On Genelarized DS-diagram and Moves

Masaharu KOUNO

Kitami Institute of Technology
(Communicated by J. Murakami)

Abstract

DS-diagram and flow spine are good tools for studying 3-manifolds ([5], [8]). In this paper, we introduce the concept of generalized DS-diagram and study its properties. We define two types of moves that change generalized DS-diagrams but do not change their associated manifolds. We prove that any two generalized DSdiagrams such that their associated manifolds are homeomorphic to each other can be deformed into each other by a finite sequence of moves of the types.

1. Definitions and notations

For a graph G, we denote by $V(G)$ the set of vertices and by $E(G)$ the set of edges. For a fake surface P (see [4] for definition), we denote by $\mathfrak{S}_{i}^{\prime}(P)$ the i-th singularity $(i=2,3)$. Then $H=\mathfrak{S}_{2}^{\prime}(P) \cup \mathfrak{S}_{3}^{\prime}(P)$ is a 4-regular graph on $P, V(H)$ is $\mathfrak{S}_{3}^{\prime}(P)$, and $E(H)$ is $\mathfrak{S}_{2}^{\prime}(P)$.

We permit a 'graph' to have an 'edge' which is homeomorphic to 1 -sphere, called hoop. We say $f: S \rightarrow P$ is a local homeomorphism, if for any point p in S there exists a neighborhood U of p in S such that $\left.f\right|_{U}: U \rightarrow f(U)$ is a homeomorphism. We denote by \bar{X} the closure of X and by $\sharp Z$ the number of all elements of a finite set Z.

DEFINITION 1.1. Let $S=S_{1}^{2} \cup \cdots \cup S_{k}^{2}$ be a union of 2-spheres, G be a 3-regular graph on S and $f:(S, G) \rightarrow(P, H)$ be a map from S to a closed fake surface P. We call $\Sigma=(S, G, f)$ generalized DS-diagram if it satisfies the following conditions;
(1) The map $f: S \rightarrow P$ is an onto local homeomorphism.
(2) For any element $x \in V(G), f^{-1} \circ f(x)$ consists of four elements.
(3) For any element $x \in E(G), f^{-1} \circ f(x)$ consists of three elements.
(4) For any element $x \in S-G, f^{-1} \circ f(x)$ consists of two elements.

We call the number of spheres $k s$-number of Σ and denote by $s(\Sigma)$. Let $\mathcal{B}=B_{1}^{3} \cup \cdots \cup$ B_{k}^{3} be a union of 3-balls and $\partial B_{i}^{3}=S_{i}^{2}(i=1, \ldots, k)$. We denote by $M(\Sigma)$ the identification space \mathcal{B} / f. The space $M(\Sigma)$ is a 3-manifold as in the case of as for DS-diagram. We call $M(\Sigma)$ the manifold associated with the generalized DS-diagram Σ. Generally, $M(\Sigma)$ may not be connected. Hereafter we assume $M(\Sigma)$ is connected.

DEFINITION 1.2. Let S be a union of 2 -spheres, G be a 3-regular graph on S and $g: G \rightarrow H$ be a map from a graph G to a graph H. We call $\Omega=\langle S, G, g\rangle$ labeled graph if it satisfies the following conditions;
(1) The map g is an onto local homeomorphism.
(2) For any element $x \in V(G), g^{-1} \circ g(x)$ consists of four elements.
(3) For any element $x \in E(G), g^{-1} \circ g(x)$ consists of three elements.

DEFINITION 1.3. For two generalized DS-diagrams $\Sigma=(S, G, f)$ and $\Sigma^{\prime}=$ $\left(S^{\prime}, G^{\prime}, f^{\prime}\right)$, we say Σ is equivalent to Σ^{\prime} if there exist homeomorphisms $F: S \rightarrow S^{\prime}$ and $\underline{F}: f(S) \rightarrow f^{\prime}\left(S^{\prime}\right)$ such that $f^{\prime} \circ F=\underline{F} \circ f$. Then we denote $\Sigma \equiv \Sigma^{\prime}$.

For two labeled graphs $\Omega=\langle S, G, g\rangle$ and $\Omega^{\prime}=\left\langle S^{\prime}, G^{\prime}, g^{\prime}\right\rangle$, we say Ω is equivalent to Ω^{\prime} if there exist homeomorphisms $F: S \rightarrow S^{\prime}$ and $\underline{F}: g(G) \rightarrow g^{\prime}\left(G^{\prime}\right)$ such that $\left.g^{\prime} \circ F\right|_{G}=\underline{F} \circ g$. Then we denote $\Omega \equiv \Omega^{\prime}$.

For a generalized DS-diagram $\Sigma=(S, G, f)$, we define $g=\left.f\right|_{G}$ and $\Omega=\langle S, G, g\rangle$. Then Ω is a labeled graph. We denote this labeled graph by $L(\Sigma)$ and we call $L(\Sigma)$ the labeled graph associated with the generalized $D S$-diagram Σ. If Σ is equivalent to $\Sigma^{\prime}, L(\Sigma)$ is equivalent to $L\left(\Sigma^{\prime}\right)$.

We can represent a labeled graph by a figure. Let A be a directed edge in $g(G)$. In the case $g^{-1}(A)$ consists of 3 components, we mark the 'label' A on each of them. For a directed edge A in $g(G), A^{-1}$ is the edge with the reverse direction.

Figure 1

In the case $g^{-1}(A)$ consists of 2 components (say, e_{1} and e_{2}), we assume that $\left.g\right|_{e_{1}}: e_{1} \rightarrow$ A is 2 to 1 and that $\left.g\right|_{e_{2}}: e_{2} \rightarrow A$ is 1 to 1 . We mark the label $2 A$ on e_{1} and the label A on e_{2}. We call the 'edge' (hoop) e_{1} double type. For a generalized DS-diagram $\Sigma, L(\Sigma)$ has no hoop of double type (see Lemma 2.8).

In the case $g^{-1}(A)$ is connected, we mark the label $3 A$. We call the hoop $g^{-1}(A)$ triple type.

If a generalized DS-diagram $\Sigma=(S, G, f)$ satisfies the following conditions, Σ is a DS-diagram;
(1) The s-number of Σ is one.
(2) The graph G is connected and $V(G) \neq \emptyset$.

2. Relation between generalized DS-diagram and labeled graph

For any labeled graph Ω, there does not always exist a generalized DS-diagram Σ such that $L(\Sigma)=\Omega$. First, we consider the condition for existence.

For a generalized DS-diagram $\Sigma=(S, G, f)$, we can define an involution τ on $S-G$ as follows: Let p be any point in $S-G$. We put $f^{-1} \circ f(p)=\left\{p, p^{\prime}\right\}$. Then we define $\tau(p)=p^{\prime}$. We call τ the involution associated with the generalized DS-diagram Σ.

The involution τ is fixed point free and satisfies the following property: Let p be any point in $E(G)$ and U be a small neighborhood of p in S. And $\left\{p_{n}\right\}$ be any sequence converges to p such that every p_{n} is contained in the same component of $U-G$. Then $\tau\left(p_{n}\right)$ converges to some point $q \in E(G)$ such that $p \neq q$ and $f(p)=f(q)$.

