
TOKYO J. MATH.
VOL. 34, NO. 1, 2011

Diffeomorphism Classes of Real Bott Manifolds
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(Communicated by Y. Matsumoto)

Abstract. A real Bott manifold is obtained as the orbit space of the n-torus T n by a free action of an elementary
abelian 2-group (Z2)n. This paper deals with the classification of 5-dimensional real Bott manifolds and studies
certain types of n-dimensional real Bott manifolds (n ≥ 6).

Introduction

A real Bott tower is described as a sequence of RP1-bundles of height n which is the real
restriction to a Bott tower introduced in [1]. The total space of such a sequence is called a real
Bott manifold. From the viewpoint of group actions, an n-dimensional real Bott manifold is

the quotient of the n-dimensional torus T n = S1 × · · · × S1 by the product (Z2)
n of cyclic

group of order 2. A Bott matrix A of size n is an upper triangular matrix whose diagonal
entries are 1 and the other entries are either 1 or 0. By the definition, the number of distinct

Bott matrices of size n is 2
1
2 (n2−n). The free action of (Z2)

n on T n can be expressed by each
row of the Bott matrix A whose orbit space M(A) = T n/(Z2)

n is the real Bott manifold. It is
easy to see that M(A) is a compact euclidean space form (Riemannian flat manifold). Then
we can apply the Bieberbach theorem [7] to classify real Bott manifolds. Using this theorem,
the classification of real Bott manifolds up to dimension 4 has been obtained in [5], [2].

In [3] we have proved that every n-dimensional real Bott manifold M(A) admits an in-
jective Seifert fibred structure which has the form M(A) = T k ×(Z2)

s M(B), that is there
is a k-torus action on M(A) whose quotient space is an (n − k)-dimensional real Bott orbi-
fold M(B)/(Z2)

s by some (Z2)
s-action (1 ≤ s ≤ k). Moreover we have proved the smooth

rigidity that two real Bott manifolds M(Ai) i = 1, 2 are diffeomorphic if and only if the corre-
sponding actions ((Z2)

si ,M(Bi)) are equivariantly diffeomorphic. When the low dimensional
real Bott manifolds with (Z2)

s-actions are classified, we can determine the diffeomorphism
classes of higher dimensional ones by the above rigidity. We have classified real Bott mani-
folds up to dimension 4 (see [6]).
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The main purpose of this paper is to determine: (a) Diffeomorphism classes of 5-
dimensional real Bott manifolds from the classifications of 2, 3, 4-dimensional ones with
(Z2)

s -actions (s = 1, 2), (b) Classification of certain type of n-dimensional real Bott mani-
folds M(A).

We have obtained the following to (a) (compare Theorem 6).
Theorem A. There are 54 diffeomorphism classes of 5-dimensional real Bott manifolds.

Since each n-dimensional real Bott manifold has the form M(A) = T k ×(Z2)
s M(B),

it is shown that the diffeomorphism class of M(A) is determined by the equivariant diffeo-
morphism class of the action ((Z2)

s ,M(B)) (1 ≤ s ≤ k) as above. We prove that if k = 1,
there are 12 nonequivariant diffeomorphism classes of 4-dimensional real Bott manifolds with
Z2-actions. Then they create 29 diffeomorphism classes of such 5-dimensional real Bott man-
ifolds. When k = 2, there are 4 nonequivariant diffeomorphism classes of 3-dimensional real
Bott manifolds with (Z2)

s -actions (s = 1, 2). Then from these, there are 19 diffeomorphism
classes of the 5-dimensional real Bott manifolds. When k = 3, there are 2 nonequivariant
diffeomorphism classes of 2-dimensional real Bott manifolds with (Z2)

s -actions (s = 1, 2).
Then there are 4 diffeomorphism classes of the 5-dimensional real Bott manifolds. When

k = 4, the 1-dimensional real Bott manifold is S1 with conjugate action of Z2, there exists
only one such a 5-dimensional real Bott manifold. Finally if k = 5, the 5-dimensional real

Bott manifold is T 5. As a consequence, the total number of 5-dimensional diffeomorphism
classes is 54. The details of the proof is in section 3.

It is far to determine the number of diffeomorphism classes of n-dimensional real Bott
manifolds for n ≥ 6. However, we shall solve the special types of higher dimensional real
Bott manifolds.
Theorem B. Let T n−2 be the maximal torus action on an n-dimensional real Bott manifold
(n ≥ 4). Then the diffeomorphism classes of such real Bott manifolds consists of 4.
See Theorem 7 for the proof.
Theorem A and Theorem B can also be obtained by a different method, see [4].
Proposition C. The following hold.

(i) The diffeomorphism class is unique for the real Bott manifold of the form M(A) =
T k ×

Z2

T n−k for any k (1 ≤ k ≤ n − 1). In particular, if k = n then M(A) = T n.

(ii) Let M(A) be a real Bott manifold which fibers S1 over the real Bott manifold
M(B) for which M(B) is either T k ×(Z2)

s K or T k ×(Z2)
s T 2 (k ≥ 2). Here K is a

Klein bottle. Then the number of diffeomorphism classes of such M(A) is 3.
(iii) Let M(A) be a real Bott manifold which fibers S1 over the real Bott manifold

M(B) where M(B) = S1 ×Z2 T k (k ≥ 2), then the number of diffeomorphism

classes of such M(A) is [ k
2 ] + 1. Here [x] is the integer part of x.

We prove these results in Section 4 (see Proposition 5, Corollary 2, Corollary 3, Theorem 8
respectively).

A special kind of Bott matrices is introduced in Section 1. We consider such a class of
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Bott matrices in (4.27).
Theorem D. Let M(A) = S1 ×Z2 M(B) be an n-dimensional real Bott manifold. Suppose
that B is either one of the list in (4.27). Then M(B) are diffeomorphic to each other and the

number of diffeomorphism classes of such real Bott manifolds M(A) above is (k + 1)2n−k−3

(k ≥ 2, n − k ≥ 3).
See Theorem 9 for the proof.

1. Preliminaries

1.1. Seifert fiber space. Each i-th row of a Bott matrix A defines a Z2-action on
T n by gi (z1, . . . , zn) = (z1, . . . , zi−1,−zi, z̃i+1, . . . , z̃n), (i = 1, . . . , n) where (i, i)-
(diagonal) entry 1 acts as zi → −zi while z̃j is either zj or z̄j depending on whether (i, j)-

entry (i < j) is 0 or 1 respectively. Note that z̄ is the conjugate of the complex number z ∈ S1.
It is always trivial; zj → zj whenever j < i. Here (z1, . . . , zn) are the standard coordinates
of the n-dimensional torus T n whose universal covering is the n-dimensional euclidean space
Rn. The projection p : Rn → T n is denoted by

p(x1, . . . , xn) = (exp(2π ix1), . . . , exp(2π ixn)) = (z1, . . . , zn) .

Those 〈g1, . . . , gn〉 constitute the generators of (Z2)
n. It is easy to see that (Z2)

n acts freely
on T n such that the orbit space M(A) = T n/(Z2)

n is a smooth compact manifold. In this
way, given a Bott matrix A of size n, we obtain a free action of (Z2)

n on T n.
Let π(A) = 〈g̃1, . . . , g̃n〉 be the lift of (Z2)

n = 〈g1, . . . , gn〉 to Rn. Then we get

g̃i (x1, . . . , xn) = (x1, . . . , xi−1,
1

2
+ xi, x̃i+1, . . . , x̃n)

where x̃j is either xj or −xj . It is easy to see that π(A) acts properly discontinuously and
freely on Rn as euclidean motions. Note that π(A) is a Bieberbach group which is a discrete
uniform subgroup of the euclidean group E(n) = Rn�O(n) (cf. [7]). It follows that M(A) =
T n/(Z2)

n = Rn/π(A).

Now let us recall moves I, II and III [3] which are applied to a Bott matrix A of size n

under which the diffeomorphism class of M(A) does not change.
I. If the j -th column has all 0-entries except for the (j, j)-entry 1 for some j > 1, then
interchange the j -th column and the (j − 1)-th column. Next, interchange the j -th row and
the (j − 1)-th row.
This move I is interpreted in terms of the coordinates zj ’s of T n and the generators gj ’s of
(Z2)

n as follows: zj → z′
j−1, zj−1 → z′

j , gj → g ′
j−1, gj−1 → g ′

j . It is easy to see that the

resulting matrix A′ under move I is again a Bott matrix such that M(A) is diffeomorphic to
M(A′).
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We perform move I iteratively to get a Bott matrix A′

A′ =
(

Ik C

0 B

)
B =

⎛⎜⎝ 1 ∗
. . .

1

⎞⎟⎠ (1.1)

where Ik is a maximal block of identity matrix of size k, the entries of the ∗ are either 1 or 0, B

is a Bott matrix of size (n−k) which represents a real Bott manifold M(B) = T n−k/(Z2)
n−k .

Since Ik is a maximal block of identity matrix, each k + j (j = 1, . . . , n − k)-th column of
A′ has at least two non zero elements.

Associated with A′, the (Z2)
n-action splits into (Z2)

k × (Z2)
n−k and T n splits into T k ×

T n−k . Hence

M(A) = T n/(Z2)
n ∼= T k × T n−k

(Z2)k × (Z2)n−k
= T k ×

(Z2)
k
M(B) = M(A′) . (1.2)

Note that the above (Z2)
k-action of (1.2) is not necessarily effective on M(B) but we can

reduce it to the effective (Z2)
s -action on M(B) for some s (1 ≤ s ≤ k). In order to do so, we

have two more moves.
II. If there is an m-th row (1 ≤ m ≤ k) whose entries in C are all zero, then divide T k ×M(B)

by the corresponding Z2-action. For example, suppose M(A1) = T 2 ×(Z2)
2 M(B) with

A1 =
( 1 0 0 0 0

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
.

By move II, M(A1) ∼= T 2 ×Z2 M(B).
III. If the p-th row and �-th row (1 ≤ p < � ≤ k) have the common entries in C, then
compose the Z2-action of p-th row with l-th row and divide T k × M(B) by this Z2-action.

For example, suppose M(A2) = T 2 ×(Z2)
2 M(B) with

A2 =
( 1 0 1 0 0

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
.

By move III, M(A2) ∼= T 2 ×Z2 M(B) ∼= M(A1).

By an iteration of II, III, the quotient is again diffeomorphic to T k ×(Z2)
k M(B) but

eventually the (Z2)
k-action is reduced to the effective (Z2)

s-action on T k ×M(B). Therefore
A′ reduces to

A′′ =
⎛⎝ Ik−s 0 0

0 Is ∗
0 0 B

⎞⎠ (1.3)
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in which M(A′) = T k ×
(Z2)

k M(B) = T k−s×T s×M(B)

(Z2)
k−s×(Z2)

s = M(A′′). Since (Z2)
k−s acts trivially

on T s × M(B), we have M(A′′) ∼= T k ×(Z2)
s M(B).

