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On Genelarized DS-diagram and Moves
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(Communicated by J. Murakami)

Abstract. DS-diagram and flow spine are good tools for studying 3-manifolds ([5], [8]). In this paper, we
introduce the concept of generalized DS-diagram and study its properties. We define two types of moves that change
generalized DS-diagrams but do not change their associated manifolds. We prove that any two generalized DS-
diagrams such that their associated manifolds are homeomorphic to each other can be deformed into each other by a
finite sequence of moves of the types.

1. Definitions and notations

For a graph G, we denote by V (G) the set of vertices and by E(G) the set of edges. For
a fake surface P (see [4] for definition), we denote by S′

i (P ) the i–th singularity (i = 2, 3).

Then H = S′
2(P ) ∪ S′

3(P ) is a 4-regular graph on P , V (H) is S′
3(P ), and E(H) is S′

2(P ).
We permit a ‘graph’ to have an ‘edge’ which is homeomorphic to 1-sphere, called hoop.

We say f : S → P is a local homeomorphism, if for any point p in S there exists a neigh-

borhood U of p in S such that f |U : U → f (U) is a homeomorphism. We denote by X the
closure of X and by �Z the number of all elements of a finite set Z.

DEFINITION 1.1. Let S = S2
1 ∪ · · · ∪ S2

k be a union of 2-spheres, G be a 3-regular
graph on S and f : (S,G) → (P,H) be a map from S to a closed fake surface P . We call
Σ = (S,G, f ) generalized DS-diagram if it satisfies the following conditions;

(1) The map f : S → P is an onto local homeomorphism.

(2) For any element x ∈ V (G), f −1 ◦ f (x) consists of four elements.
(3) For any element x ∈ E(G), f −1 ◦ f (x) consists of three elements.

(4) For any element x ∈ S − G, f −1 ◦ f (x) consists of two elements.

We call the number of spheres k s-number of Σ and denote by s(Σ). Let B = B3
1 ∪· · ·∪

B3
k be a union of 3-balls and ∂B3

i = S2
i (i = 1, . . . , k). We denote by M(Σ) the identification

space B/f . The space M(Σ) is a 3-manifold as in the case of as for DS-diagram. We call
M(Σ) the manifold associated with the generalized DS-diagram Σ . Generally, M(Σ) may
not be connected. Hereafter we assume M(Σ) is connected.
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DEFINITION 1.2. Let S be a union of 2-spheres, G be a 3-regular graph on S and
g : G → H be a map from a graph G to a graph H . We call Ω = 〈S,G, g〉 labeled graph if
it satisfies the following conditions;

(1) The map g is an onto local homeomorphism.

(2) For any element x ∈ V (G), g−1 ◦ g(x) consists of four elements.

(3) For any element x ∈ E(G), g−1 ◦ g(x) consists of three elements.

DEFINITION 1.3. For two generalized DS-diagrams Σ = (S,G, f ) and Σ ′ =
(S′,G′, f ′), we say Σ is equivalent to Σ ′ if there exist homeomorphisms F : S → S′
and F : f (S) → f ′(S′) such that f ′ ◦ F = F ◦ f . Then we denote Σ ≡ Σ ′.

For two labeled graphs Ω = 〈S,G, g〉 and Ω ′ = 〈S′,G′, g ′〉, we say Ω is equivalent
to Ω ′ if there exist homeomorphisms F : S → S′ and F : g(G) → g ′(G′) such that
g ′ ◦ F |G = F ◦ g . Then we denote Ω ≡ Ω ′.

For a generalized DS-diagram Σ = (S,G, f ), we define g = f |G and Ω = 〈S,G, g〉.
Then Ω is a labeled graph. We denote this labeled graph by L(Σ) and we call L(Σ) the
labeled graph associated with the generalized DS-diagram Σ . If Σ is equivalent to Σ ′, L(Σ)

is equivalent to L(Σ ′).
We can represent a labeled graph by a figure. Let A be a directed edge in g(G). In the

case g−1(A) consists of 3 components, we mark the ‘label’ A on each of them. For a directed

edge A in g(G), A−1 is the edge with the reverse direction.