Conversely, for a labeled graph $\Omega=\langle S, G, g\rangle$, we assume that there exists a fixed point free involution τ on $S-G$ which has the above property. We call τ an involution compatible with Ω. We can construct a closed fake surface P and a map f from S to P as follows: If $x^{\prime}=x, x^{\prime}=\tau(x)$ or $g\left(x^{\prime}\right)=g(x)$, we denote $x^{\prime} \sim x$. This relation ' \sim ' is an equivalence relation on S. We define $P=S / \sim$ and $f: S \rightarrow S / \sim$ is the projection. We can easily check that P is a closed fake surface and that f satisfies the conditions for generalized DS-diagram. Thus the next two propositions hold.

Proposition 2.1. Let Σ be a generalized DS-diagram and τ be the involution associated with Σ. Then τ is compatible with $L(\Sigma)$.

Conversely let Ω be a labeled graph and τ be an involution compatible with Ω. Then there exists a generalized DS-diagram Σ such that $L(\Sigma)=\Omega$ and the involution associated with Σ is τ.

Proposition 2.2. Let $\Sigma=(S, G, f)$ be a generalized DS-diagram, τ be the involution associated with $\Sigma, \Sigma^{\prime}=\left(S^{\prime}, G^{\prime}, f^{\prime}\right)$ be a generalized DS-diagram and τ^{\prime} be the involution associated with Σ^{\prime}.

Suppose that Σ is equivalent to Σ^{\prime}. Let F and \underline{F} be homeomorphisms which give the equivalence, namely $\underline{F} \circ f=f^{\prime} \circ F$. Then $F \circ \tau=\overline{\tau^{\prime}} \circ F$.

Conversely, suppose that $L(\Sigma)$ is equivalent to $L\left(\Sigma^{\prime}\right)$. Let F and \underline{F} be homeomorphisms which give the equivalence, namely $\left.\underline{F} \circ f\right|_{G}=\left.\left.f^{\prime}\right|_{G^{\prime}} \circ F\right|_{G}$. If $F \circ \tau=\tau^{\prime} \circ F$, then Σ is equivalent to Σ^{\prime}.

For generalized DS-diagrams Σ and Σ^{\prime}, if $\Sigma \equiv \Sigma^{\prime}$ then $L(\Sigma) \equiv L\left(\Sigma^{\prime}\right)$. The converse is not true generally. We consider the condition that the converse is true.

The first example of pair of non-equivalent generalized DS-diagrams whose associated labeled graphs are equivalent to each othe is shown in Figure 2. Edges with labels ' A ' are hoops on some annulus $\mathcal{A} \subset S$. We call this type Type I.

Figure 2

Figure 3

For a 3-manifold N, we denote by \widehat{N} the manifold obtained from N by capping off each 2-sphere component of ∂N with 3-ball. Let $\Sigma=(S, G, f)$ be a generalized DS-diagram with an associated involution τ and $\Sigma^{\prime}=\left(S, G, f^{\prime}\right)$ be a generalized DS-diagram with an associated involution τ^{\prime}. We assume that the graph G contains hoops as in Figure 2, $f^{-1} \circ$ $f(\mathcal{A})=\mathcal{A}$ and $f^{\prime-1} \circ f^{\prime}(\mathcal{A})=\mathcal{A}$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be loops parallel to hoops with labels A and X_{1} and X_{2} be annuli as in Figure 3. We assume that $\tau\left(e_{1}\right)=e_{2}, \tau\left(e_{3}\right)=e_{4}, \tau^{\prime}\left(e_{1}\right)=e_{3}$ and $\tau^{\prime}\left(e_{2}\right)=e_{4}$. Let D_{i} be a proper 2-disk in \mathcal{B} whose boundary is $e_{i}(i=1,2,3,4)$. Let V_{1} be the closure of a component of $\mathcal{B}-\left(D_{1} \cup D_{2}\right)$ that contains X_{1}. Then $f\left(D_{1}\right) \cup f\left(D_{2}\right)$ is a 2-sphere and $f\left(X_{1}\right)$ is a Möbius band. Thus the identification space $f\left(V_{1}\right)$ is homeomorphic to $P^{3}-\operatorname{Int} D^{3}$, where P^{3} is a projective space and D^{3} is a 3-ball in P^{3}. Let V_{2} be the closure of a component of $\mathcal{B}-\left(D_{3} \cup D_{4}\right)$ that contains X_{2}. The identification space $f\left(V_{2}\right)$ is also homeomorphic to $P^{3}-\operatorname{Int} D^{3}$. Let D_{0} and D_{5} be proper 2-disks whose boundaries are $\partial \mathcal{A}$. Let V be the closure of a component of $\mathcal{B}-\left(D_{0} \cup D_{5}\right)$ that contains X_{1} and $W=\mathcal{B}-\operatorname{Int} V$. Then $\widehat{f(V)}$ is homeomorphic to $P^{3} \sharp P^{3}$, where \sharp means connected sum. The identification space $f(W)$ is a 3-manifold whose boundary is a 2 -sphere. We put $M_{1}=\widehat{f(W)}$, then $M(\Sigma)$ is homeomorphic to $M_{1} \sharp P^{3} \sharp P^{3}$.

We assume that $f_{\mid S-\mathcal{A}}=f_{\mid S-\mathcal{A}}^{\prime}$. Since $f^{\prime}(W)=f(W), \widehat{f^{\prime}(W)}$ is M_{1}. The identification space $f^{\prime}(V)$ is a non-orientable 3-manifold and contains a non-separating 2-sphere $f^{\prime}\left(D_{1}\right) \cup f^{\prime}\left(D_{3}\right)$. So $\widehat{f^{\prime}(V)}$ is homeomorphic to $S^{2} \times S^{1}$, where $S^{2}{ }_{\tau} \times S^{1}$ is a twisted S^{2} bundle over S^{1}. Thus $M\left(\Sigma^{\prime}\right)$ is homeomorphic to $M_{1} \sharp S^{2}{ }_{\tau} \times S^{1}$.

Second example is shown in Figure 4. Edges with labels A and edges with labels B are hoops on some annuli \mathcal{A} and \mathcal{A}^{\prime}. We call this type Type II.

Let $\Sigma=(S, G, f)$ be a generalized DS-diagram with an associated involution τ and $\Sigma^{\prime}=\left(S, G, f^{\prime}\right)$ be a generalized DS-diagram with an associated involution τ^{\prime}. We assume that the graph G contains hoops as in Figure 4 , $f\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)=\mathcal{A} \cup \mathcal{A}^{\prime}$ and $f^{\prime}\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)=\mathcal{A} \cup \mathcal{A}^{\prime}$. Let e_{1} be a loop parallel to a hoop with a label A and X_{1} be an annulus as in Figure 5. We assume that $\tau\left(e_{1}\right)$ and $\tau^{\prime}\left(e_{1}\right)$ are as in Figure 6.

Figure 4

We assume that $f_{\mid S-\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)}=f_{\mid S-\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)}^{\prime}$ and $f\left(S-\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)\right)$ is connected. Let D_{1}, D_{2} and D_{3} be proper 2-disks in \mathcal{B} whose boundaries are $e_{1}, \tau\left(e_{1}\right)$ and $\tau^{\prime}\left(e_{1}\right)$, respectively. Let D_{0} and D_{4} be proper 2-disks whose boundaries are $\partial \mathcal{A}$ and let D_{5} and D_{6} be proper 2-disks whose boundaries are $\partial \mathcal{A}^{\prime}$.