From now on, we write M(A) instead of M(A′′).

REMARK 1. Since (Z2)
s acts trivially on T k−s ,

M(A) ∼= T k ×
(Z2)

s
M(B) = T k−s × T s ×

(Z2)
s
M(B)

∼= (S1)k−s × T s ×
(Z2)

s
M(B) = (S1)k−s × M(B ′)

where M(B ′) = T s ×(Z2)
s M(B). That is, for s < k, a real Bott manifold M(A) is the

product of (S1)k−s and an (n − k + s)-dimensional real Bott manifold M(B ′). In particular,

if M(A) = T n−1 ×Z2 S1 then it is diffeomorphic to (S1)n−2× Klein bottle.

REMARK 2. From the submatrix ∗ of (1.3), the group (Z2)
s = 〈gk−s+1, . . . , gk〉 acts

on T k × M(B) by

gi (z1, . . . , zk−s+1, . . . , zk, [zk+1, . . . , zn])
= (z1, . . . , zk−s+1, . . . ,−zi , . . . , zk, [z̃k+1, . . . , z̃n])

(1.4)

where z̃ = z̄ or z. So there induces an action of (Z2)
s on M(B) by

gi ([zk+1, . . . , zn]) = [z̃k+1, . . . , z̃n] . (1.5)

Moreover in [3],

THEOREM 1 (Structure). Given a real Bott manifold M(A), there exists a maximal

T k-action (k ≥ 1) such that M(A) = T k ×(Z2)
s M(B) is an injective Seifert fiber space over

the (n − k)-dimensional real Bott orbifold M(B)/(Z2)
s ;

T k → M(A) → M(B)/(Z2)
s . (1.6)

There is a central extension of the fundamental group π(A) of M(A) :
1 → Zk → π(A) → QB → 1 (1.7)

such that
(i) Zk is the maximal central free abelian subgroup

(ii) The induced group QB is the semidirect product π(B) � (Z2)
s for which

Rn−k/π(B) = M(B).

See [3] for the proof.

By this theorem, a real Bott manifold M(A) which admits a maximal T k-action (k ≥ 1)

can be created from an (n − k)-dimensional real Bott manifold M(B) by a (Z2)
s -action, and

the corresponding Bott matrix A has the form as in (1.3) above.
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1.2. Affine maps between real Bott manifolds. Next, we can apply the following
theorem to check whether two real Bott manifolds are diffeomorphic.

THEOREM 2 (Rigidity). Let M(A1), M(A2) be n-dimensional real Bott manifolds

and 1 → Zki → π(Ai) → QBi → 1 be the associated group extensions (i = 1, 2). Then the
following are equivalent:

(i) π(A1) is isomorphic to π(A2).
(ii) There exists an isomorphism of QB1 = π(B1)�(Z2)

s1 onto QB2 = π(B2)�(Z2)
s2

preserving π(B1) and π(B2).
(iii) The action ((Z2)

s1,M(B1)) is equivariantly diffeomorphic to the action ((Z2)
s2 ,

M(B2)).

See [3] for the proof. Here Bott matrices A1 and A2 are created from B1 and B2 respectively.
Note that two real Bott manifolds M(A1) and M(A2) are diffeomorphic if and only if

π(A1) is isomorphic to π(A2) by the Bieberbach theorem [7]. Moreover by Theorems 1 and
2 we have,

REMARK 3. Let real Bott manifolds M(Ai) = T ki ×(Z2)
si M(Bi) (i = 1, 2). If M(A1)

and M(A2) are diffeomorphic then the following hold.
(i) k1 = k2.

(ii) M(B1) and M(B2) are diffeomorphic.
(iii) s1 = s2.

Therefore two real Bott manifolds which admit different maximal T k-action are not diffeo-
morphic. If they have the same maximal T k-action, then the quotients ((Z2)

si ,M(Bi)) are
compared. If M(B1) is not diffeomorphic to M(B2) or s1 
= s2, then M(A1) and M(A2) are
not diffeomorphic. So our task is to distinguish the (Z2)

si -action on M(Bi) when it is the case
that s1 = s2 = s and M(B1) is diffeomorphic to M(B2).

1.3. Type of fixed point set. Note that from (1.5), the action of (Z2)
s on M(B) is

defined by α[(z1, . . . , zn−k)] = [α(z1, . . . , zn−k)] = [(z̃1, . . . , z̃n−k)] for α ∈ (Z2)
s and

z̃ = z or z̄. Since M(B) = T n−k/(Z2)
n−k , the action 〈α〉 lifts to a linear (affine) action on

T n−k naturally: α(z1, . . . , zn−k) = (z̃1, . . . , z̃n−k). Then the fixed point set is characterized
by the equation: (z̃1, . . . , z̃n−k) = g(z1, . . . , zn−k) for some g ∈ (Z2)

n−k . It is also an affine
subspace of T n−k . So the fixed point sets of (Z2)

s are affine subspaces in M(B).
Let B be the Bott matrix as in (1.1). By a repetition of move I, B has the form

B =

⎛⎜⎜⎜⎜⎜⎝
I2 C23 . . . . . . C2�

I3 C34 . . . C3�

. . . . . .

0 I�−1 C(�−1)�

I�

⎞⎟⎟⎟⎟⎟⎠ (1.8)
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where rankB=n − k=rankI2+. . . +rankI� and Ii (i = 2, . . . , �) is the identity matrix, Cjt

(j = 2, . . . , � − 1, t = 3, . . . , �) is a pj × qt matrix (pj =rankIj , qt=rankIt).
Note that by the Bieberbach theorem (cf. [7]), if f is an isomorphism of π(A1) onto

π(A2), then there exists an affine element g = (h,H) ∈A(n) = Rn � GL(n, R) such that

f (r) = grg−1 (∀r ∈ π(A1)) . (1.9)

Recall that if M(A1) is diffeomorphic to M(A2) then M(B1) is diffeomorphic to M(B2). This
implies that B1 and B2 have the form as in (1.8).

Using (1.9) and according to the form of B in (1.8) we obtain that

g =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

h1

h2
...

h�

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
H1

H2 0

0
. . .

H�

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (1.10)

where hi is an si ×1 (si=rank Ii) column matrix (h1 is a k×1 column matrix), Hi ∈GL(si , R)
(i = 2, . . . , �), H1 ∈GL(k, R) (see Remark 3.2 [3]).

Let f̄ : QB1 → QB2 be the induced isomorphism from f (cf. Theorem 2). Now the

affine equivalence ḡ : Rn−k → Rn−k has the form

ḡ =
⎛⎜⎝
⎛⎜⎝ h2

...

h�

⎞⎟⎠ ,

⎛⎜⎝ H2 0
. . .

0 H�

⎞⎟⎠
⎞⎟⎠ (1.11)

which is equivariant with respect to f̄ . The pair (f̄ , ḡ) induces an equivariant affine diffeo-

morphism (f̂ , ĝ) : ((Z2)
s,M(B1)) → ((Z2)

s, M(B2)).

Let rankHi = bi (i = 2, . . . , �). (Note that b2 + · · · + b� = n − k.) Since M(B1) =
T n−k/(Z2)

n−k , ḡ induces an affine map g̃ of T n−k . Put

Xb2 =
⎛⎜⎝ x1

...

xb2

⎞⎟⎠ , . . . , Xb� =
⎛⎜⎝ xb�′+1

...

xb�′+b�

⎞⎟⎠ , wbi = p(Xbi ) ∈ T bi (i = 2, . . . , �) ,

b�′ = b2 + · · · + b�−1 .

Since g̃p = pḡ , g̃(twb2, . . . ,
twb�) = (tw′

b2
, . . . , tw′

b�
) where w′

bi
= p(hi + HiXbi ) ∈ T bi .

That is, g̃ preserves each T bi of T n−k = T b2 × · · · × T b� , so does ĝ on

M(B1) = {[z1, . . . , zb2 ; zb2+1, . . . , zb2+b3; . . . . . . ; zb�′+1, . . . , zb�′+b�]} .

We say that ĝ preserves the type (b2, . . . , b�) of M(B1). As ĝ is f̂ -equivariant, it
also preserves the type corresponding to the fixed point sets between ((Z2)

s,M(B1)) and
((Z2)

s ,M(B2)).
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PROPOSITION 1. The (Z2)
s -action on M(B) is distinguished by the number of com-

ponents and types of each positive dimensional fixed point subsets.

See [3] for the proof.

DEFINITION 1. We say that two Bott matrices A and A′ are equivalent (denoted by
A ∼ A′) if M(A) and M(A′) are diffeomorphic.

2. Examples

We shall give some real Bott manifolds in order to determine diffeomorphism classes
of 5-dimensional ones. We introduce the following Bott matrices created from B =⎛⎝ 1 1 0

0 1 1
0 0 1

⎞⎠ .

A1 =
⎛⎝ 1 0 1 1 0

0 1 0 1 0
0 0 B

⎞⎠ , A2 =
⎛⎝ 1 0 0 1 0

0 1 1 0 0
0 0 B

⎞⎠ ,

A3 =
⎛⎝ 1 0 1 0 0

0 1 0 0 1
0 0 B

⎞⎠ , A4 =
⎛⎝ 1 0 1 0 1

0 1 1 0 0
0 0 B

⎞⎠ .