FIGURE 1

In the case g−1(A) consists of 2 components (say, e1 and e2), we assume that g|e1 : e1 →
A is 2 to 1 and that g|e2 : e2 → A is 1 to 1. We mark the label 2A on e1 and the label A on
e2. We call the ‘edge’ (hoop) e1 double type. For a generalized DS-diagram Σ , L(Σ) has no
hoop of double type (see Lemma 2.8).

In the case g−1(A) is connected, we mark the label 3A. We call the hoop g−1(A) triple
type.
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If a generalized DS-diagram Σ = (S,G, f ) satisfies the following conditions, Σ is a
DS-diagram;

(1) The s-number of Σ is one.
(2) The graph G is connected and V (G) 	= ∅.

2. Relation between generalized DS-diagram and labeled graph

For any labeled graph Ω , there does not always exist a generalized DS-diagram Σ such
that L(Σ) = Ω . First, we consider the condition for existence.

For a generalized DS-diagram Σ = (S,G, f ), we can define an involution τ on S − G

as follows: Let p be any point in S − G. We put f −1 ◦ f (p) = { p,p′ }. Then we define
τ (p) = p′. We call τ the involution associated with the generalized DS-diagram Σ .

The involution τ is fixed point free and satisfies the following property: Let p be any
point in E(G) and U be a small neighborhood of p in S. And { pn } be any sequence converges
to p such that every pn is contained in the same component of U − G. Then τ (pn) converges
to some point q ∈ E(G) such that p 	= q and f (p) = f (q).

Conversely, for a labeled graph Ω = 〈S,G, g〉, we assume that there exists a fixed point
free involution τ on S − G which has the above property. We call τ an involution compatible
with Ω . We can construct a closed fake surface P and a map f from S to P as follows: If
x ′ = x, x ′ = τ (x) or g(x ′) = g(x), we denote x ′ ∼ x. This relation ‘∼’ is an equivalence
relation on S. We define P = S/∼ and f : S → S/∼ is the projection. We can easily check
that P is a closed fake surface and that f satisfies the conditions for generalized DS-diagram.
Thus the next two propositions hold.

PROPOSITION 2.1. Let Σ be a generalized DS-diagram and τ be the involution asso-
ciated with Σ . Then τ is compatible with L(Σ).

Conversely let Ω be a labeled graph and τ be an involution compatible with Ω . Then
there exists a generalized DS-diagram Σ such that L(Σ) = Ω and the involution associated
with Σ is τ .

PROPOSITION 2.2. Let Σ = (S,G, f ) be a generalized DS-diagram, τ be the in-
volution associated with Σ , Σ ′ = (S′,G′, f ′) be a generalized DS-diagram and τ ′ be the
involution associated with Σ ′.

Suppose that Σ is equivalent to Σ ′. Let F and F be homeomorphisms which give the
equivalence, namely F ◦ f = f ′ ◦ F . Then F ◦ τ = τ ′ ◦ F .

Conversely, suppose that L(Σ) is equivalent to L(Σ ′). Let F and F be homeomorphisms
which give the equivalence, namely F ◦ f |G = f ′|G′ ◦ F |G. If F ◦ τ = τ ′ ◦ F , then Σ is
equivalent to Σ ′.

For generalized DS-diagrams Σ and Σ ′, if Σ ≡ Σ ′ then L(Σ) ≡ L(Σ ′). The converse
is not true generally. We consider the condition that the converse is true.



168 MASAHARU KOUNO

The first example of pair of non-equivalent generalized DS-diagrams whose associated
labeled graphs are equivalent to each othe is shown in Figure 2. Edges with labels ‘A’ are
hoops on some annulus A ⊂ S. We call this type Type I.