Let V_{1} be the closure of a component of $\mathcal{B}-\left(D_{0} \cup D_{4}\right)$ that contains X_{1} and V_{2} be the closure of a component of $\mathcal{B}-\left(D_{5} \cup D_{6}\right)$ that contains $\tau\left(X_{1}\right)$. We put $W=\mathcal{B}-\operatorname{Int}\left(V_{1} \cup V_{2}\right)$. Since $f\left(D_{1}\right) \cup f\left(D_{2}\right)$ and $f^{\prime}\left(D_{1}\right) \cup f^{\prime}\left(D_{3}\right)$ are non-separating 2-spheres, $f\left(V_{1} \cup V_{2}\right)$ and
$f^{\prime}\left(V_{1} \cup V_{2}\right)$ are homeomorphic to $S^{2} \times S^{1}-\operatorname{Int}\left(D_{1}^{3} \cup D_{2}^{3}\right)$ where D_{1}^{3} and D_{2}^{3} are 3-balls in $S^{2} \times S^{1}$. The identification space $f(W)$ is a 3-manifold whose boundary consists of two 2spheres and $f(W)=f^{\prime}(W)$. We fix an orientation of V_{1}. Orientaions of $f\left(D_{5}\right) \cup f\left(D_{6}\right)$ and $f^{\prime}\left(D_{5}\right) \cup f^{\prime}\left(D_{6}\right)$ are induced by the orientation of V_{1}. Then the orientation of $f\left(D_{5}\right) \cup f\left(D_{6}\right)$ is reverse of the orientation of $f^{\prime}\left(D_{5}\right) \cup f^{\prime}\left(D_{6}\right)$. We put $M_{1}=\widehat{f(W)}$. Then one of $M(\Sigma)$ and $M\left(\Sigma^{\prime}\right)$ is homeomorphic to $M_{1} \sharp S^{2} \times S^{1} \sharp S^{2} \times S^{1}$ and the other is homeomorphic to $M_{1} \sharp S^{2} \times S^{1} \sharp S^{2}{ }_{\tau} \times S^{1}$. If M_{1} is orientable, the two manifolds are not homeomorphic to each other.

Third example is shown in Figure 7. An edge with label ' $3 A$ ' is a hoop on some annulus \mathcal{A}. We call this type Type III.

Figure 7

Let $\Sigma=(S, G, f)$ be a generalized DS-diagram with an associated involution τ and $\Sigma^{\prime}=\left(S, G, f^{\prime}\right)$ be a generalized DS-diagram with an associated involution τ^{\prime}. We assume that the graph G contains hoops as in Figure $7, f(\mathcal{A})=\mathcal{A}, f^{\prime}(\mathcal{A})=\mathcal{A}$ and $f_{\mid S-\mathcal{A}}=f_{\mid S-\mathcal{A}}^{\prime}$. Further we assume that $\tau_{\mid \mathcal{A}}$ is the composition of the rotation of angle $\frac{2 \pi}{3}$ along the hoop and the reflection about the hoop and $\tau_{\mid \mathcal{A}}^{\prime}$ is the composition of the rotation of angle $\frac{4 \pi}{3}$ along the hoop and the reflection about the hoop.

So one of $M(\Sigma)$ and $M\left(\Sigma^{\prime}\right)$ is homeomorphic to $M_{1} \sharp L(3,1)$ for some 3-manifold M_{1} and the other is homeomorphic to $M_{1} \sharp L(3,2)$ where $L(p, q)$ is a lens space of type (p, q). If M_{1} does not admit an orientation reversing self homeomorphism, the two manifolds are not homeomorphic to each other.

Theorem 2.3. Let Σ and Σ^{\prime} be generalized DS-diagrams such that $L(\Sigma) \equiv L\left(\Sigma^{\prime}\right)$. If $L(\Sigma)$ does not admit Type I, II and III, then $\Sigma \equiv \Sigma^{\prime}$.

Corollary 2.4. Let Σ and Σ^{\prime} be generalized DS-diagrams such that $L(\Sigma) \equiv$ $L\left(\Sigma^{\prime}\right)$. If $L(\Sigma)$ does not admit hoops, then $\Sigma \equiv \Sigma^{\prime}$.

Corollary 2.5. Let Σ and Σ^{\prime} be DS-diagrams such that $L(\Sigma) \equiv L\left(\Sigma^{\prime}\right)$, then $\Sigma \equiv \Sigma^{\prime}$.

For proving Theorem 2.3, we will prove the next two propositions.
Proposition 2.6. Let $\Sigma=(S, G, f)$ and $\Sigma^{\prime}=\left(S^{\prime}, G^{\prime}, f^{\prime}\right)$ be generalized $D S$ diagrams such that $L(\Sigma) \equiv L\left(\Sigma^{\prime}\right)$ and assume that $L(\Sigma)$ does not admit Type I, II and III. Let $N(G ; S)$ be a regular neighborhood of G in S such that $f^{-1} \circ f(N(G ; S))=N(G ; S)$ and $N\left(G^{\prime} ; S^{\prime}\right)$ be a regular neighborhood of G^{\prime} in S^{\prime} such that $f^{\prime-1} \circ f^{\prime}\left(N\left(G^{\prime} ; S^{\prime}\right)\right)=N\left(G^{\prime} ; S^{\prime}\right)$. Then there exist a homeomorphism $F: S \rightarrow S^{\prime}$ and a homeomorphism $\underline{F}: f(N(G ; S)) \rightarrow$ $f^{\prime}\left(N\left(G^{\prime} ; S^{\prime}\right)\right)$ such that $\left.f^{\prime} \circ F\right|_{N(G ; S)}=\left.\underline{F} \circ f\right|_{N(G ; S)}$.

Proposition 2.7. Let Σ and Σ^{\prime} be generalized DS-diagrams such that $L(\Sigma) \equiv$ $L\left(\Sigma^{\prime}\right)$ and assume that there exist homeomorphisms F and \underline{F} such as in Proposition 2.6. Then Σ is equivalent to Σ^{\prime}.

For proving Propositions 2.6, we need some lemmata.
Lemma 2.8. Let Σ be a generalized DS-diagram. Then $L(\Sigma)$ does not have a hoop of double type.

Proof. We assume that Σ has a hoop e_{1} with label 2C. We put $e_{2}=f^{-1}(C)-e_{1}$. Let τ be the involution associated with Σ and $N(G ; S)$ be a regular neighborhood of G in S such that $f^{-1} \circ f(N(G ; S))=N(G ; S)$. For the component X_{1} of $N(G ; S)$ which contains $e_{1}, \tau\left(X_{1}-e_{1}\right)=X_{1}-e_{1}$. So for the component X_{2} of $N(G ; S)$ which contains e_{2}, $\tau\left(X_{2}-e_{2}\right)=X_{2}-e_{2}$. This contradicts that τ is compatible.

Lemma 2.9. Let τ and τ^{\prime} be involutions associated with Σ and Σ^{\prime}, respectively. If there exist homeomorphisms F and \underline{F} such as in Proposition 2.6, then $\left.F \circ \tau\right|_{N(G ; S)-G}=$ $\left.\tau^{\prime} \circ F\right|_{N(G ; S)-G}$. Conversely If there exists a homeomorphism $F: S \rightarrow S^{\prime}$ such that $F \circ$ $\left.\tau\right|_{N(G ; S)-G}=\left.\tau^{\prime} \circ F\right|_{N(G ; S)-G}$, then there exists a homeomorphism $\underline{F}: f(N(G ; S)) \rightarrow$ $f^{\prime}\left(N\left(G^{\prime} ; S^{\prime}\right)\right)$ such as in Proposition 2.6.