Then we obtain the 5-dimensional real Bott manifolds M(Ai) for which the (Z2)
2-action on

M(B) is given by the first two rows of Ai (i = 1, 2, 3, 4). We prove that there are two distinct
diffeomorphism classes among M(Ai) (i = 1, 2, 3, 4).

a) M(A1) is diffeomorphic to M(A2). For this, the (Z2)
2-actions on M(B) corre-

sponding to A1 and A2 are given as follows:

(i) g1([z3, z4, z5]) = [z̄3, z̄4, z5] = [g3(z̄3, z̄4, z5)] = [−z̄3, z4, z5],
g2([z3, z4, z5]) = [z3, z̄4, z5],

(ii) h1([z3, z4, z5]) = [z3, z̄4, z5], h2([z3, z4, z5]) = [z̄3, z4, z5].
There is an equivariant diffeomorphism ϕ : ((Z2)

2,M(B)) → ((Z2)
2, M(B)) de-

fined by ϕ([z3, z4, z5]) = ([iz3, z4, z5]) such that ϕg1 = h2ϕ and ϕg2 = h1ϕ.
Hence the result follows from Theorem 2.

b) M(A2) is not diffeomorphic to M(A3). If M(A2) and M(A3) are diffeomor-
phic, by Theorem 2 there is an equivariant diffeomorphism ϕ : ((Z2)

2, M(B)) →
((Z2)

2,M(B)). Let ϕ̄ : R3 → R3 be the lift of ϕ. According to the form of B, the
affine element ϕ̄ has the form

ϕ̄ =
⎛⎝⎛⎝ a2

a3

a4

⎞⎠ ,

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠⎞⎠ (2.1)
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for some ai ∈ R (i = 2, 3, 4) (see (1.11)). Since M(B) = T 3/(Z2)
3, ϕ̄ induces

an affine map of T 3. By the formula of (2.1), it preserves each S1 of T 3 = S1 ×
S1 × S1, so does ϕ on M(B). Since ϕ is equivariant, it also preserves the type

(1, 1, 1) of the fixed point sets of ((Z2)
2,M(B)). That is, if [z3, z4, z5] is a fixed

point set of ((Z2)
2,M(B)), then ϕ preserves each coordinate zi (i = 3, 4, 5) (i.e.,

ϕ[z3, z4, z5] = [exp(2π ia2)z3, exp(2π ia3)z4, exp(2π ia4)z5]).
The fixed point sets of ((Z2)

2,M(B)) corresponding to A2 and A3 are as fol-
lows:

(i) 3 components T 2 = {[z3, 1, z5], [1, z4, z5], [i, z4, z5]},
4 components S1 = {[z3, i, 1], [i, 1, z5], [z3, i, i], [1, 1, z5]},
4 points {[i, i, 1], [i, i, i], [1, i, 1], [1, i, i]},

(ii) 3 components T 2 = {[z3, z4, i], [1, z4, z5], [z3, z4, 1]},
4 components S1 = {[1, z4, 1], [i, 1, z5], [1, z4, i], [i, i, z5]},
and 4 points {[i, i, 1], [i, i, i], [i, 1, 1], [i, 1, i]}.

We see that the number of components of fixed point sets of ((Z2)
2, M(B)) cor-

responding to A2 and A3 is the same. Since the type of fixed point set is pre-
served, ϕ maps T 2 = {[z3, 1, z5]}, z3, z5 ∈ S1 ((i) in A2) onto the fixed point set

T 2 = {[w3, exp(2π ia3),w5]} (w3, w5 ∈ S1) of A3. However there is no type of
such fixed point set in (ii) of A3. Therefore by Proposition 1, M(A2) and M(A3)

are not diffeomorphic.

c) M(A3) is diffeomorphic to M(A4). In this case, the (Z2)
2-actions on M(B) corre-

sponding to A3 and A4 are given as follows:

(i) g1([z3, z4, z5]) = [z̄3, z4, z5], g2([z3, z4, z5]) = [z3, z4, z̄5],
(ii) h1([z3, z4, z5]) = [z̄3, z4, z̄5], h2([z3, z4, z5]) = [z̄3, z4, z5].
We change the generator h1 by h′

1: h′
1([z3, z4, z5]) = h1h2[z3, z4, z5] = [z3, z4, z̄5].

Define an equivariant diffeomorphism ϕ : ((Z2)
2, M(B)) → ((Z2)

2, M(B)) to be
ϕ([z3, z4, z5]) = ([z3, z4, z5]) such that ϕg1 = h2ϕ and ϕg2 = h′

1ϕ. Hence M(A3)

is diffeomorphic to M(A4) by Theorem 2.

3. Five-Dimensional Real Bott manifolds

Before giving the classification of 5-dimensional real Bott manifolds, we recall the clas-
sification of 2, 3, 4-dimensional ones as stated in [5], [6], [2].

THEOREM 3. The diffeomorphism classes of 2-dimensional real Bott manifolds con-
sist of two. The corresponding Bott matrices are as follows.

A1 =
(

1 0
0 1

)
, A2 =

(
1 1
0 1

)
.
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THEOREM 4. The diffeomorphism classes of 3-dimensional real Bott manifolds con-
sist of four. The corresponding Bott matrices are classified into four equivalence classes as
follows:

a)
(

1 1 0
0 1 1
0 0 1

)
,
(

1 1 1
0 1 1
0 0 1

)
.

b)
(

1 1 1
0 1 0
0 0 1

)
.

c)
(

1 0 0
0 1 1
0 0 1

)
,
(

1 0 1
0 1 1
0 0 1

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 1 0
0 1 0
0 0 1

)
.

d) I3.

THEOREM 5. The diffeomorphism classes of 4-dimensional real Bott manifolds con-
sist of twelve. The corresponding Bott matrices are classified into twelve equivalence classes
as follows:

i)

(
1 1 0 0
0 1 1 1
0 0 1 0
0 0 0 1

)
,

(
1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 1

)
.

ii)

(
1 1 0 1
0 1 1 1
0 0 1 0
0 0 0 1

)
,

(
1 1 1 0
0 1 1 1
0 0 1 0
0 0 0 1

)
.

iii)

(
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 1 1 0
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 1

)
,

(
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

)
.

iv)

(
1 1 0 1
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 1 1 1
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 1 0 1
0 1 1 1
0 0 1 1
0 0 0 1

)
,

(
1 1 1 0
0 1 1 1
0 0 1 1
0 0 0 1

)
.

v)

(
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

)
,

(
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

)
,

(
1 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,(

1 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 1 0 1
0 1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 1 1 1
0 1 1 0
0 0 1 0
0 0 0 1

)
.

vi)

(
1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

)
.

vii)

(
1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 1
0 1 1 1
0 0 1 0
0 0 0 1

)
,

(
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

)
,(

1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

)
,

(
1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 1 0 1
0 1 0 0
0 0 1 1
0 0 0 1

)
.

viii)

(
1 0 0 0
0 1 1 1
0 0 1 0
0 0 0 1

)
,

(
1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1

)
,

(
1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1

)
,(

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

ix)

(
1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 0 0 0
0 1 1 1
0 0 1 1
0 0 0 1

)
,

(
1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 0 1 1
0 1 0 0
0 0 1 1
0 0 0 1

)
,(

1 0 1 0
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 0 1 1
0 1 1 1
0 0 1 1
0 0 0 1

)
,

(
1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
,
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1 1 0 1
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

)
.

x)

(
1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 0 0 1
0 1 1 1
0 0 1 1
0 0 0 1

)
,

(
1 0 1 0
0 1 0 1
0 0 1 1
0 0 0 1

)
,

(
1 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

)
,(

1 0 1 0
0 1 1 1
0 0 1 1
0 0 0 1

)
,

(
1 0 1 1
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
0 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1

)
,

(
1 1 0 1
0 1 0 1
0 0 1 1
0 0 0 1

)
.

xi)

(
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

)
,

(
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

)
,(

1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

)
,

(
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
,(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1

)
.

xii) I4.

Using the classification results of Theorem 3, 4, 5, we shall classify 5-dimensional real
Bott manifolds.

3.1. S1-actions with 4-dimensional quotients. The Bott matrices of M(A) admit-
ting S1-actions have the following form(

1 1 a13 a14 a15

0 B

)
where a13, a14, a15 ∈ {0, 1}. In this case M(B) corresponds to the Bott matrices B in Theorem
5. Taking the first Bott matrix from i) as B1, we consider the following Bott matrices.

A1 =
(

1 1 0 0 0
0 B1

)
A2 =

(
1 1 0 1 0
0 B1

)

A3 =
(

1 1 0 1 1
0 B1

)
.

Then the fixed point sets of the Z2-actions on M(B1) corresponding to A1, A2 and A3 respec-

tively are as follows: (1) T 3, T 2, 4 points, (2) 2 components T 2, 4 components S1, (3) T 2, 4

components S1, 4 points. (1), (2) and (3) have the different fixed point sets each other so each
Ai (i = 1, 2, 3) is not equivalent by Proposition 1.

From the first Bott matrix in ii), say B2, we created the following Bott matrices.

A4 =
(

1 1 1 0 0
0 B2

)
A5 =

(
1 1 0 0 0
0 B2

)
A6 =

(
1 1 1 1 0
0 B2

)
.
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The fixed point sets of the Z2-actions on M(B2) corresponding to A4, A5 and A6 are obtained
as: (1) 3 components T 2, 4 points, (2) T 3, 4 components S1, (3) 8 components S1. In view of
the fixed points, similarly Ai (i = 4, 5, 6) are not equivalent to each other.

From the first Bott matrix in iii), say B3, we created the following Bott matrices.

A7 =
(

1 1 0 0 0
0 B3

)
A8 =

(
1 1 0 1 0
0 B3

)

A9 =
(

1 1 0 0 1
0 B3

)
A10 =

(
1 1 0 1 1
0 B3

)
.

The fixed point sets of the Z2-actions on M(B3) corresponding to A7, A8, A9 and A10 are as
follows:

(1) T 3, T 2, S1, 2 points,

(2) 2 components T 2 = {[1, z3, 1, z5], [i, i, z4, z5]}, 3 components

S1 = {[i, 1, 1, z5], [1, z3, i, 1], [1, z3, i, i]}, 2 points={[i, 1, i, 1], [i, 1, i, i]},
(3) 2 components T 2 = {[1, z3, z4, 1], [1, z3, z4, i]}, 3 components

S1 = {[i, i, i, z5], [i, 1, z4, 1], [i, 1, z4, i]}, 2 points={[i, i, 1, 1], [i, i, 1, i]},
(4) T 2, 5 components S1, 2 points.

Note that the fixed point sets of (2) and (3) coincide, but the type of them are different.
(Compare b) in Section 2 for the type (1, 1, 1, 1).) Hence A8 and A9 are not equivalent. As
the fixed point sets (1), (4) and (2) (or (3)) are all different, each Ai (i = 7, 8, 9, 10) is not
equivalent.

From the first Bott matrix in iv), say B4, we create the following Bott matrices.

A11 =
(

1 1 0 0 0
0 B4

)
A12 =

(
1 1 0 1 0
0 B4

)
A13 =

(
1 1 0 0 1
0 B4

)
A14 =

(
1 1 0 1 1
0 B4

)
.

The fixed point sets of the Z2-actions on M(B4) corresponding to A11, A12, A13 and A14 are

as follows: (1) T 3, 3 components S1, 2 points, (2) T 2, 5 components S1, 2 points, (3) 3 com-

ponents T 2, S1, 2 points, (4) 2 components T 2, 3 components S1, 2 points. By Proposition 1,
Ai (i = 11, 12, 13, 14) are not equivalent to each other.

The Bott matrices Ai (i = 15, 16, 17, 18) below are created from the first Bott matrix in
v), say B5, while A19 is created from the second Bott matrix in v), say B6.