FIGURE 2 FIGURE 3

For a 3-manifold N , we denote by N̂ the manifold obtained from N by capping off each
2-sphere component of ∂N with 3-ball. Let Σ = (S,G, f ) be a generalized DS-diagram
with an associated involution τ and Σ ′ = (S,G, f ′) be a generalized DS-diagram with an

associated involution τ ′. We assume that the graph G contains hoops as in Figure 2, f −1 ◦
f (A) = A and f ′−1 ◦ f ′(A) = A. Let e1, e2, e3, e4 be loops parallel to hoops with labels A

and X1 and X2 be annuli as in Figure 3. We assume that τ (e1) = e2, τ (e3) = e4, τ ′(e1) = e3

and τ ′(e2) = e4. Let Di be a proper 2-disk in B whose boundary is ei (i = 1, 2, 3, 4). Let V1

be the closure of a component of B − (D1 ∪ D2) that contains X1. Then f (D1) ∪ f (D2) is a
2-sphere and f (X1) is a Möbius band. Thus the identification space f (V1) is homeomorphic

to P 3 − Int D3, where P 3 is a projective space and D3 is a 3-ball in P 3. Let V2 be the closure
of a component of B − (D3 ∪ D4) that contains X2. The identification space f (V2) is also

homeomorphic to P 3 − Int D3. Let D0 and D5 be proper 2-disks whose boundaries are ∂A.
Let V be the closure of a component of B − (D0 ∪ D5) that contains X1 and W = B − Int V .

Then ̂f (V ) is homeomorphic to P 3�P 3, where � means connected sum. The identification

space f (W) is a 3-manifold whose boundary is a 2-sphere. We put M1 = ̂f (W), then M(Σ)

is homeomorphic to M1�P
3�P 3.

We assume that f|S−A = f ′
|S−A. Since f ′(W) = f (W), ̂f ′(W) is M1. The identi-

fication space f ′(V ) is a non-orientable 3-manifold and contains a non-separating 2-sphere

f ′(D1) ∪ f ′(D3). So ̂f ′(V ) is homeomorphic to S2
τ× S1, where S2

τ× S1 is a twisted S2

bundle over S1. Thus M(Σ ′) is homeomorphic to M1�S
2
τ× S1.

Second example is shown in Figure 4. Edges with labels A and edges with labels B are
hoops on some annuli A and A′. We call this type Type II.
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Let Σ = (S,G, f ) be a generalized DS-diagram with an associated involution τ and
Σ ′ = (S,G, f ′) be a generalized DS-diagram with an associated involution τ ′. We assume
that the graph G contains hoops as in Figure 4, f (A∪A′) = A∪A′ and f ′(A∪A′) = A∪A′.
Let e1 be a loop parallel to a hoop with a label A and X1 be an annulus as in Figure 5. We
assume that τ (e1) and τ ′(e1) are as in Figure 6.

FIGURE 4

We assume that f|S−(A∪A′) = f ′
|S−(A∪A′) and f (S−(A∪A′)) is connected. Let D1, D2

and D3 be proper 2-disks in B whose boundaries are e1, τ (e1) and τ ′(e1), respectively. Let
D0 and D4 be proper 2-disks whose boundaries are ∂A and let D5 and D6 be proper 2-disks
whose boundaries are ∂A′.

FIGURE 5 FIGURE 6

Let V1 be the closure of a component of B − (D0 ∪ D4) that contains X1 and V2 be the
closure of a component of B− (D5 ∪D6) that contains τ (X1). We put W = B− Int(V1 ∪V2).
Since f (D1) ∪ f (D2) and f ′(D1) ∪ f ′(D3) are non-separating 2-spheres, f (V1 ∪ V2) and
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f ′(V1 ∪ V2) are homeomorphic to S2 × S1 − Int(D3
1 ∪ D3

2) where D3
1 and D3

2 are 3-balls in

S2 × S1. The identification space f (W) is a 3-manifold whose boundary consists of two 2-
spheres and f (W) = f ′(W). We fix an orientation of V1. Orientaions of f (D5) ∪ f (D6) and
f ′(D5)∪f ′(D6) are induced by the orientation of V1. Then the orientation of f (D5)∪f (D6)

is reverse of the orientation of f ′(D5) ∪ f ′(D6). We put M1 = ̂f (W). Then one of M(Σ)

and M(Σ ′) is homeomorphic to M1�S
2 × S1�S2 × S1 and the other is homeomorphic to

M1�S
2 × S1�S2

τ× S1. If M1 is orientable, the two manifolds are not homeomorphic to each
other.