The proof of Lemma 2.9 is easy. We omit the proof.
We begin to prove Proposition 2.6. Since $L(\Sigma) \equiv L\left(\Sigma^{\prime}\right)$, there exist homeomorphisms $F^{\prime}: S \rightarrow S^{\prime}$ and $\underline{F^{\prime}}: f(G) \rightarrow f^{\prime}(G)$ such that $\left.f^{\prime} \circ F^{\prime}\right|_{G}=\underline{F^{\prime}} \circ f$. By exchanging $\left\langle S^{\prime}, G^{\prime},\left.f^{\prime}\right|_{G^{\prime}}\right\rangle$ for $\left\langle F^{\prime-1}\left(S^{\prime}\right), F^{\prime-1}\left(G^{\prime}\right),\left.\underline{F}^{\prime-1} \circ f^{\prime} \circ F^{\prime}\right|_{G}\right\rangle$, we assume that $L(\Sigma)=\langle S, G, g\rangle=L\left(\Sigma^{\prime}\right)$. Let τ be the involution associated with Σ and τ^{\prime} be the involution associated with Σ^{\prime}. We may assume that there exists a regular neighborhood $N(G ; S)$ such that $\tau(N(G ; S)-G)=N(G ; S)-G$ and $\tau^{\prime}(N(G ; S)-G)=N(G ; S)-G$.

Since a regular neighborhood $N(G ; S)$ is a block bundle (see [9], [10] and [12] for definition) over G, there exists a projection map $\pi: N(G ; S) \rightarrow G$. For each point $x \in$ $G-V(G), \pi^{-1}(x)$ is an arc. For each point $x \in V(G), \pi^{-1}(x)$ is a graph with one degree 3 vertex and three degree 1 vertices as in Figure 8. Let X be a component of $N(G ; S)-G$ and
$L=\partial \bar{X}-G$. If $\sharp \pi_{\mid L}^{-1}(\bar{X} \cap V(G))$ is n, we call \bar{X} an n-gon. In Figure $8 \bar{X}$ is a 4-gon. If \bar{X} is a 0 -gon, $\bar{X} \cap G$ is a hoop. Conversely, if $\bar{X} \cap G$ is a hoop, \bar{X} is a 0 -gon.

Figure 8

Lemma 2.10. If $\bar{X} \cap V(G) \neq \emptyset$ for a component X of $N(G ; S)-G$, then $\tau(X)=$ $\tau^{\prime}(X)$.

Proof. We assume that there exists a component X such that $\tau(X) \neq \tau^{\prime}(X)$. Since $\bar{X} \cap V(G)$ is not empty, \bar{X} is an n-gon $(n \geq 1)$.

First we consider the case $n=1$. Let A be a label of $\bar{X} \cap G$. Because \bar{X} is a 1-gon, $\tau(X) \neq X$ and $\tau^{\prime}(X) \neq X$. There exist four 1-gons $\bar{X}, \overline{\tau(X)}, \overline{\tau^{\prime}(X)}$ and $\overline{\tau^{\prime} \circ \tau(X)}$ with labels A. This contradicts that there exist at most three edges with labels A.

Next we assume $n \geq 2$. Let e be any edge which is contained in $\bar{X} \cap G$. Let A be a label of e. We consider the subcase $\tau(X)=X$. Then $\bar{X} \cap G$ contains the other edge e_{1} with the label A. So $\overline{\tau^{\prime}(X)} \cap G$ contains two edges with labels A. Because there exist at most three edges with labels $A, \bar{X} \cap \overline{\tau^{\prime}(X)}$ contains an edge e or e_{1}. Let B be a label of the next edge of e in $\bar{X} \cap G$. Then the situation is as in Figure 9. But this contradicts that f is a local homeomorphism.

We consider the subcase $\tau(X) \neq X$ and $\tau^{\prime}(X) \neq X$. Then each of $\bar{X} \cap G, \overline{\tau(X)} \cap G$, $\overline{\tau^{\prime}(X)} \cap G$ and $\overline{\tau^{\prime} \circ \tau(X)} \cap G$ has an edge with label A. If a set of edges $\bar{X} \cap \overline{\tau(X)}$ or $\bar{X} \cap \overline{\tau^{\prime}(X)}$ contains an edge e, an involution τ or τ^{\prime} is not compatible. Because there exist at most three edges with label A, a set of edges $\bar{X} \cap \overline{\tau \circ \tau^{\prime}(X)}$ contains an edge e with label A or a set of edges $\overline{\tau(X)} \cap \overline{\tau^{\prime}(X)}$ contains an edge e_{1} with label A. Let B be a label of the next edge of e in $\bar{X} \cap G$ or a label of the next edge of e_{1} in $\overline{\tau(X)} \cap G$. Then the situation is as in Figure 10. But this contradicts that f is a local homeomorphism. This completes the proof of Lemma 2.10.

Since there does not exist an edge of triple type, if $\tau(X)=\tau^{\prime}(X)$ for any component X of $N(G ; S)-G$, by isotopy, we may assume $\left.\tau\right|_{N(G ; S)-G}=\left.\tau^{\prime}\right|_{N(G ; S)-G}$. We put $F=i d$

Figure 9

Figure 10
where $i d$ is the identity map on S, then $\tau \circ F=F \circ \tau^{\prime}$. By Lemma 2.9, Proposition 2.6 has been proved in this case.

So we assume that there exists a component X of $N(G ; S)-G$ such that $\tau(X) \neq \tau^{\prime}(X)$. By Lemma 2.10, $\bar{X} \cap G$ is a hoop. Let A be a label of $\bar{X} \cap G$.

Let Y be a component of $S-G$ such that $X \subset Y$. If $\bar{Y} \cap V(G) \neq \emptyset$, then $\tau(Y)=\tau^{\prime}(Y)$. The edges $\overline{\tau(X)} \cap G$ and $\overline{\tau^{\prime}(X)} \cap G$ with labels A are contained in $\overline{\tau(Y)}$. So \bar{Y} contains the edges $\bar{X} \cap G$ and $\overline{\tau^{\prime} \circ \tau(X)} \cap G$ with labels A. If $\tau(Y)=Y, \partial \bar{Y}$ contains four hoops with labels A. If $\tau(Y) \neq Y, \bar{Y} \cap \overline{\tau(Y)}$ is non-empty and is a hoop with label A. This contradicts that involutions are compatible. So $\bar{Y} \cap V(G)$ is empty.

First we consider the case $\tau(Y)=Y$. Then \bar{Y} has the edges $\bar{X} \cap G$ and $\overline{\tau(X)} \cap G$ with labels A. Sinece $\overline{\tau^{\prime}(Y)}$ has edges $\overline{\tau^{\prime}(X)} \cap G$ and $\overline{\tau^{\prime} \circ \tau(X)} \cap G$ with labels A, we obtain $\tau^{\prime}(Y) \neq Y$ and $\bar{Y} \cap \overline{\tau^{\prime}(Y)} \neq \emptyset$.

If $\bar{Y} \cap G \neq(\bar{X} \cap G) \cup(\overline{\tau(X)} \cap G)$, the genus of S is positive. So $\bar{Y} \cap G=(\bar{X} \cap G) \cup$ $(\overline{\tau(X)} \cap G)$ and \bar{Y} is an annulus. If labels are as in Figure 11, τ has fixed points. In this case type I occurs, this is a contradiction.