A15 =
(

1 1 0 0 0
0 B5

)
A16 =

(
1 1 0 1 0
0 B5

)

A17 =
(

1 1 0 0 1
0 B5

)
A18 =

(
1 1 0 1 1
0 B5

)
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A19 =
(

1 1 1 0 0
0 B6

)
.

The fixed point sets of the Z2-actions on M(Bi) (i = 5, 6) corresponding to A15, A16, A17,

A18 and A19 are as follows: (1) T 3, 2 components S1, 4 points, (2) 3 components T 2, 2
components S1, (3) 2 components T 2, 2 components S1, 4 point, (4) T 2, 6 components S1,

(5) 2 components T 2, 4 components S1. By Proposition 1, Ai (i = 15, 16, 17, 18, 19) are not
equivalent to each other.

The following Bott matrices are created from the Bott matrix vi), say B7.

A20 =
(

1 1 0 0 0
0 B7

)
A21 =

(
1 1 1 0 0
0 B7

)
.

The fixed point sets of the Z2-actions on M(B7) corresponding to A20 and A21 are as follows:

(1) T 3, 8 points, (2) 2 components T 2, 4 components S1. By Proposition 1, A20 and A21 are
not equivalent.

The Bott matrix A22 is created from the first Bott matrix in vii), say B8.

A22 =
(

1 1 1 0 0
0 B8

)
.

The following Bott matrices are created from the first Bott matrix in viii), say B9.

A23 =
(

1 1 1 0 0
0 B9

)
A24 =

(
1 1 1 1 0
0 B9

)
.

The fixed point sets of the Z2-actions on M(B9) corresponding to A23 and A24 are as follows:

(1) 2 components T 2, 8 points, (2) 8 components S1. By Proposition 1, A23 is not equivalent
to A24.

The following Bott matrices are created from the first Bott matrix in ix), say B10.

A25 =
(

1 1 1 0 0
0 B10

)
A26 =

(
1 1 1 0 1
0 B10

)
.

The fixed point sets of the Z2-actions on M(B10) corresponding to A25 and A26 are as fol-

lows: (1) 2 components T 2, 2 components S1, 4 points, (2) 6 components S1, 4 points. By
Proposition 1, A25 and A26 are not equivalent.

The Bott matrix A27 (resp. A28) below is created from the first Bott matrix in x), say
B11, (resp. xi), say B12).

A27 =
(

1 1 1 0 0
0 B11

)
A28 =

(
1 1 1 1 0
0 B12

)
.

Finally from I4, we get A29 =
(

1 1 1 1 1
0 I4

)
.
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Since each Bott matrix B of i) to xii) is not equivalent to each other, the resulting Bott
matrix A is not equivalent. Totally, 29 Bott matrices Ai (i = 1, . . . , 29) are not equivalent to
each other. When we take the second Bott matrix B ′ from i), the resulting Bott matrix A′ gives
an action (Z2,M(B ′)). We can check that (Z2,M(B ′)) is equivariantly diffeomorphic to one
of the actions (Z2,M(B)) corresponding to A1, A2, A3 by the ad hoc argument. (Compare
Section 2 for the argument to find an equivariant diffeomorphism.) Once there exists such an
equivariant diffeomorphism, A′ is equivalent to one of A1, A2, A3 by Theorem 2. Similarly,
if A′ is another Bott matrix created from the first Bott matrix in i), we can check that the
corresponding (Z2,M(B)) is equivariantly diffeomorphic to one of the actions (Z2,M(B))

corresponding to A1, A2, A3. (Note that the total number of Bott matrices created from the
first Bott matrix in i) is 8.) This argument works not only for the case i) but also for the cases
from ii) to xii). As a consequence the Bott matrix A′ created from Bott matrices from ii) to
xii) is equivalent to one of Ai’s (i = 4, . . . , 29). In summary, we obtain the following but the
proof is omitted because of a tedious argument.

LEMMA 1. A Bott matrix created from any one of Bott matrices of Theorem 5 is equiv-
alent to one of the Bott matrices Ai (i = 1, . . . , 29) above.

PROPOSITION 2. There are 29 diffeomorphism classes of the case S1-actions with 4-
dimensional quotients.

3.2. T 2-actions with 3-dimensional quotients. The Bott matrices of M(A) admit-
ting T 2-actions have the following form(

I2 ∗
0 B

)
.

The following Bott matrices are created from the first Bott matrix B of a), say B13, in
Theorem 4.

A30 =
⎛⎝ 1 0 0 0 0

0 1 1 0 0
0 0 B13

⎞⎠A31 =
⎛⎝ 1 0 0 0 0

0 1 1 0 1
0 0 B13

⎞⎠

A32 =
⎛⎝ 1 0 0 1 0

0 1 1 0 0
0 0 B13

⎞⎠A33 =
⎛⎝ 1 0 1 0 1

0 1 0 1 0
0 0 B13

⎞⎠

A34 =
⎛⎝ 1 0 1 0 0

0 1 0 0 1
0 0 B13

⎞⎠A35 =
⎛⎝ 1 0 0 1 1

0 1 1 0 0
0 0 B13

⎞⎠ .

The fixed point sets of the (Z2)
s -actions (s = 1, 2) on M(B13) corresponding to A30, A31,

A32, A33, A34 and A35 are as follows: (1) T 2, S1, 2 points, (2) 3 components S1, 2 points,

(3) 3 components T 2, 4 components S1, 4 points, (4) T 2, 8 components S1, 4 points, (5) 3
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components T 2, 4 components S1, 4 points, (6) 2 components T 2, 6 components S1, 4 points.
Compared (3) with (5), we see from b) in Section 2 that A32 is not equivalent to A34 . By
Proposition 1, Bott matrices Ai (i = 30, 31) (resp. Aj (j = 32, 33, 34, 35)) are not equivalent
to each other. Moreover, by Remark 3, Bott matrices Ai (i = 30, 31) are not equivalent to

Aj (j = 32, 33, 34, 35) because the (Z2)
2-action corresponding to Aj (j = 32, 33, 34, 35)

cannot be reduced to a Z2-action.
The following Bott matrices are created from the Bott matrix b), say B14, in Theorem 4.

A36 =
⎛⎝ 1 0 0 0 0

0 1 1 0 0
0 0 B14

⎞⎠A37 =
⎛⎝ 1 0 0 0 0

0 1 1 1 0
0 0 B14

⎞⎠

A38 =
⎛⎝ 1 0 0 1 1

0 1 1 0 0
0 0 B14

⎞⎠A39 =
⎛⎝ 1 0 0 1 0

0 1 1 0 0
0 0 B14

⎞⎠

A40 =
⎛⎝ 1 0 1 0 1

0 1 1 1 0
0 0 B14

⎞⎠ .

The fixed point sets of the (Z2)
s -actions (s = 1, 2) on M(B14) corresponding to A36, A37,

A38, A39 and A40 are as follows: (1) T 2, 4 points, (2) 4 components S1, (3) 2 components

T 2, 4 components S1, 8 points, (4) 3 components T 2, 4 components S1, 4 points, (5) 12

components S1. By Remark 3, Bott matrices Ai (i = 36, 37) are not equivalent to Aj (j =
38, 39, 40) because the (Z2)

2-action corresponding to Aj (j = 38, 39, 40) cannot be reduced
to a Z2-action. On the other hand, by Proposition 1, Bott matrices Ai (i = 36, 37) (resp. Aj

(j = 38, 39, 40)) are not equivalent to each other.
The Bott matrices Ai (i = 41, 42, 43, 44) below are created from the first Bott matrix in

c), say B15, of Theorem 4 while A45 is created from the second Bott matrix in c), say B16.

A41 =
⎛⎝ 1 0 0 0 0

0 1 1 1 0
0 0 B15

⎞⎠A42 =
⎛⎝ 1 0 0 1 0

0 1 1 0 0
0 0 B15

⎞⎠

A43 =
⎛⎝ 1 0 0 1 0

0 1 1 0 1
0 0 B15

⎞⎠A44 =
⎛⎝ 1 0 0 0 1

0 1 1 1 0
0 0 B15

⎞⎠

A45 =
⎛⎝ 1 0 0 1 0

0 1 1 0 0
0 0 B16

⎞⎠ .

The fixed point sets of the (Z2)
2-actions on M(Bi) (i = 15, 16) corresponding to A42, A43,

A44 and A45 are as follows: (1) 3 components T 2, 4 components S1, 4 points, (2) T 2, 8
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components S1, 4 points, (3) 2 components T 2, 4 components S1, 8 points, (4) 2 components
T 2, 6 components S1, 4 points. By Remark 3, A41 is not equivalent to Ai (i = 42, 43, 44, 45)

because the (Z2)
2-action corresponding to Ai (i = 42, 43, 44, 45) cannot be reduced to a

Z2-action. Then by Proposition 1, Bott matrices Ai (i = 42, 43, 44, 45) are not equivalent to
each other.

The following Bott matrices are created from I3.

A46 =
⎛⎝ 1 0 0 0 0

0 1 1 1 1
0 0 I3

⎞⎠A47 =
⎛⎝ 1 0 0 1 1

0 1 1 0 0
0 0 I3

⎞⎠

A48 =
⎛⎝ 1 0 1 0 1

0 1 1 1 0
0 0 I3

⎞⎠ .

The fixed point sets of the (Z2)
2-actions on M(B) corresponding to A47 and A48 are as fol-

lows: (1) 2 components T 2, 4 components S1, 8 points, (2) 12 components S1. By Remark 3,
A46 is not equivalent to Ai (i = 47, 48), and by Proposition 1, A47 is not equivalent to A48.

Since each Bott matrix B of a) to d) is not equivalent to each other, the resulting Bott
matrix A is not equivalent. Totally, 19 Bott matrices Ai (i = 30, . . . , 48) are not equivalent
to each other.

When we take the second Bott matrix B ′ from a) of Theorem 4, the resulting Bott matrix
A′ gives an action ((Z2)

s,M(B ′)) (s = 1, 2). We can check that ((Z2)
s,M(B ′)) is equivari-

antly diffeomorphic to one of the actions ((Z2)
s,M(B)) corresponding to Ai (i = 30, . . . , 35)

by the ad hoc argument. (Compare Section 2 for the argument to find an equivariant diffeo-
morphism.) Once there exists such an equivariant diffeomorphism, A′ is equivalent to one
of Ai’s (i = 30, . . . , 35) by Theorem 2. Similarly, if A′ is another Bott matrix created from
the first Bott matrix in a) of Theorem 4, we can check that the corresponding ((Z2)

s,M(B))

(s = 1, 2) is equivariantly diffeomorphic to one of the actions ((Z2)
s,M(B)) corresponding

to Ai (i = 30, . . . , 35). (Note that the total number of Bott matrices created from the first Bott
matrix in a) is 76.) This argument also works for the case b), c) and d). As a consequence
the Bott matrix A′ created from Bott matrices in b), c) and d) is equivalent to one of Ai’s
(i = 36, . . . , 48). In summary, we obtain the following.

