
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