Next we consider the case $\tau(Y) \neq Y$ and $\tau^{\prime}(Y) \neq Y$. If $\tau(Y)=\tau^{\prime}(Y), Y$ and $\tau(Y)$ have two edges with labels A. Then τ or τ^{\prime} is not compatible, so $\tau(Y) \neq \tau^{\prime}(Y)$.

We assume that \bar{Y} is not homeomorphic to a 2-disk. There exists a component X_{1} of $N(G ; S)-G$ such that $X_{1} \subset Y$ and $X \neq X_{1}$. Let B be the label of $\overline{X_{1}} \cap G$. Each of $\bar{Y}, \overline{\tau(Y)}$, $\overline{\tau^{\prime}(Y)}$ and $\overline{\tau^{\prime} \circ \tau(Y)}$ has an edge with label A and an edge with label B. So $\bar{Y} \cap \overline{\tau^{\prime} \circ \tau(Y)} \neq \emptyset$ and $\overline{\tau(Y)} \cap \overline{\tau^{\prime}(Y)} \neq \emptyset$. Then we obtain $\bar{Y} \cap G=(\bar{X} \cap G) \cup\left(\overline{X_{1}} \cap G\right)$, so type II occurs. This is a contradiction. Thus \bar{Y} is homeomorphic to a 2-disk.

Then $\bar{Y}, \overline{\tau(Y)}, \overline{\tau^{\prime}(Y)}$ and $\overline{\tau^{\prime} \circ \tau(Y)}$ are 2-disks whose boundaries are hoops with labels A. Let Z_{1} and Z_{2} be the other components of $S-G$ that have an edge with label A. If \bar{Z}_{1}

Figure 11
is 2-disk (then \bar{Z}_{2} is also 2-disk), then $S=S_{1}^{2} \cup S_{2}^{2} \cup S_{3}^{2}$ and $H=\{A\}$. If \bar{Z}_{1} is not 2-disk, then either $Z_{1}=Z_{2}$ has two edges with labels A or $\tau\left(Z_{1}\right)=\tau^{\prime}\left(Z_{1}\right)=Z_{2} \neq Z_{1}$. In all cases we can easily construct a homeomorphism F on S such that $F \circ \tau=\tau^{\prime} \circ F$ on $N(G ; S)$. This completes the proof of Proposition 2.6.

Next we prove Proposition 2.7. Let F be the homeomorphism on S constructed above. We change F on $S-N(G ; S)$. Let Y be any component of $S-G$ and $X_{1}, X_{2}, \ldots, X_{k}$ be the components of $N(G ; S)-G$ such that $X_{i} \subset Y(i=1, \ldots, k)$. We divide the proof into two cases: (A); $\tau(Y) \neq Y$ and (B); $\tau(Y)=Y$.

In the case (A), for $x \in \tau(Y)$, we redefine $F(x)=\tau^{\prime} \circ F \circ \tau(x)$. If x is in $\cup X_{i}, F(x)$ is not changed.

In the case (B), $\pi: Y \rightarrow Y / \tau$ and $\pi^{\prime}: Y \rightarrow Y / \tau^{\prime}$ are 2-fold coverings. If τ is orientation preserving, τ^{\prime} is orientation preserving. Thus Y / τ is homeomorphic to Y / τ^{\prime}. There exist a homeomorphsim $\underline{F}: \cup X_{i} / \tau \rightarrow \cup X_{i} / \tau^{\prime}$. We can extend \underline{F} to a homeomorphism from Y / τ to Y / τ^{\prime}, namely \underline{F}. We redefine F as a lift $F: Y \rightarrow Y$ of \underline{F}. We choose the lift which is not changed on $N(G ; S) \cap Y$. This completes the proof of Proposition 2.7.

3. G-move and S-move

Let $\Sigma=(S, G, f)$ be a generalized DS-diagram with an associated involution τ, ℓ be a loop on S and q be a point on G. We say that q is a limit point for ℓ if the following holds; There exist a point p in $\ell \cap G$ and a sequence $\left\{p_{n}\right\}$ such that every p_{n} is contained the same component of $\ell-G, p=\lim _{n \rightarrow \infty} p_{n}$ and $q=\lim _{n \rightarrow \infty} \tau\left(p_{n}\right)$. We say that a loop ℓ is in general position for Σ if it satisfies the following conditions;
(1) The loop ℓ does not intersect $V(G)$.
(2) The loop ℓ is transversal with G and transversal with $\tau(\ell-G)$.
(3) Any limit point for ℓ is not contained in ℓ.

DEFINITION 3.1. Let $\Sigma=(S, G, f)$ be a generalized DS-diagram with an associated involution τ, where $S=S_{1}^{2} \cup \cdots \cup S_{k}^{2}$. Let ℓ be a loop on S_{1}^{2} and suppose that ℓ is in general position for Σ. We put $\mathcal{B}=B_{1}^{3} \cup \cdots \cup B_{k}^{3}$ and $\partial \mathcal{B}=S$. We extend f to a map from \mathcal{B} to
$M(\Sigma)$. There is a proper 2 -disk D in \mathcal{B} such that $\partial D=\ell$.
Let \widetilde{S}_{i} be a 2 -sphere ($i=1,2$). We put $S^{\prime}=\widetilde{S}_{1} \cup \widetilde{S}_{2} \cup S_{2}^{2} \cup \cdots \cup S_{k}^{2}$ and $\widetilde{D}_{1} \cup \widetilde{D}_{2}=S_{1}^{2}-\ell$.
So $\widetilde{D}_{i} \cup D$ is 2 -sphere, we can define a homeomorphism $g_{i}: \widetilde{S}_{i} \rightarrow \widetilde{D}_{i} \cup D(i=1,2)$. We put $P^{\prime}=P \cup f(D)$. We define a map $f^{\prime}: S^{\prime} \rightarrow P^{\prime}$ as follows;

$$
f^{\prime}(x)= \begin{cases}f(x) & \left(x \in S_{j}^{2}, j \neq 1\right) \\ f\left(g_{1}(x)\right) & \left(x \in \widetilde{S}_{1}\right) \\ f\left(g_{2}(x)\right) & \left(x \in \widetilde{S}_{2}\right)\end{cases}
$$

We define $G^{\prime}=\left\{x \in S^{\prime} \mid \sharp f^{\prime-1} \circ f^{\prime}(x) \geq 3\right\}$. Then the set of vertices of G^{\prime} is $\left\{x \in S^{\prime} \mid \sharp f^{\prime-1} \circ\right.$ $\left.f^{\prime}(x)=4\right\}$. $\Sigma^{\prime}=\left(S^{\prime}, G^{\prime}, f^{\prime}\right)$ is a generalized DS-diagram and $M\left(\Sigma^{\prime}\right)$ is homeomorphic to $M(\Sigma)$. Then this operation $\Sigma \Rightarrow \Sigma^{\prime}$ is called S-move, S-move along ℓ or spoon cut.