LEMMA 2. A Bott matrix created from any one of Bott matrices of Theorem 4 is equiv-
alent to one of the Bott matrices Ai (i = 30, . . . , 48) above.

PROPOSITION 3. There are 19 diffeomorphism classes of the case T 2-actions with 3-
dimensional quotients.

3.3. T 3-actions with 2-dimensional quotients. The Bott matrices of M(A) admit-
ting T 3-actions have the following form(

I3 ∗
0 B

)
.
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In this case a Bott matrix B is either A1 or A2 in Theorem 3. The Bott matrices A49 and A50

(resp. A51 and A52) below are created from A1 (resp. A2).

A49 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠A50 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

A51 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠A52 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

Since A1 and A2 in Theorem 3 are not equivalent, none of A49 and A50 is equivalent to A51

or A52. Then A49 (resp. A51) is not equivalent to A50 (resp. A52), because (Z2)
2-action on

M(B) corresponding to A50 (or A52) cannot be reduced to a Z2-action. If A′ is another Bott
matrix created from A1 in Theorem 3, we can check that the corresponding ((Z2)

s,M(A1))

(s = 1, 2) is equivariantly diffeomorphic to one of the actions ((Z2)
s ,M(A1)) corresponding

to A49 and A50 by the ad hoc argument. Once there exists such an equivariant diffeomorphism,
A′ is equivalent to A49 or A50 by Theorem 2. This argument works also for the case A2 in
Theorem 3. As a consequence another Bott matrix A′ created from A2 is equivalent to A51 or
A52. Thus we obtain the following.

LEMMA 3. A Bott matrix created from any one of Bott matrices in Theorem 3 is equiv-
alent to one of the Bott matrices Ai (i = 49, 50, 51, 52) above.

PROPOSITION 4. There are 4 diffeomorphism classes of the case T 3-actions with 2-
dimensional quotients.

3.4. T 4-actions with one-dimensional quotients. The Bott matrices of M(A) ad-
mitting T 4-actions have the following form(

I4 ∗
0 0 0 0 1

)
.

In this case M(B) = M(1) = S1. It is easy to check by using moves II and III, it consists of
just one diffeomorphism class, where the corresponding Bott matrix is

A53 =
⎛⎜⎝ I4 0

1
0 0 0 0 1

⎞⎟⎠ .

Obviously the corresponding Bott matrix of size 5 of a real Bott manifold admitting T 5-
action is the identity matrix of rank 5. Combined with Propositions 2, 3, 4 and the case of
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T 4-actions above we get the following theorem.

THEOREM 6. The diffeomorphism classes of 5-dimensional real Bott manifolds con-
sist of 54.

4. Classification of n-dimensional Real Bott Manifolds

In this section we shall prove some results regarding the classification of certain types of
n-dimensional real Bott manifolds.

THEOREM 7. The number of diffeomorphism classes of n-dimensional real Bott man-

ifolds (n ≥ 4) which admit the maximal T n−2-actions (i.e. s = 1, 2 ) is 4 :
M(A) = T (n−2) ×

(Z2)
s
M(B) .

PROOF. Since there are two diffeomorphism classes of 2-dimensional real Bott mani-
folds M(B) (see Theorem 3), the real Bott manifolds M(A) created from M(B) correspond
to the following Bott matrices

A1 =
(

In−2 ∗
0 B1

)
, A2 =

(
In−2 ∗

0 B2

)

where B1 = I2, B2 =
(

1 1
0 1

)
.

Let us consider A1. If the entries in each row of ∗ are the same then by moves II or III,
A1 is equivalent to ⎛⎜⎜⎝

In−2 0 0
1 1
1 0

0 0 1

⎞⎟⎟⎠ . (4.1)

Otherwise by moves II, III or the equivariant diffeomorphism ϕ : ((Z2)
2, M(B1)) →

((Z2)
2,M(B1)) defined by ϕ[zn−1, zn] = [zn−1, zn], A1 is equivalent to⎛⎜⎜⎜⎜⎜⎝

0 0
In−2 1 0

0 1
1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠ . (4.2)

However (4.1) is not equivalent to (4.2) because the (Z2)
2-action on M(B1) corresponding to

(4.2) cannot be reduced to a Z2-action on it.
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Let us consider A2. If the entries in each row of ∗ are the same then A2 is equivalent to⎛⎜⎜⎝
In−2 0 0

1 1
1 1

0 0 1

⎞⎟⎟⎠, (4.3)

or if the entries in the second column of ∗ are all zero then A2 is equivalent to⎛⎜⎜⎝
In−2 0 0

1 0
1 1

0 0 1

⎞⎟⎟⎠ (4.4)

by moves II or III. However (4.3) and (4.4) are equivalent by the equivariant diffeomorphism
ϕ : (Z2,M(B2)) → (Z2,M(B2)) defined by ϕ([zn−1, zn]) = [izn−1, zn]. Otherwise A2 is
equivalent to ⎛⎜⎜⎜⎜⎜⎝

0 0
In−2 1 0

0 1
1 1

0 0 1

⎞⎟⎟⎟⎟⎟⎠ (4.5)

by moves II, III or the equivariant diffeomorphism ϕ : ((Z2)
2, M(B2)) → ((Z2)

2, M(B2))

defined by ϕ[zn−1, zn] = [zn−1, zn]. Moreover (4.4) and (4.5) are not equivalent because the

(Z2)
2-action on M(B2) corresponding to (4.5) cannot be reduced to a Z2-action on it.
Therefore there are 4 equivalence classes of the Bott matrices corresponding to M(A).

�

PROPOSITION 5. The diffeomorphism class is unique for the real Bott manifold of the

form M(A) = T k ×
Z2

T n−k for any k (1 ≤ k ≤ n−1). In particular, if k = n then M(A) = T n.

PROOF. Since M(A) admits the maximal T k-action and A is created from In−k , there
is only one Bott matrix A, namely

A =
⎛⎝ Ik 0

1 . . . 1
0 In−k

⎞⎠ . (4.6)

Clearly, if k = n then A = In the identity matrix of rank n. �

Obviously, by Theorem 7 and this proposition, there are 6 diffeomorphism classes of
n-dimensional real Bott manifolds M(A) (n ≥ 4) admitting the maximal T k-action for k =
n − 2, n − 1, n.



248 ADMI NAZRA

COROLLARY 1. If M(A) = S1 ×Z2 M(B) where M(B) = T k ×Z2 S1, then for any
k ≥ 1 there is only one diffeomorphism class.

PROOF. Since M(B) = T k ×Z2 S1,

B =
⎛⎝ Ik ∗

1
0 . . . 0 1

⎞⎠ .

The Bott matrices A created from B are(
1 1 . . . 1 1
0 B

)
and

(
1 1 . . . 1 0
0 B

)
which are equivalent by the equivariant diffeomorphism ϕ : (Z2,M(B)) → (Z2, M(B)) de-
fined by ϕ([z2, . . . , zk+1, zk+2]) = [z2, . . . , izk+1, zk+2]. �

COROLLARY 2. Let M(A) be a real Bott manifold which fibers S1 over the real Bott
manifold M(B) for which M(B) is T k ×(Z2)

s K (k ≥ 2). Here K is a Klein bottle. Then the
number of diffeomorphism classes of such M(A) is 3.

PROOF. Since M(B) = T k ×(Z2)
s K (s = 1, 2), there are 2 distinct diffeomorphism

classes of M(B) corresponding to Bott matrices in (4.4) and (4.5)) (say B1 and B2 respec-
tively). The Bott matrices of size (k + 3) created from B1 with the Z2-actions are as follows(

1 1 . . . 1 0 0
0 B1

)
,

(
1 1 . . . 1 1 0
0 B1

)
(4.7)(

1 1 . . . 1 0 1
0 B1

)
,

(
1 1 . . . 1 1 1
0 B1

)
. (4.8)

The Bott matrices in (4.7) (resp. (4.8)) are equivalent by the equivariant diffeomor-
phism ϕ : (Z2,M(B1)) → (Z2,M(B1)) defined by ϕ([z2, . . . , zk+1, zk+2, zk+3]) =
[z2, . . . , izk+1, zk+2, zk+3].

On the other hand, Bott matrices in (4.7) are not equivalent to (4.8) because the maximal

fixed point sets of (Z2,M(B1)) corresponding to the Bott matrices in (4.7) and (4.8) are T 2

and S1, respectively.
It is easy to see that each Bott matrix created from B2 is equivalent to(

1 1 . . . 1 0 0
0 B2

)
(4.9)

by ϕ : (Z2,M(B2)) → (Z2,M(B2)) which is defined by one of the following

ϕ([z2, . . . , zk, zk+1, zk+2, zk+3]) = [z2, . . . , izk, zk+1, zk+2, zk+3],
ϕ([z2, . . . , zk, zk+1, zk+2, zk+3]) = [z2, z3, . . . , zk, izk+1, zk+2, zk+3],
ϕ([z2, . . . , zk, zk+1, zk+2, zk+3]) = [z2, z3, . . . , izk, izk+1, zk+2, zk+3].
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Obviously, the Bott matrix (4.9) is not equivalent to the Bott matrices in (4.7) and (4.8) be-
cause B1 is not equivalent to B2. Therefore there are 3 equivalence classes of the Bott matrices
corresponding to M(A). �

COROLLARY 3. Let M(A) be a real Bott manifold which fibers S1 over the real Bott

manifold M(B) for which M(B) is T k ×(Z2)
s T 2 (k ≥ 2). Then the number of diffeomorphism

classes of such M(A) is 3.

PROOF. Since M(B) = T k ×(Z2)
s T 2 (s = 1, 2), there are 2 distinct diffeomorphism

classes of M(B) which correspond to the Bott matrices in (4.1) and (4.2). Using a similar
observation as in the proof of Corollary 2, one can prove that there are 3 equivalence classes
of the Bott matrices corresponding to M(A). �

Now if we create Bott matrices from (4.6) (for k = 1) with Z2-actions then we will get
the classification of the corresponding real Bott manifolds as follows.

THEOREM 8. Let M(A) be a real Bott manifold which fibers S1 over the real Bott

manifold M(B) where M(B) = S1 ×Z2 T k (k ≥ 2), then the diffeomorphism classes of such

M(A) is [ k
2 ] + 1. Here [x] is the integer part of x.