Third example is shown in Figure 7. An edge with label ‘3A’ is a hoop on some annulus
A. We call this type Type III.

FIGURE 7

Let Σ = (S,G, f ) be a generalized DS-diagram with an associated involution τ and
Σ ′ = (S,G, f ′) be a generalized DS-diagram with an associated involution τ ′. We assume
that the graph G contains hoops as in Figure 7, f (A) = A , f ′(A) = A and f|S−A = f ′

|S−A.

Further we assume that τ|A is the composition of the rotation of angle 2π
3 along the hoop and

the reflection about the hoop and τ ′
|A is the composition of the rotation of angle 4π

3 along the

hoop and the reflection about the hoop.
So one of M(Σ) and M(Σ ′) is homeomorphic to M1�L(3, 1) for some 3-manifold M1

and the other is homeomorphic to M1�L(3, 2) where L(p, q) is a lens space of type (p, q). If
M1 does not admit an orientation reversing self homeomorphism, the two manifolds are not
homeomorphic to each other.

THEOREM 2.3. Let Σ and Σ ′ be generalized DS-diagrams such that L(Σ) ≡ L(Σ ′).
If L(Σ) does not admit Type I, II and III, then Σ ≡ Σ ′.

COROLLARY 2.4. Let Σ and Σ ′ be generalized DS-diagrams such that L(Σ) ≡
L(Σ ′). If L(Σ) does not admit hoops, then Σ ≡ Σ ′.
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COROLLARY 2.5. Let Σ and Σ ′ be DS-diagrams such that L(Σ) ≡ L(Σ ′), then
Σ ≡ Σ ′.

For proving Theorem 2.3, we will prove the next two propositions.

PROPOSITION 2.6. Let Σ = (S,G, f ) and Σ ′ = (S′,G′, f ′) be generalized DS-
diagrams such that L(Σ) ≡ L(Σ ′) and assume that L(Σ) does not admit Type I, II and III.
Let N(G; S) be a regular neighborhood of G in S such that f −1◦f (N(G; S)) = N(G; S) and

N(G′; S′) be a regular neighborhood of G′ in S′ such that f ′−1 ◦f ′(N(G′; S′)) = N(G′; S′).
Then there exist a homeomorphism F : S → S′ and a homeomorphism F : f (N(G; S)) →
f ′(N(G′; S′)) such that f ′ ◦ F |N(G;S) = F ◦ f |N(G;S).

PROPOSITION 2.7. Let Σ and Σ ′ be generalized DS-diagrams such that L(Σ) ≡
L(Σ ′) and assume that there exist homeomorphisms F and F such as in Proposition 2.6.
Then Σ is equivalent to Σ ′.

For proving Propositions 2.6, we need some lemmata.

LEMMA 2.8. Let Σ be a generalized DS-diagram. Then L(Σ) does not have a hoop
of double type.

PROOF. We assume that Σ has a hoop e1 with label 2C. We put e2 = f −1(C) − e1.
Let τ be the involution associated with Σ and N(G; S) be a regular neighborhood of G

in S such that f −1 ◦ f (N(G; S)) = N(G; S). For the component X1 of N(G; S) which
contains e1, τ (X1 − e1) = X1 − e1. So for the component X2 of N(G; S) which contains e2,
τ (X2 − e2) = X2 − e2. This contradicts that τ is compatible.

LEMMA 2.9. Let τ and τ ′ be involutions associated with Σ and Σ ′, respectively. If
there exist homeomorphisms F and F such as in Proposition 2.6, then F ◦ τ |N(G;S)−G =
τ ′ ◦ F |N(G;S)−G. Conversely If there exists a homeomorphism F : S → S′ such that F ◦
τ |N(G;S)−G = τ ′ ◦ F |N(G;S)−G, then there exists a homeomorphism F : f (N(G; S)) →
f ′(N(G′; S′)) such as in Proposition 2.6.