Suppose that $k \geq 2$. Let X_{1} and X_{2} be faces of Σ (components of $S-G$) such that $X_{i} \subset S_{i}^{2}(i=1,2)$. We assume that $\overline{X_{1}}$ and $\overline{X_{2}}$ are 2-disks and $\tau\left(X_{1}\right)=X_{2}$. Let τ_{0} be the homeomorphism on $\overline{X_{1}} \cup \overline{X_{2}}$ which is the extension of $\left.\tau\right|_{X_{1} \cup X_{2}}$. We put that $S_{1}^{\prime}=$ $\left(S_{1}^{2}-X_{1}\right) \cup_{\tau_{0}}\left(S_{2}^{2}-X_{2}\right), S^{\prime}=S_{1}^{\prime} \cup S_{3}^{2} \cup \cdots \cup S_{k}^{2}$ and $P^{\prime}=P-f\left(X_{1}\right)$. We define a map $f^{\prime}: S^{\prime} \rightarrow P^{\prime}$ by $f^{\prime}(x)=f(x)$. We define that $G^{\prime}=\left\{x \in S^{\prime} \mid \sharp f^{\prime-1} \circ f^{\prime}(x) \geq 3\right\}$. $\Sigma^{\prime}=\left(S^{\prime}, G^{\prime}, f^{\prime}\right)$ is a generalized DS-diagram and $M\left(\Sigma^{\prime}\right)$ is homeomorphic to $M(\Sigma)$. Then this operation $\Sigma \Rightarrow \Sigma^{\prime}$ is called G-move, G-move along X_{1} or glue.

If a generalized DS-diagram Σ^{\prime} is obtained from a generalized DS-diagram Σ by G move, Σ is obtained from Σ^{\prime} by S-move. Conversely if a generalized DS-diagram Σ^{\prime} is obtained from a generalized DS-diagram Σ by S-move, Σ is obtained from Σ^{\prime} by G-move.

A successive application of a finite number of G-moves and S-moves is called $G S$ deformation. $G S$-deformation is an equivalence relation. If there exists a $G S$-deformation $\Sigma \Longrightarrow \Sigma^{\prime}, M(\Sigma)$ is homeomorphic to $M\left(\Sigma^{\prime}\right)$.

Next is the main theorem for $G S$-deformation.
THEOREM 3.2. Let Σ and Σ^{\prime} be generalized DS-diagrams such that $M(\Sigma)$ is homeomorphic to $M\left(\Sigma^{\prime}\right)$. Then there exists a GS-deformation $\Sigma \Longrightarrow \Sigma^{\prime}$.

Proof of Theorem 3.2 depends on the following theorem ([11], [13], [1], [3]).
THEOREM 3.3 (Reidemeister-Singer-Chillingworth-Craggs). Any two Heegaard splittings which give homeomorphic manifolds can be equivalent by stabilizing.

A Heegaard splitting of 3-manifold M is a representation of M as $H_{1} \cup H_{2}$, where H_{1} and H_{2} are homeomorphic to handlebodies of some fixed genus g and $H_{1} \cap H_{2}=\partial H_{1}=$ $\partial H_{2}=F_{g}$ is the Heegaard surface. The splitting is denoted by $\left(H_{1}, H_{2}\right)$ or $\left(M, F_{g}\right)$.

Let $\vec{D}_{i}=D_{i, 1} \cup D_{i, 2} \cup \cdots \cup D_{i, g}$ be a complete system of meridian disks of $H_{i}(i=1,2)$. A Heegaard diagram is a Heegarrd splitting $\left(H_{1}, H_{2}\right)$ with complete systems of meridian disks \vec{D}_{1} and \vec{D}_{2}. The diagram is denoted by $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$.

Let $V=D_{1, g+1} \times[-1,1]$ and $W=D_{2, g+1} \times[-1,1]$ be handles in $H_{2}-\vec{D}_{2}$ where $D_{i, g+1}$ is a 2-disk $(i=1,2)$ and $H_{1} \cap V=\partial H_{1} \cap V=D_{1, g+1} \times\{-1\} \cup D_{1, g+1} \times\{1\}$. Furthermore we assume that $\partial D_{2, g+1}$ is $L_{1} \cup L_{2}$ where L_{i} is an arc $(i=1,2), L_{1} \cap L_{2}=$ $\partial L_{1}=\partial L_{2}, V \cap W=\partial V \cap \partial W=L_{2} \times[-1,1], H_{1} \cap W=\partial H_{1} \cap W=L_{1} \times[-1,1]$ and $(V \cup W) \cap \vec{D}_{1}=\emptyset$. We put $H_{1}^{\prime}=H_{1} \cup V, H_{2}^{\prime}=H_{2}-\operatorname{Int} V, \vec{D}_{1}^{\prime}=\vec{D}_{1} \cup D_{1, g+1} \times\{0\}$ and $\vec{D}_{2}^{\prime}=\vec{D}_{2} \cup D_{2, g+1} \times\{0\}$. Then $\left(H_{1}^{\prime}, H_{2}^{\prime} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}\right)$ is a Heegaard diagram. This operation which change $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$ into ($H_{1}^{\prime}, H_{2}^{\prime} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}$) is called attachings of trivial handles. A finite application of attachings of trivial handles is called stabilizing.

For a Heegaard diagram $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$, we can construct a generalized DS-diagram Σ as follows; Let S_{1}^{2} and S_{2}^{2} be 2-spheres and $g_{i}: S_{i}^{2} \rightarrow \partial H_{i} \cup \vec{D}_{i}$ be an onto local homeomorphism, where $\sharp g_{i}^{-1}(y)=1$ fot $y \in \partial H_{i}-\vec{D}_{i}$ and $\sharp g_{i}{ }^{-1}(y)=2$ for $y \in \vec{D}_{i}(i=1,2)$. We put $S=S_{1}^{2} \cup S_{2}^{2}$. Let $f=g_{1} \cup g_{2}: S \rightarrow \partial H_{1} \cup \vec{D}_{1} \cup \vec{D}_{2}$ be a local homeomorphism and $G=f^{-1}\left(\partial \vec{D}_{1} \cup \partial \vec{D}_{2}\right)$. Then $\Sigma=(S, G, f)$ is a generalized DS-diagram. We call Σ the generalized DS-diagram defined by Heegaard diagram $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$.

Definition 3.4. Let $\Sigma=(S, G, f)$ be a generalized DS-diagram. X is a face of Σ. X^{\prime} is the face such that $f(X)=f\left(X^{\prime}\right)$ and $X \neq X^{\prime}$. If $X \subset S_{i}^{2}$ and $X^{\prime} \subset S_{i}^{2}$ for some i, we call X self type. Σ is called type H if it satisfies the following conditions;
(1) The s-number of Σ is equal to 2 .
(2) If X is self type, \bar{X} is homeomorphic to a 2-disk.
(3) If X and Y are self type and $X \neq Y$, then $\bar{X} \cap \bar{Y}=\emptyset$.

Lemma 3.5. If a generalized DS-diagram Σ is defined by Heegaard diagram, then Σ is of type H. Conversely if Σ is of type H, Σ is defined by some Heegaard diagram.

Proof. Suppose that $\Sigma=(S, G, f)$ be a generalized DS-diagram which is defined by Heegaard diagram, then the s-number of Σ is equal to 2 . If a face X of Σ is self type, $f(\bar{X})$ is a meridian disk of Heegaard diagram. So \bar{X} is a 2-disk. Suppose that faces X and Y are self type and $X \neq Y . f(\bar{X})$ and $f(\bar{Y})$ are meridian disks. So $f(\bar{X})$ and $f(\bar{Y})$ may intersect, but \bar{X} and \bar{Y} does not intersect. Thus Σ is of type H .