PROOF. Since M(B) = S1 ×Z2 T k ,

B =
(

1 1 . . . 1
0 Ik

)
. (4.10)

The Bott matrices Ai of size (k + 2) created from (4.10) with Z2-actions are as follows

Ai =
(

1 1 ∗
0 B

)
, (i = 1, . . . , 2k) . (4.11)

We apply the different Z2-actions on M(B) such that the Bott matrices Ai are as follows:

A1 =
(

1 {1}2 {0}3 . . . {0}2+k

0 B

)
,

A2 =
(

1 {1}2 {1}3 {0}4 . . . {0}2+k

0 B

)
,

...

A[ k
2 ]+1 =

(
1 {1}2 . . . {1}1+([ k

2 ]+1) {0}2+([ k
2 ]+1) . . . {0}2+k

0 B

)
.

(4.12)

Here {y}i means y in the i-th spot. It is easy to check that the maximal fixed point sets of

(Z2,M(B)) corresponding to Ai (i = 1, 2, . . . , [ k
2 ] + 1) are T k , T k−1, . . . , T k−[ k

2 ], respec-
tively. Hence they are not equivalent to each other.
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On the other hand, for [ k
2 ] + 1 < l ≤ (k + 1), Bott matrix(

1 {1}2 . . . {1}1+l {0}2+l . . . {0}2+k

0 B

)
(4.13)

is equivalent to one of the Bott matrices in (4.12). To show this, consider the g1-action corre-
sponding to (4.13):

g1([z2, . . . , z1+l , zl+2, . . . , zk+2]) = [z̄2, . . . , z̄l+1,

(k+1)−l︷ ︸︸ ︷
zl+2, . . . , zk+2]

= [g2(z̄2, . . . , z̄l+1, zl+2, . . . , zk+2)]
= [−z̄2, z3, . . . , zl+1, z̄l+2, . . . , z̄k+2] .

Since (k + 1) − l < k − [ k
2 ] ≤ [ k

2 ] + 1, there is an equivariant diffeomorphism
ϕ : (Z2,M(B)) → (Z2,M(B)) defined by ϕ([z2, . . . , zl+1, zl+2, . . . , zk+2]) = [iz2,

zl+2, . . . , zk+2, z3, . . . , zl+1] such that ϕg1 = h1ϕ for some h1-action corresponding to one
of the Bott matrices in (4.12).

The other Bott matrices Ai (i 
= 1, . . . , [ k
2 ] + 1) may have the form

A′ =
(

1 1 1̂ . . . 1̂
0 B

)
, (4.14)

where 1̂ ∈ {0, 1}. We prove that A′ is equivalent to one of the Bott matrices in (4.12). Suppose

that the number of entries 1̂’s for 1̂ = 1 is t . Applying move I on A′ such that the entries 1̂’s

for 1̂ = 1 are placed in series, we get a new Bott matrix

A′′ =
(

1 {1}2 {1}3 . . . {1}2+t {0}3+t . . . {0}2+k

0 B

)
,

which is still equivalent to A′. Obviously, A′′ = Ai for some i = 1, . . . , [ k
2 ]+1 if 0 ≤ t ≤ [ k

2 ],
or A′′ is the same as (4.13) if t > [ k

2 ]. Hence A′ is equivalent to one of the Bott matrices in
(4.12). This completes the proof of the theorem. �

From now on, we use the notation (Z2,M(Bj ))i which means that the Z2-action on
M(Bj ) corresponds to a Bott matrix Aij .

Next we state three lemmas which will be used to prove Theorem D in Introduction.

LEMMA 4. Let M(A) = S1 ×Z2 M(B1) be an n-dimensional real Bott manifold with

B1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . . . . . . . 1
1 1 . . . . . . . . . 1

. . .
.
.
.

1 1 . . . 1

0 Ik

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.15)
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k ≥ 2, and n−k ≥ 3. Such real Bott manifolds M(A) corresponding to Bott matrices derived
from Aj ′1 (j = 1, . . . , k, (k+1)) in (4.16) are not diffeomorphic to each other. (That is, there

are k(2n−k−3 −1)+ (2n−k−3 − (n−k−2)) nonequivalent Bott matrices derived from (4.16).)

Aj ′1 =(
1 1 0 {1̂}4 . . . {1̂}n−k {1}n−k+1 . . . {1}n−k+(j−1) {0} . . . {0}n
0 B1

)
(4.16)

for j = 1, . . . , k, (k + 1), where 1̂ is either 0 or 1,

({1̂}4, . . . , {1̂}n−k) 
= (0, . . . , 0)

(resp. ({1̂}4, . . . , {1̂}n−k) 
= (

l︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1), l = 0, 1, . . . , n − k − 3)

(4.17)

for Bott matrix Aj ′1 (j = 1, . . . , k) (resp. A(k+1)′1).

PROOF. Recall that, if M(Am1) is diffeomorphic to M(Aq1) (i.e., Am1 is equivalent to
Aq1, m 
= q), by Theorem 2, there is an equivariant diffeomorphism

(Φ, ϕ) : (Z2 = 〈α〉,M(B1))m → (Z2 = 〈β〉,M(B1))q, such that

ϕ(α[z2, . . . , zn]) = Φ(α)ϕ[z2, . . . , zn] = βϕ[z2, . . . , zn] .

Let ϕ̄ : Rn−1 → Rn−1 be the lift of ϕ. According to the form of B1, the affine element ϕ̄ has
the form

ϕ̄ =
((

a
b

)
,

(
In−k−1 0

0 D

))
(4.18)

where D is a nonsingular submatrix of rank k, t a = (a2, . . . , an−k) and tb =
(bn−k+1, . . . , bn) (compare (1.11)). Since M(B1) = T n−1/(Z2)

n−1, ϕ̄ induces an affine

map ϕ̃ of T n−1.

Put X =
⎛⎜⎝xn−k+1

...

xn

⎞⎟⎠. Since ϕ̃p = pϕ̄,

ϕ̃(z2, . . . , zn−k, zn−k+1, . . . , zn) = (�2z2, . . . , �n−kzn−k, p
t (b + DX))

= (�2z2, . . . , �n−kzn−k, cn−k+1wn−k+1, . . . , cnwn)

(4.19)

where �j = exp(2π iaj ) (j = 2, . . . , n − k), cs = exp(2π ibs) (s = n − k + 1, . . . , n),
(wn−k+1, . . . , wn) = p t(DX).

On the other hand, since M(B1) = T n−1/(Z2)
n−1, the action 〈α〉 lifts to an action on

T n−1 such that we have the commutative diagram
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(Z2)
n−1 (Z2)

n−1⏐⏐� ⏐⏐�
(α, T n−1)

ϕ̃−−−−→ (gβ, T n−1)

P r

⏐⏐� Pr

⏐⏐�
(α,M(B1))m

ϕ−−−−→ (β,M(B1))q

for some g ∈ (Z2)
n−1 = 〈g2, . . . , gn〉. This means that

Pr(ϕ̃(α(z2, . . . , zn))) = ϕ(Pr(α(z2, . . . , zn))) = ϕ(α(P r(z2, . . . , zn)))

= Φ(α)ϕ(P r(z2, . . . , zn)) = βϕ(Pr(z2, . . . , zn))

= βPr(ϕ̃(z2, . . . , zn)) = Pr(βϕ̃(z2, . . . , zn)),

(i.e., ϕ̃(α(z2, . . . , zn)) = gβϕ̃(z2, . . . , zn).) (4.20)

(Note that gi (i = 2, . . . , n) corresponds to the i-th row of Am1 and Aq1.) This implies that

ϕ̃ maps the fixed point set of (α, T n−1) to that of (gβ, T n−1) diffeomorphically. From the

commutative diagram, we also have, for g ∈ (Z2)
n−1,

Pr(ϕ̃(g(z2, . . . , zn))) = ϕ(Pr(g(z2, . . . , zn))) = ϕ(Pr(z2, . . . , zn))

= Pr(ϕ̃(z2, . . . , zn)) .

Hence there is an element h ∈ (Z2)
n−1 such that

ϕ̃(g(z2, . . . , zn)) = hϕ̃(z2, . . . , zn), ϕ̃gϕ̃−1 = h . (4.21)

Here the action (α,M(B1))j ′ (similarly for (β,M(B1))j ′) corresponding to Aj ′1 is written as

α(z2, . . . , zn) = (z̄2, z3,
α

ẑ4, . . . ,
α

ẑn−k, z̄n−k+1, . . . , z̄n−k+j−1, zn−k+j , . . . , zn)

where
α

ẑj (∈ {zj , z̄j }) means an α-action on zj . Note that
α

ẑj is either zj or z̄j depending on

whether 1̂ is 0 or 1 respectively.
To show that Bott matrices derived from Aj ′1 (j = 1, . . . , k, (k + 1)) in (4.16) are not

equivalent to each other, we shall prove the following claims.
CLAIM 1. Bott matrices Aj ′1 (j = 1, . . . , k, (k + 1)) are not equivalent to each other.
Suppose that (α,M(B1))l′ is equivariantly diffeomorphic to (β,M(B1))p′ where 1 ≤

l < p ≤ k + 1 (l = 1, . . . , k; p = 2, . . . , k + 1). Then by (4.20), we have
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(�2z̄2, �3z3, �4
α

ẑ4, . . . , �n−k

α

ẑn−k, cn−k+1w
′
n−k+1, . . . , cnw

′
n)

= g(�2z2, �3z3,

β

�̂4z4, . . . ,

β

̂�n−kzn−k,

cn−k+1wn−k+1, . . . , cn−k+p−1wn−k+p−1, cn−k+pwn−k+p, . . . , cnwn) ,

(4.22)

for some g ∈ (Z2)
n−1 = 〈g2, . . . , gn〉, where

(w′
n−k+1, . . . , w

′
n) =p((−xn−k+1, . . . ,−xn−k+l−1, xn−k+l , . . . , xn)

tD) .

Now we check that there is no g ∈ 〈g2, . . . , gn〉 = (Z2)
n−1 satisfying (4.22) so that we have

a contradiction. To show this, we consider the following cases for such g .
Case 1. It is easy to see that g ∈ 〈g2, g3〉 does not satisfy (4.22).
Case 2. Let g = gtg ′ where gt ∈ {g4, . . . , gn−k} (t = 4, . . . , n − k), g ′ ∈ 〈gt+1, . . . , gn〉.

Since gt (zt ) = −zt , g(zt ) = −zt . If
α

ẑt 
=
β

ẑt (resp.
α

ẑt =
β

ẑt = zt ) then g = gtg ′ does not

satisfy (4.22), because it implies that �tzt = g(�t zt ) = −�tzt (resp. �tzt = g(�tzt ) = −�tzt ).

If
α

ẑt =
β

ẑt = z̄t then �t z̄t = g(�t zt ) = −�tzt . This implies that �t = ±i. Therefore

ϕ̃(z2, . . . , zn) = (�2z2, . . . , �t−1zt−1,±izt , �t+1zt+1, . . . , �n−kzn−k, p
t (b + DX)).