The proof of Lemma 2.9 is easy. We omit the proof.
We begin to prove Proposition 2.6. Since L(Σ) ≡ L(Σ ′), there exist homeomor-

phisms F ′ : S → S′ and F ′ : f (G) → f ′(G) such that f ′ ◦ F ′|G = F ′ ◦ f .

By exchanging 〈S′,G′, f ′|G′ 〉 for 〈F ′−1
(S′), F ′−1

(G′), F ′−1 ◦ f ′ ◦ F ′|G〉, we assume that
L(Σ) = 〈S,G, g〉 = L(Σ ′). Let τ be the involution associated with Σ and τ ′ be the invo-
lution associated with Σ ′. We may assume that there exists a regular neighborhood N(G; S)

such that τ (N(G; S) − G) = N(G; S) − G and τ ′(N(G; S) − G) = N(G; S) − G.
Since a regular neighborhood N(G; S) is a block bundle (see [9], [10] and [12] for

definition) over G, there exists a projection map π : N(G; S) → G. For each point x ∈
G − V (G), π−1(x) is an arc. For each point x ∈ V (G), π−1(x) is a graph with one degree 3
vertex and three degree 1 vertices as in Figure 8. Let X be a component of N(G; S) − G and
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L = ∂X − G. If �π−1
|L (X ∩ V (G)) is n, we call X an n-gon. In Figure 8 X is a 4-gon. If X is

a 0-gon, X ∩ G is a hoop. Conversely, if X ∩ G is a hoop, X is a 0-gon.

FIGURE 8

LEMMA 2.10. If X ∩ V (G) 	= ∅ for a component X of N(G; S) − G, then τ (X) =
τ ′(X).

PROOF. We assume that there exists a component X such that τ (X) 	= τ ′(X). Since

X ∩ V (G) is not empty, X is an n-gon (n ≥ 1).

First we consider the case n = 1. Let A be a label of X ∩ G. Because X is a 1-gon,

τ (X) 	= X and τ ′(X) 	= X. There exist four 1-gons X, τ (X), τ ′(X) and τ ′ ◦ τ (X) with labels
A. This contradicts that there exist at most three edges with labels A.

Next we assume n ≥ 2. Let e be any edge which is contained in X ∩ G. Let A be a

label of e. We consider the subcase τ (X) = X. Then X ∩ G contains the other edge e1 with

the label A. So τ ′(X) ∩ G contains two edges with labels A. Because there exist at most

three edges with labels A, X ∩ τ ′(X) contains an edge e or e1. Let B be a label of the next

edge of e in X ∩ G. Then the situation is as in Figure 9. But this contradicts that f is a local
homeomorphism.

We consider the subcase τ (X) 	= X and τ ′(X) 	= X. Then each of X ∩ G, τ (X) ∩ G,

τ ′(X)∩G and τ ′ ◦ τ (X)∩G has an edge with label A. If a set of edges X∩τ (X) or X∩τ ′(X)

contains an edge e, an involution τ or τ ′ is not compatible. Because there exist at most three

edges with label A, a set of edges X ∩ τ ◦ τ ′(X) contains an edge e with label A or a set of

edges τ (X)∩ τ ′(X) contains an edge e1 with label A. Let B be a label of the next edge of e in

X ∩G or a label of the next edge of e1 in τ (X) ∩G. Then the situation is as in Figure 10. But
this contradicts that f is a local homeomorphism. This completes the proof of Lemma 2.10.

Since there does not exist an edge of triple type, if τ (X) = τ ′(X) for any component X

of N(G; S) − G, by isotopy, we may assume τ |N(G;S)−G = τ ′|N(G;S)−G. We put F = id
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FIGURE 9 FIGURE 10

where id is the identity map on S, then τ ◦ F = F ◦ τ ′. By Lemma 2.9, Proposition 2.6 has
been proved in this case.

So we assume that there exists a component X of N(G; S)−G such that τ (X) 	= τ ′(X).

By Lemma 2.10, X ∩ G is a hoop. Let A be a label of X ∩ G.

Let Y be a component of S − G such that X ⊂ Y . If Y ∩V (G) 	= ∅, then τ (Y ) = τ ′(Y ).