Suppose that $\Sigma=(S, G, f)$ be a generalized DS-diagram of type H. Let p be any vertex of G. There exist three faces X_{1}, X_{2} and X_{3} whose closure contain the vertex p. We show one of their faces is self type. We assume that none of the faces is self type. There exist three points p_{1}, p_{2}, p_{3} on another sphere such that $f\left(p_{1}\right)=f\left(p_{2}\right)=f\left(p_{3}\right)=f(p)$. We assume that faces around vertices p, p_{1}, p_{2} and p_{3} are as in Figure 12. For a face X we denote X^{\prime} by the face such that $f(X)=f\left(X^{\prime}\right)$ and $X \neq X^{\prime}$. Faces Y_{1}, Y_{2} and Y_{3} are self type and $\bar{Y}_{1} \cap \bar{Y}_{2}$ is not empty. So, by the condition (3) of type H , a face Y_{1} is a face Y_{2}. Then \bar{Y}_{1} is not a 2-disk. This contradicts the condition (2) of type H . Thus one of the faces is self type.

We put $S=S_{1}^{2} \cup S_{2}^{2}$ and $\mathcal{B}=B_{1}^{3} \cup B_{2}^{3}$. For $i(i=1,2)$, we denote U_{i} by the union of closures of faces in S_{i}^{2} which are selft type. We put $H_{i}=B_{i}^{3} / f_{\mid U_{i}}$. Then H_{1} and H_{2} are

Figure 12
handlebodies and $\left(H_{1}, H_{2} ; f\left(U_{1}\right), f\left(U_{2}\right)\right)$ is a Heegaard diagram.
In their papers ([6], [7]) elementary deformation of type I, elementary deformation of type II and piping are defined as deformations for DS-diagram. We can regard their deformations as for generalized DS-diagram. Piping or piping along L is the operation as in Figure 13. Elementary deformation of type I is the operation as in Figure 14. Elementary deformation of type II is the operation as in Figure 15.

PROPOSITION 3.6. Elementary deformation of type I, elementary deformation of type $I I$ and piping are GS-deformations.

Proof. First we consider piping. Let ℓ be a loop whose labels are a_{1}, a_{2}, a_{3} and a_{4} as in Figure 16. We apply S-move along ℓ to given generalized DS-diagram. We obtain a generalized DS-diagram as in Figure 17.

Let ℓ^{\prime} be a loop whose labels are b_{1} and b_{2} in Figure 17. We apply S-move along ℓ^{\prime}. Next we apply G-move along the face whose labels are $a_{1} A_{2}^{-1}$ and G-move along the face whose

B

Figure 13

\Longleftrightarrow

Figure 14

Figure 15
labels are $a_{3} B_{2}^{-1}$. The generalized DS-diagram obtained by their operatons is the generalized DS-diagram obtained by piping along L.

Elementary deformation of type I is piping along L in Figure 18.
Let ℓ be a loop whose labels are a_{1}, a_{2} and a_{3}, and W be a region in Figure 19. We apply S-moves along ℓ, and we apply G-move along the face W. The generalized DSdiagram obtained by their operations is the generalized DS-diagram obtained by elementary deformation of type II.

Figure 16

Figure 17

Figure 18

We note that their deformations do not change s-number.
LEmma 3.7. For a generalized DS-diagram Σ, there exists a GS-deformation $\Sigma \Longrightarrow$ Σ^{\prime} such that the closure of any face of Σ^{\prime} is homeomorphic to a 2 -disk. We can choose a GSdeformation as finite application of pipings.

Figure 19

Figure 20

Proof. Let X be a face of Σ which is not homeomorphic to an open 2-disk. By piping we can change X into an open 2-disk. So we assume that all faces of Σ are open 2-disks.

Suppose that \bar{X} is not homeomorphic to a 2-disk. X is as in Figure 20 where X^{\prime} is a face such that $f(X)=f\left(X^{\prime}\right)$ and $X \neq X^{\prime}$. Let $Y_{1}, \ldots, Y_{s}, Z_{1}, \ldots, Z_{t}$ be adjacent faces to X^{\prime}. If there exist Y_{i} and Z_{j} such that $Y_{i} \neq Z_{j}$, we choose an arc L on X^{\prime} connecting Y_{i} and Z_{j}. By piping along L, we change X into two faces $\widetilde{X_{1}}$ and $\widetilde{X_{2}}$ where the number of boundary components of $\widetilde{\widetilde{X}_{i}}$ is less than that of $\bar{X}(i=1,2)$. This operation does not generate a face whose closure is not homeomorphic to a 2-disk.

If there does not exist such Y_{i} and Z_{j}, then $Y_{1}=Y_{2}=\cdots=Y_{s}=Z_{1}=\cdots=Z_{t}$. There exists an edge e of $\overline{X^{\prime}}$ such that a label of e is not a label of the other edge of $\overline{X^{\prime}}$. Let L_{1} be an arc on $\overline{Y_{1}}$ connecting an edge with a label B and the edge e. By piping along L_{1}, Y_{1} changes into two faces U_{1} and U_{2}. This operation does not generate a face whose closure is not homeomorphic to a 2-disk. There exists an edges e_{1} such that is contained in $\overline{U_{1}}$ and is contained in $\overline{Y_{i}} \cap \overline{X^{\prime}}$ for some i. And there exists an edges e_{2} such that is contained in $\overline{U_{2}}$ and is contained in $\overline{Z_{j}} \cap \overline{X^{\prime}}$ for some j. Let L an arc on X^{\prime} connecting e_{1} and e_{2}. By piping along L, we change X into \widetilde{X} where the number of boundary components of \widetilde{X} is less than of \bar{X}. This operation does not generate a face whose closure is not homeomorphic to a 2-disk. This completes the proof.

Lemma 3.8. For a generalized DS-diagram Σ, there exist a generalized DS-diagram Σ^{\prime} which is of type H and a GS-deformation $\Sigma \Longrightarrow \Sigma^{\prime}$.

Proof. By Lemma 3.7, we may assume that the closure of any face of Σ is homeomorphic to a 2-disk. If $s(\Sigma)$ is greater than two, by G-move, we may assume $s(\Sigma)$ is equal to two. If $s(\Sigma)$ is equal to one, by S-move, we may assume $s(\Sigma)$ is equal to two. If this operation generates a face X such that X is not an open 2-disk or \bar{X} is not homeomorphic to a 2-disk, we apply Lemma 3.7 once more.

We put $S=S_{1}^{2} \cup S_{2}^{2}$. Suppose that there exist two different faces X and Y on S_{1}^{2} such that X and Y are self type and $\bar{X} \cap \bar{Y} \neq \emptyset$. We assume that there does not exist a face W such that W is not self type, $\bar{W} \cap \bar{X} \neq \emptyset$ and $\bar{W} \cap \bar{Y} \neq \emptyset$ as in Figure 21 for any X and Y such that X and Y are self type and $\bar{X} \cap \bar{Y} \neq \emptyset$. Then all faces on S_{1}^{2} are self type. So $M(\Sigma)$ is not connected, this is a contradiction. There exists a face W such that W is not self type, $\bar{W} \cap \bar{X} \neq \emptyset$ and $\bar{W} \cap \bar{Y} \neq \emptyset$ as in Figure 21 for some X and Y.

Figure 21

Let W_{1}, W_{2}, U, U_{1} and U_{2} be faces as in Figure 21. Since W is not self type, W_{1} and W_{2} are not self type. If U is self type, then U_{1} and U_{2} are self type and $W \neq U, W_{1} \neq U_{1}$ and $W_{2} \neq U_{2}$. By elementary deformation of type II, we obtain Figure 22.