Now, from (4.21), we consider

ϕ̃g2ϕ̃
−1(z2, . . . , zn) = g2(z2, �

2
3z3, . . . , �

2
t−1zt−1,−zt , �

2
t+1zt+1, . . . , �

2
n−kzn−k,

exp(4π(−i)bn−k+1)zn−k+1, . . . , exp(4π(−i)bn)zn)

= g2h(z2, . . . , zn)

where

h(z2, . . . , zn) = (z2, �
2
3z3, �

2
4z4, . . . , �

2
t−1zt−1,−zt , �

2
t+1zt+1, . . . , �

2
n−kzn−k,

exp(4π(−i)bn−k+1)zn−k+1, . . . , exp(4π(−i)bn)zn) .
(4.23)

We check that h 
∈ 〈g3, . . . , gn〉 (i.e., g2h 
∈ (Z2)
n−1).

Suppose that h ∈ 〈g3, . . . , gn〉. Since

h(zn−k+1, . . . , zn) = (exp(4π(−i)bn−k+1)zn−k+1, . . . , exp(4π(−i)bn)zn)

in (4.23), we may write h = h′
(even)

h′′ where h′ ∈ 〈g3, . . . , gn−k〉 and h′′ ∈ 〈gn−k+1,

. . . , gn〉. Here h′
(even) means a composition of an even number of generators {g3, . . . , gn−k}.

On the other hand, since h(zt ) = −zt in (4.23), we may write h′
(even) = ĥgt ȟ, where ĥ

(resp. ȟ) is a composition of an even (resp. odd) number of generators {g3, . . . , gt−1} (resp.
{gt+1, . . . , gn−k}). For t = 4, 5, . . . , n − k − 1, such a h′

(even) implies that
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h(zt+1) = h′
(even)(zt+1) =

{
z̄t+1 if h′

(even) = ĥgt g̈ , g̈ ∈ 〈gt+2, . . . , gn−k〉
−z̄t+1 if h′

(even) = ĥgtgt+1g̈.

Hence this contradicts (4.23). Similarly for h′
(even) = gt ȟ (t = 4, 5, . . . , n − k − 1).

Now let us consider t = n − k. Since h(zt ) = −zt in (4.23), h = ḣgn−kh
′′ where

ḣ is a composition of an even number of generators {g3, . . . , gn−k−1}. This implies that
h(zn−k+1, . . . , zn) = (±z̄n−k+1, . . . ,±z̄n). This also contradicts (4.23). Similarly for

h = gn−kh
′′. Thus g2h 
∈ (Z2)

n−1. Hence Case 2 cannot occur.
Case 3. Let g = g ′′ where g ′′ ∈ 〈gn−k+1, . . . , gn〉.

If g = g ′′ satisfies (4.22), this implies that (
α

ẑ4, . . . ,
α

ẑn−k) = (
β

ẑ4, . . . ,
β

ẑn−k). Then we
obtain that the fixed point set of (α, T n−1) is

Fix α = (V , {±1}n−k+1, . . . , {±1}n−k+l−1, zn−k+l , . . . , zn)

with V = {(z2, . . . , zn−k)|α(z2, . . . , zn−k) = (z2, . . . , zn−k)} and that of (g ′′β, T n−1) is

Fix g ′′β = (W, {�}n−k+1, . . . , {�}n−k+p−1, zn−k+p, . . . , zn)

with

W = {(z2, . . . , zn−k)|g ′′β(z2, . . . , zn−k) = β(z2, . . . , zn−k) = (z2, . . . , zn−k)}

and � ∈ {±1,±i}. Since (
α

ẑ4, . . . ,
α

ẑn−k) = (
β

ẑ4, . . . ,
β

ẑn−k), dimV = dimW . Then by (4.20),
we have dimV + (k − l + 1) = dimW + (k − p + 1). Hence we get a contradiction.

CLAIM 2. Bott matrices derived from each Aj ′1 (j = 1, . . . , k) are not equivalent to

each other, (i.e., there are (2n−k−3 − 1) nonequivalent Bott matrices derived from each Aj ′1
(j = 1, . . . , k)).

Associated with the entries ({1̂}4, . . . , {1̂}n−k) in each Aj ′1, there are 2(n−k−3) − 1 dif-

ferent actions (Z2,M(B1))j ′ . (Note that ({1̂}4, . . . , {1̂}n−k) 
= (0, . . . , 0).)
We prove that every two different actions (Z2,M(B1))j ′ derived from Aj ′1 (denoted by

(α,M(B1))j ′
α

and (β,M(B1))j ′
β
, respectively), the corresponding Bott matrices (denoted by

Aj ′
α1 and Aj ′

β1, respectively) are not equivalent.

Since the α-action and β-action are different, we may assume that
α

ẑi = zi ,
β

ẑi = z̄i , for
some i ∈ {4, . . . , n − k}. As before, if Aj ′

α1 and Aj ′
β1 are equivalent, by (4.20), we have

(�2z̄2, �3z3, �4
α

ẑ4, . . . , , �i−1
α

ẑi−1, �izi, �i+1
α

ẑi+1, . . . , �n−k

α

ẑn−k, cn−k+1v
′
n−k+1, . . . , cnv

′
n)

= g(�2z2, �3z3,

β

�̂4z4, . . . ,

β

̂�i−1zi−1, �izi,

β

̂�i+1zi+1, . . . ,

β

̂�n−kzn−k,

cn−k+1wn−k+1, . . . , cn−k+j−1wn−k+j−1, cn−k+jwn−k+j , . . . , cnwn),

(4.24)
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for some g ∈ (Z2)
n−1 = 〈g2, . . . , gn〉, where

(v′
n−k+1, . . . , v

′
n) = p((−xn−k+1, . . . ,−xn−k+j−1, xn−k+j , . . . , xn)

tD) . (4.25)

It is easy to check that g ∈ 〈g2, g3〉 does not satisfy (4.24), so does g ∈ 〈gi , . . . , gn〉. So,
if i = 4 then there is no g ∈ (Z2)

n−1 satisfying (4.24).

Now let us consider i ∈ {5, . . . , n − k}. Since
α

ẑi = zi and
β

ẑi = z̄i , for some i ∈
{5, . . . , n − k}, we may write g = gt ġ(even)g̈ with gt ∈ {g4, . . . , gi−1} (t = 4, . . . , i − 1),

ġ ∈ 〈gt+1, . . . , gi−1〉, g̈ ∈ 〈gi+1, . . . , gn〉 (for t = i − 1, g = gt g̈). Here ġ(even) means
a composition of an even number of generators of ġ . Since gt (zt ) = −zt , g(zt ) = −zt .

If
α

ẑt 
=
β

ẑt (resp.
α

ẑt =
β

ẑt = zt ) then g = gt ġ(even)g̈ does not satisfy (4.24), because it

implies that �tzt = g(�t zt ) = −�tzt (resp. �tzt = g(�t zt ) = −�tzt ). If
α

ẑt =
β

ẑt = z̄t then

�t z̄t = g(�tzt ) = −�tzt . This implies that �t = ±i. Therefore

ϕ̃(z2, . . . , zn) = (�2z2, . . . , �t−1zt−1,±izt , �t+1zt+1, . . . , �n−kzn−k, p
t (b + DX)) .

Similarly to the proof of Claim 1, one can check that ϕ̃g2ϕ̃
−1(z2, . . . , zn) 
∈ (Z2)

n−1. Hence
we have a contradiction.

Since all combinations of ({1̂}4, . . . , {1̂}n−k) with ({1̂}4, . . . , {1̂}n−k) 
= (0, . . . , 0) are
different for each Aj ′1, there are (2n−k−3 − 1) nonequivalent Bott matrices derived from each
Aj ′1 (j = 1, . . . , k).

CLAIM 3. Bott matrices derived from A(k+1)′1 are not equivalent to each other (i.e.,

there are 2n−k−3 − (n − k − 2) nonequivalent Bott matrices derived from A(k+1)′1).

Since there are 2n−k−3 − (n − k − 2) different combination of ({1̂}4, . . . , {1̂}n−k) with

({1̂}4, . . . , {1̂}n−k) 
= (

l︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1) (that is, there are 2n−k−3 − (n − k − 2) differ-

ent actions (Z2,M(B1))(k+1)′), by using the argument in the proof of Claim 2 above, there

are 2n−k−3 − (n − k − 2) nonequivalent Bott matrices derived from A(k+1)′1.

According to Claims 1, 2 and 3, we obtain that there are k(2n−k−3 −1)+ (2n−k−3 − (n−
k − 2)) nonequivalent Bott matrices derived from (4.16). �

In view of the argument in the proof of Lemma 4, one can prove the following lemmas.

LEMMA 5. Let M(Ai1) = S1 ×Z2 M(B1) (i = 1, . . . , n − 2) be n-dimensional real
Bott manifolds created from an (n − 1)-dimensional real Bott manifold M(B1) where B1 is
as in (4.15), k ≥ 2, and n − k ≥ 3. Such real Bott manifolds M(Ai1) corresponding to Ai1 in
(4.26) are not diffeomorphic to each other.

Ai1 =
(

1 {1}2 {1}3 . . . {1}1+i {0}2+i . . . {0}n
0 B1

)
, (4.26)

for i = 1, . . . , n − 2.
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LEMMA 6. Each Bott matrix in (4.26) is not equivalent to each Bott matrix derived
from (4.16).

REMARK 4. Consider Bott matrices Ai1 (i = 1, . . . , n − 2) in (4.26) and Aj ′1 (j =
1, . . . , k, k + 1) in (4.16).

(i) Associated with the entries ({1̂}4, . . . , {1̂}n−k) in Aj ′1 (j = 1, . . . , k), if

({1̂}4, . . . , {1̂}n−k) = (0, . . . , 0) then A1′1 = A11 and Aj ′1 ∼ A(n−j)1

(j = 2, . . . , k) by the equivariant diffeomorphism ϕ : (Z2,M(B1))j ′ →
(Z2,M(B1))n−j defined by

[z2, . . . , zn−k, zn−k+1, . . . , zn−k+(j−1), zn−k+j , . . . , zn] ϕ�−→
[iz2, . . . , zn−k, zn−k+j , . . . , zn, zn−k+1, . . . , zn−k+(j−1)] .

(ii) Associated with the entries ({1̂}4, . . . , {1̂}n−k) in A(k+1)′1, if

({1̂}4, . . . , {1̂}n−k) = (

l︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1) (l = 0, 1, . . . , n − k − 3), then

A(k+1)′1 ∼ A(l+2)1 (l = 0, 1, . . . , n − k − 3) by the equivariant diffeomor-
phism ϕ : (Z2,M(B1))(k+1)′ → (Z2,M(B1))(l+2) defined by ϕ([z2, . . . , zn]) =
[iz2, . . . , zn].