The edges τ (X) ∩ G and τ ′(X) ∩ G with labels A are contained in τ (Y ). So Y contains the

edges X ∩ G and τ ′ ◦ τ (X) ∩ G with labels A. If τ (Y ) = Y , ∂Y contains four hoops with

labels A. If τ (Y ) 	= Y , Y ∩ τ (Y ) is non-empty and is a hoop with label A. This contradicts

that involutions are compatible. So Y ∩ V (G) is empty.

First we consider the case τ (Y ) = Y . Then Y has the edges X ∩ G and τ (X) ∩ G with

labels A. Sinece τ ′(Y ) has edges τ ′(X) ∩ G and τ ′ ◦ τ (X) ∩ G with labels A, we obtain

τ ′(Y ) 	= Y and Y ∩ τ ′(Y ) 	= ∅ .

If Y ∩ G 	= (X ∩ G) ∪ (τ (X) ∩ G), the genus of S is positive. So Y ∩ G = (X ∩ G) ∪
(τ (X) ∩ G) and Y is an annulus. If labels are as in Figure 11, τ has fixed points. In this case
type I occurs, this is a contradiction.

Next we consider the case τ (Y ) 	= Y and τ ′(Y ) 	= Y . If τ (Y ) = τ ′(Y ), Y and τ (Y ) have
two edges with labels A. Then τ or τ ′ is not compatible, so τ (Y ) 	= τ ′(Y ).

We assume that Y is not homeomorphic to a 2-disk. There exists a component X1 of

N(G; S)−G such that X1 ⊂ Y and X 	= X1. Let B be the label of X1 ∩G. Each of Y , τ (Y ),

τ ′(Y ) and τ ′ ◦ τ (Y ) has an edge with label A and an edge with label B. So Y ∩ τ ′ ◦ τ (Y ) 	= ∅
and τ (Y )∩ τ ′(Y ) 	= ∅. Then we obtain Y ∩G = (X ∩G) ∪ (X1 ∩ G), so type II occurs. This

is a contradiction. Thus Y is homeomorphic to a 2-disk.

Then Y , τ (Y ), τ ′(Y ) and τ ′ ◦ τ (Y ) are 2-disks whose boundaries are hoops with labels

A. Let Z1 and Z2 be the other components of S − G that have an edge with label A. If Z1
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FIGURE 11

is 2-disk (then Z2 is also 2-disk), then S = S2
1 ∪ S2

2 ∪ S2
3 and H = { A }. If Z1 is not 2-disk,

then either Z1 = Z2 has two edges with labels A or τ (Z1) = τ ′(Z1) = Z2 	= Z1. In all cases
we can easily construct a homeomorphism F on S such that F ◦ τ = τ ′ ◦F on N(G; S). This
completes the proof of Proposition 2.6.

Next we prove Proposition 2.7. Let F be the homeomorphism on S constructed above.
We change F on S −N(G; S). Let Y be any component of S − G and X1,X2, . . . , Xk be the
components of N(G; S) − G such that Xi ⊂ Y (i = 1, . . . , k). We divide the proof into two
cases: (A); τ (Y ) 	= Y and (B); τ (Y ) = Y .

In the case (A), for x ∈ τ (Y ), we redefine F(x) = τ ′ ◦ F ◦ τ (x). If x is in ∪Xi , F(x) is
not changed.

In the case (B), π : Y → Y/τ and π ′ : Y → Y/τ ′ are 2-fold coverings. If τ is orientation
preserving, τ ′ is orientation preserving. Thus Y/τ is homeomorphic to Y/τ ′. There exist a
homeomorphsim F : ∪Xi/τ → ∪Xi/τ

′. We can extend F to a homeomorphism from Y/τ

to Y/τ ′ , namely F . We redefine F as a lift F : Y → Y of F . We choose the lift which is not
changed on N(G; S) ∩ Y . This completes the proof of Proposition 2.7.