This operation may change a face whose closure is a 2-disk into a face whose closure is not homeomorphic to a 2-disk. If $W=U$, this operation change a face W into a face whose closure is not homeomorphic to a 2-disk. But then U is not self type. A face which is not self type can be a face whose closure is not homeomorphic to a 2-disk. It is the same as in the cases $W_{1}=U_{1}$ and $W_{2}=U_{2}$. Thus we obtain a generalized DS-diagram of type H .

Lemma 3.9. Let Σ be a generalized DS-diagram defined by Heegaard diagram $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$ and Σ^{\prime} be a generalized DS-diagram defined by Heegaard diagram $\left(H_{1}^{\prime}, H_{2}^{\prime} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}\right) .\left(H_{1}^{\prime}, H_{2}^{\prime} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}\right)$ is obtained from $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$ by attachings of trivial handles. Then there exists a GS-deformation $\Sigma \Longrightarrow \Sigma^{\prime}$.

Proof. Let $V=D_{1, g+1} \times[-1,1]$ and $W=D_{2, g+1} \times[-1,1]$ be handles as in the definition of attachings of trivial handles. So $(V \cup W) \cap H_{1}$ is a 2-disk, $\ell=\partial\left((V \cup W) \cap H_{1}\right)$ is a loop on S. So $L_{2} \times[-1,1]$ is a 2-disk, $\ell_{1}=\partial\left(L_{2} \times[-1,1]\right)$ is a loop on $\partial(V \cup W)$.

We apply S-moves along a loop corresponding to ℓ and S-moves along a loop corresponding to ℓ_{1}. Next we apply G-moves along the face $D_{1, g+1} \times\{1\}$ and G-moves along the

Figure 22
face $D_{2, g+1} \times\{1\}$. The generalized DS-diagram obtained by their operations is a generalized DS-diagram defined by Heegaard diagram ($H_{1}^{\prime}, H_{2}^{\prime} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}$).

Lemma 3.10. Let Σ be a generalized DS-diagram defined by Heegaard diagram $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$ and Σ^{\prime} be a generalized DS-diagram defined by Heegaard diagram $\left(H_{1}, H_{2} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}\right)$. Then there exists $G S$-deformation $\Sigma \Rightarrow \Sigma^{\prime}$.

Proof. First we consider the case $\vec{D}_{1} \cap \vec{D}_{1}^{\prime}=\emptyset$. If each component of \vec{D}_{1}^{\prime} is parallel to some component of \vec{D}_{1}, then $\Sigma \equiv \Sigma^{\prime}$. Suppose that there exists $D_{1, j}^{\prime}$ which does not parallel to any component of \vec{D}_{1}. Let $D_{1, i}^{+}$and $D_{1, i}^{-}$be 2 -disks on S_{1}^{2} corresponding to $D_{1, i}(i=$ $1, \ldots, g)$. We put $\tilde{D}_{1} \cup \tilde{D}_{2}=S_{1}^{2}-g_{1}^{-1}\left(\partial D_{1, j}^{\prime}\right)$. For all i, if both $D_{1, i}^{+}$and $D_{1, i}^{-}$are contained in \tilde{D}_{1} or are contained in $\tilde{D}_{2}, D_{1, j^{\prime}}$ splits H_{1}. This is a contradiction. So there exist $D_{1, i}^{+}$and $D_{1, i}^{-}$such that $D_{1, i}^{+} \subset \tilde{D}_{1}$ and $D_{1, i}^{-} \subset \tilde{D}_{2}$. We apply S-move along $g_{1}^{-1}\left(\partial D_{1, j}^{\prime}\right)$ and G-move along $D_{1, i}^{+}$. We put $\vec{D}_{1}^{\prime \prime}=D_{1,1} \cup \cdots \cup D_{1, i-1} \cup D_{1, j}^{\prime} \cup \cdots \cup D_{1, g}$. The Heegaard diagram which is corresponding to the generalized DS-diagram is $\left(H_{1}, H_{2} ; \vec{D}_{1}^{\prime \prime}, \vec{D}_{2}\right)$. So in this case, we obtain a $G S$-deformation from a generalized DS-diagram defined by $\left(H_{1}, H_{2} ; \vec{D}_{1}, \vec{D}_{2}\right)$ to a generalized DS-diagram defined by $\left(H_{1}, H_{2} ; \vec{D}_{1}^{\prime}, \vec{D}_{2}^{\prime}\right)$.

Next we consider the case $\vec{D}_{1} \cap \vec{D}_{1}^{\prime} \neq \emptyset$. By isotopy we may assume that $\vec{D}_{1} \cap \vec{D}_{1}^{\prime}$ consists of arcs. We show that the number of arcs can be decrease by $G S$-deformation. There exists a outermost 2-disk d in \vec{D}_{1}^{\prime}. We suppose that $d \subset D_{1,1}^{\prime}, \partial d=\alpha \cup \beta$ where β is a arc in $\partial D_{1,1}^{\prime}$ and $\alpha=d \cap \vec{D}_{1}=d \cap D_{1,1}$. We put $D_{a} \cup D_{b}=D_{1,1}-\alpha$. Then $\left(D_{a} \cup d, D_{1,2}, \ldots, D_{1, g}\right)$ or $\left(D_{a} \cup d, D_{1,2}, \ldots, D_{1, g}\right)$ is a complete system of meridian disks. Suppose that ($D_{a} \cup$ $\left.d, D_{1,2}, \ldots, D_{1, g}\right)$ is a complete system of meridian disks. We apply G-move along the loop
corresponding to ∂d and S-move along the face corresponding to $\overline{D_{b}}$. Thus we can decrease the number of arcs. We can prove similarly for $\vec{D}_{2} \cap \vec{D}_{2}^{\prime}$. This completes the proof.

By combining Theorem 3.3 and Lemmas 3.8, 3.9 and 3.10, we have Theorem 3.2.

References

[1] D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra, Proc. Camb. Phil. Soc. 63 (1967), 353-357.
[2] D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra: Correction, Proc. Camb. Phil. Soc. 88 (1980), 307-310.
[3] D. CRAGGS, A new proof of the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings, Proc. AMS, 57 (1976), 143-147.
[4] H. Ikeda, Acyclic fake surfaces, Topology 10 (1971), 9-36.
[5] H. Ikeda and Y. Inoue, Invitation to DS-diagrams, Kobe J. Math. 2 (1985), 169-185.
[6] H. Ikeda, M. Yamashita and K. Yokoyama, Symbolic description of homeomorphism on closed 3manifolds. Kobe J. Math. 13 (1996), 69-115.
[7] H. Ikeda, M. Yamashita and K. Yokoyama, Remodeling a DS-diagram into one with E-cycle, Tokyo J. Math. 23 (2000), 113-135.
[8] I. IsHiI, Flows and spines, Tokyo J. Math. 9 (1986), 93-100.
[9] M. Kato, Combinatorial prebundles I, Osaka J. Math. 4 (1967), 289-303.
[10] M. Kato, Combinatorial prebundles II, Osaka J. Math. 4 (1967), 305-311.
[11] K. Reidemeister, Zur dreidimensionalen Topology, Abh. Math Sem. Univ. Hamburg, Bd 2 (1933), 189-194.
[12] Rourk, C. P. and Sanderson, Block bundles, Bull. Amer. Math. Soc. 72 (1966), 1036-1039.
[13] J. Singer, Three manifolds and their Heegaard diagrams, Trans. AMS 35 (1933), 38-111.