THEOREM 9. Let M(A) = S1 ×Z2 M(B) be an n-dimensional real Bott manifold.
Suppose that B is either one of the list in (4.27). Then M(B) are diffeomorphic to each
other and the number of diffeomorphism classes of such real Bott manifolds M(A) above is

(k + 1)2n−k−3 (k ≥ 2, n − k ≥ 3).

B1 =

⎛⎜⎜⎜⎝
1 1 1 . . . . . . . . . 1

1 1 . . . . . . . . . 1

.
.
.

.

.

.
1 1 . . . 1

0 Ik

⎞⎟⎟⎟⎠, B2 =

⎛⎜⎜⎜⎝
1 1 0 . . . . . . . . . 0

1 1 . . . . . . . . . 1

.
.
.

.

.

.
1 1 . . . 1

0 Ik

⎞⎟⎟⎟⎠, . . . ,

Bn−k−1 =

⎛⎜⎜⎜⎜⎝
1 1 0 . . . . . . . . . . . . 0

1 1 0 . . . . . . . . . 0

.
.
.

.

.

.
1 1 0 . . . 0

1 1 . . . 1

0 Ik

⎞⎟⎟⎟⎟⎠,

Bn−k =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . . . . . . . . . . . . . . . . 0
1 1 0 . . . . . . . . . . . . . . . 0

.
.
.

.

.

.
1 1 0 0 0 . . . 0

1 1 1 0 . . . 0
1 1 0 . . . 0

1 1 . . . 1

0 Ik

⎞⎟⎟⎟⎟⎟⎟⎠, . . . ,

(4.27)
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Bn−k+(n−k−4) =

⎛⎜⎜⎜⎜⎝
1 1 . . . . . . 1 0 . . . 0

1 . . . . . . 1 0 . . . 0

.
.
.

.

.

.

.

.

.

.

.

.
1 1 0 . . . 0

1 1 . . . 1

0 Ik

⎞⎟⎟⎟⎟⎠ .

PROOF. Note that each Bj is of size n − 1 and M(Bj ) = S1 ×Z2 M(B ′
j ) where

B ′
j is the submatrix of Bj obtained by deleting the first row and the first column of Bj .

M(Bj−1) is diffeomorphic to M(Bj ) (j = 2, 3, . . . , n − k − 1 ) by the equivariant dif-
feomorphism ϕ : (Z2,M(B ′

j−1)) → (Z2,M(B ′
j )) which is defined by ϕ([z2, . . . , zn−1]) =

[z2, . . . , izj , . . . , zn−1]. Likewise M(Ba) is diffeomorphic to M(Bb) (a = n − k + (n − k −
3) − (j − 1); b = n − k + (n − k − 3) − (j − 2); j = n − k − 1, n − k − 2, . . . , 4, 3)
by the equivariant diffeomorphism ϕ : (Z2,M(B ′

a)) → (Z2,M(B ′
b)) which is defined by

ϕ([z2, . . . , zn−1]) = [z2, . . . , izj−1, . . . , zn−1]. Therefore M(Bj ) are diffeomorphic to each
other.

By the hypothesis, there are 2n−2 possible Z2-actions on each M(Bj ), j = 1, . . . , 2(n−
k)−4. We shall prove that among 2n−2(2(n−k)−4) real Bott manifolds created from M(Bj )

(j = 1, . . . , 2(n − k) − 4), there are only (k + 1)2n−k−3 diffeomorphism classes.

First of all we show that there are (k + 1)2n−k−3 diffeomorphism classes of real Bott
manifolds M(Ai1) created from M(B1) by Z2-actions.

Let A′ be a Bott matrix, other than the Bott matrices in (4.26) and (4.16), created from
B1. It is easy to check that such a A′ is equivalent to one of the Bott matrices in (4.26) or
(4.16) by using move I or the equivariant diffeomorphism ϕ : (Z2,M(B1)) → (Z2,M(B1))

defined by ϕ([z2, . . . , zn]) = [iz2, . . . , zn]. Then, because of Lemmas 4, 5, 6 and Remark

4, there are (n − 2) + (2n−k−3 − 1)k + 2n−k−3 − (n − k − 2) = (k + 1)2n−k−3 distinct
diffeomorphism classes of M(Ai1) (i = 1, . . . , 2n−2) created from M(B1).

Next, we show that M(Aij ) (i = 1, . . . , 2n−2) created from M(Bj ) (j = 2, . . . , n− k +
(n−k −4)) is diffeomorphic to one of the real Bott manifolds corresponding to Bott matrices
in (4.26) or (4.16).

For brevity we can consider

A�1 =
(

1 1 0 {1̂}4(1)
. . . {1̂}n(1)

0 B1

)
(4.28)

(� = 1, . . . , n − 2, 1′, . . . , k′, (k + 1)′) representing Aj ′1 (j = 1, . . . , k, (k + 1)) in (4.16),
and Ai1 (i = 1, . . . , n − 2) in (4.26), where Ai1 (i = 2, . . . , n − 2) is equivalent to (4.28)
by the equivariant diffeomorphism ϕ : (Z2,M(B1)) → (Z2,M(B1)) which is defined by

ϕ([z2, . . . , zn]) = [iz2, . . . , zn]. Note that {1̂}l(j)
means 1̂(∈ {0, 1}) in the l-th spot where the

corresponding Bott matrix is created from Bj .
Now we define an equivariant diffeomorphism ϕ : (Z2,M(B1)) → (Z2, M(B2)) by
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ϕ([z2, . . . , zn]) = [z2, iz3, z4, . . . , zn], then (4.28) is equivalent to

A�2 =
(

1 1 0 {1̂}4(2)
. . . {1̂}n(2)

0 B2

)
. (4.29)

Next we define an equivariant diffeomorphism ϕ : (Z2,M(B2)) → (Z2, M(B3)) by
ϕ([z2, . . . , zn]) = [z2, z3, iz4, z5, . . . , zn] so that Bott matrix (4.29) is equivalent to

A�3 =
(

1 1 0 {1̂}4(3)
. . . {1̂}n(3)

0 B3

)
.

In general, let us consider

A�(j−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 {1̂}4(j−1)
. . . . . . . . . . . . . . . . . . {1̂}n(j−1)

1 1 0 . . . . . . . . . . . . . . . . . . 0
1 1 0 . . . . . . . . . . . . . . . 0

.
.
.

.

.

.
1 1 0 . . . . . . . . . 0

1 1 . . . . . . . . . 1

0 1 1 . . . . . . 1

0
.
.
.

.

.

.
1 1 . . . 1

Ik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1
g2
g3
.
.
.

gj−1
gj

gj+1
.
.
.

gn−k

(j = 2, . . . , n − k − 1). Defining an equivariant diffeomorphism ϕ : (Z2,M(Bj−1)) →
(Z2,M(Bj )) by ϕ([z2, . . . , zn]) = [z2, . . . , zj , izj+1, zj+2, . . . , zn],

we obtain that A�(j−1) is equivalent to

A�(j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 {1̂}4(j)
. . . . . . . . . . . . . . . . . . {1̂}n(j)

1 1 0 . . . . . . . . . . . . . . . . . . 0
1 1 0 . . . . . . . . . . . . . . . 0

.
.
.

.

.

.
1 1 0 . . . . . . . . . 0

1 1 0 . . . . . . 0

0 1 1 . . . . . . 1

0
.
.
.

.

.

.
1 1 . . . 1

Ik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1
g2
g3
.
.
.

gj−1
gj

gj+1
.
.
.

gn−k

.

Therefore the previous Bott matrix is equivalent to

A�(n−k−1) =
(

1 1 0 {1̂}4(n−k−1)
. . . {1̂}n(n−k−1)

0 Bn−k−1

)
. (4.30)

Next, (4.30) is equivalent to the following one by the equivariant diffeomorphism
ϕ : (Z2,M(Bn−k−1)) → (Z2,M(Bn−k)) defined by ϕ([z2, . . . , zn]) = [z2, . . . , zn−k−2,

izn−k−1, zn−k, . . . , zn]
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A�(n−k) =
(

1 1 0 {1̂}4(n−k)
. . . {1̂}n(n−k)

0 Bn−k

)
.

In general, let us consider the following Bott matrix

A�a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 {1̂}4(a)
. . . . . . . . . . . . . . . . . . . . . {1̂}n(a)

1 1 0 . . . . . . . . . . . . . . . . . . . . . 0
1 1 0 . . . . . . . . . . . . . . . . . . 0

.
.
.

.

.

.
1 1 0 . . . 0 0 . . . 0

1 1 . . . 1 0 . . . 0

0 1 . . . 1 0 . . . 0

.
.
.

.

.

.

0 1 1 0 . . . 0
1 1 . . . 1

Ik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1
g2
g3
.
.
.

gj−1
gj

gj+1
.
.
.

gn−k−1
gn−k

where a = n − k + (n − k − 3) − (j − 1) (j = n − k − 1, n − k − 2, . . . , 4, 3). Defin-
ing an equivariant diffeomorphism ϕ : (Z2,M(Ba)) → (Z2,M(Bb)) by ϕ([z2, . . . , zn]) =
[z2, . . . , zj−1, izj , zj+1, . . . , zn], we obtain that A�a is equivalent to

A�b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 {1̂}4(b)
. . . . . . . . . . . . . . . . . . . . . {1̂}n(b)

1 1 0 . . . . . . . . . . . . . . . . . . . . . 0
1 1 0 . . . . . . . . . . . . . . . . . . 0

.
.
.

.

.

.
1 1 0 . . . 0 0 . . . 0

1 1 . . . 1 0 . . . 0

0 1 . . . 1 0 . . . 0

.
.
.

.

.

.

0 1 1 0 . . . 0
1 1 . . . 1

Ik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1
g2
g3
.
.
.

gj−2
gj−1
gj

.

.

.
gn−k−1
gn−k

where b = n − k + (n − k − 3) − (j − 2). Therefore the previous Bott matrix is equivalent to

A�c =
(

1 1 0 {1̂}4(c)
. . . {1̂}n(c)

0 B2(n−k)−4

)
where c = n − k + (n − k − 3) − 1.

Finally each Bott matrix(
1 1 1 {1̂}4(j)

. . . {1̂}n(j)

0 Bj

)
for j = 2, . . . , 2(n − k) − 4 is equivalent to one of Bott matrices in (4.26) or (4.16) by the
equivariant diffeomorphism ϕ([z2, . . . , zn]) = [iz2, z3, . . . , zn]. This completes the proof of
the theorem. �
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