3. G-move and S-move

Let Σ = (S,G, f ) be a generalized DS-diagram with an associated involution τ , � be a
loop on S and q be a point on G. We say that q is a limit point for � if the following holds;
There exist a point p in � ∩ G and a sequence { pn } such that every pn is contained the same
component of � − G, p = lim

n→∞ pn and q = lim
n→∞ τ (pn). We say that a loop � is in general

position for Σ if it satisfies the following conditions;
(1) The loop � does not intersect V (G).
(2) The loop � is transversal with G and transversal with τ (� − G).
(3) Any limit point for � is not contained in �.

DEFINITION 3.1. Let Σ = (S,G, f ) be a generalized DS-diagram with an associated

involution τ , where S = S2
1 ∪ · · · ∪ S2

k . Let � be a loop on S2
1 and suppose that � is in general

position for Σ . We put B = B3
1 ∪ · · · ∪ B3

k and ∂B = S. We extend f to a map from B to
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M(Σ). There is a proper 2-disk D in B such that ∂D = �.

Let S̃i be a 2-sphere (i = 1, 2). We put S′ = S̃1∪S̃2∪S2
2 ∪· · ·∪S2

k and D̃1∪D̃2 = S2
1 −�.

So D̃i ∪ D is 2-sphere, we can define a homeomorphism gi : S̃i → D̃i ∪ D (i = 1, 2). We
put P ′ = P ∪ f (D). We define a map f ′ : S′ → P ′ as follows;

f ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x) (x ∈ S2
j , j 	= 1)

f (g1(x)) (x ∈ S̃1)

f (g2(x)) (x ∈ S̃2)

We define G′ = {x ∈ S′ | �f ′−1◦f ′(x) ≥ 3}. Then the set of vertices of G′ is {x ∈ S′ | �f ′−1◦
f ′(x) = 4}. Σ ′ = (S′,G′, f ′) is a generalized DS-diagram and M(Σ ′) is homeomorphic to
M(Σ). Then this operation Σ ⇒ Σ ′ is called S-move, S-move along � or spoon cut.

Suppose that k ≥ 2. Let X1 and X2 be faces of Σ (components of S − G) such that

Xi ⊂ S2
i (i = 1, 2). We assume that X1 and X2 are 2-disks and τ (X1) = X2. Let τ0

be the homeomorphism on X1 ∪ X2 which is the extension of τ |X1∪X2 . We put that S′
1 =

(S2
1 − X1) ∪τ0 (S2

2 − X2), S′ = S′
1 ∪ S2

3 ∪ · · · ∪ S2
k and P ′ = P − f (X1). We define a

map f ′ : S′ → P ′ by f ′(x) = f (x). We define that G′ = {x ∈ S′ | �f ′−1 ◦ f ′(x) ≥ 3}.
Σ ′ = (S′,G′, f ′) is a generalized DS-diagram and M(Σ ′) is homeomorphic to M(Σ). Then
this operation Σ ⇒ Σ ′ is called G-move, G-move along X1 or glue.

If a generalized DS-diagram Σ ′ is obtained from a generalized DS-diagram Σ by G-
move, Σ is obtained from Σ ′ by S-move. Conversely if a generalized DS-diagram Σ ′ is
obtained from a generalized DS-diagram Σ by S-move, Σ is obtained from Σ ′ by G-move.

A successive application of a finite number of G-moves and S-moves is called GS-
deformation. GS-deformation is an equivalence relation. If there exists a GS-deformation
Σ �⇒ Σ ′, M(Σ) is homeomorphic to M(Σ ′).

Next is the main theorem for GS-deformation.

THEOREM 3.2. Let Σ and Σ ′ be generalized DS-diagrams such that M(Σ) is homeo-
morphic to M(Σ ′). Then there exists a GS-deformation Σ �⇒ Σ ′.

Proof of Theorem 3.2 depends on the following theorem ([11], [13], [1], [3]).

THEOREM 3.3 (Reidemeister–Singer–Chillingworth–Craggs). Any two Heegaard
splittings which give homeomorphic manifolds can be equivalent by stabilizing.

A Heegaard splitting of 3-manifold M is a representation of M as H1 ∪ H2, where H1

and H2 are homeomorphic to handlebodies of some fixed genus g and H1 ∩ H2 = ∂H1 =
∂H2 = Fg is the Heegaard surface. The splitting is denoted by (H1,H2) or (M,Fg ).

Let �Di = Di,1∪Di,2∪· · ·∪Di,g be a complete system of meridian disks of Hi (i = 1, 2).
A Heegaard diagram is a Heegarrd splitting (H1,H2) with complete systems of meridian

disks �D1 and �D2. The diagram is denoted by (H1,H2; �D1, �D2).
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Let V = D1,g+1 × [−1, 1] and W = D2,g+1 × [−1, 1] be handles in H2 − �D2 where
Di,g+1 is a 2-disk (i = 1, 2) and H1 ∩ V = ∂H1 ∩ V = D1,g+1 × { −1 } ∪ D1,g+1 × { 1 }.
Furthermore we assume that ∂D2,g+1 is L1 ∪ L2 where Li is an arc (i = 1, 2), L1 ∩ L2 =
∂L1 = ∂L2, V ∩ W = ∂V ∩ ∂W = L2 × [−1, 1], H1 ∩ W = ∂H1 ∩ W = L1 × [−1, 1] and

(V ∪ W) ∩ �D1 = ∅. We put H ′
1 = H1 ∪ V , H ′

2 = H2 − Int V , �D′
1 = �D1 ∪ D1,g+1 × { 0 } and

�D′
2 = �D2 ∪ D2,g+1 × { 0 }. Then (H ′

1,H
′
2; �D′

1,
�D′

2) is a Heegaard diagram. This operation

which change (H1,H2; �D1, �D2) into (H ′
1,H

′
2; �D′

1,
�D′

2) is called attachings of trivial handles.
A finite application of attachings of trivial handles is called stabilizing.

For a Heegaard diagram (H1,H2; �D1, �D2), we can construct a generalized DS-diagram

Σ as follows; Let S2
1 and S2

2 be 2-spheres and gi : S2
i → ∂Hi ∪ �Di be an onto local homeo-

morphism, where �gi
−1(y) = 1 fot y ∈ ∂Hi − �Di and �gi

−1(y) = 2 for y ∈ �Di (i = 1, 2).

We put S = S2
1 ∪ S2

2 . Let f = g1 ∪ g2 : S → ∂H1 ∪ �D1 ∪ �D2 be a local homeomorphism

and G = f −1(∂ �D1 ∪ ∂ �D2). Then Σ = (S,G, f ) is a generalized DS-diagram. We call Σ

the generalized DS-diagram defined by Heegaard diagram (H1,H2; �D1, �D2).

DEFINITION 3.4. Let Σ = (S,G, f ) be a generalized DS-diagram. X is a face of Σ .

X′ is the face such that f (X) = f (X′) and X 	= X′. If X ⊂ S2
i and X′ ⊂ S2

i for some i, we
call X self type. Σ is called type H if it satisfies the following conditions;

(1) The s-number of Σ is equal to 2.

(2) If X is self type, X is homeomorphic to a 2-disk.

(3) If X and Y are self type and X 	= Y , then X ∩ Y = ∅.

LEMMA 3.5. If a generalized DS-diagram Σ is defined by Heegaard diagram, then Σ

is of type H. Conversely if Σ is of type H, Σ is defined by some Heegaard diagram.

PROOF. Suppose that Σ = (S,G, f ) be a generalized DS-diagram which is defined by

Heegaard diagram, then the s-number of Σ is equal to 2. If a face X of Σ is self type, f (X)

is a meridian disk of Heegaard diagram. So X is a 2-disk. Suppose that faces X and Y are

self type and X 	= Y . f (X) and f (Y ) are meridian disks. So f (X) and f (Y ) may intersect,

but X and Y does not intersect. Thus Σ is of type H.
Suppose that Σ = (S,G, f ) be a generalized DS-diagram of type H. Let p be any vertex

of G. There exist three faces X1, X2 and X3 whose closure contain the vertex p. We show
one of their faces is self type. We assume that none of the faces is self type. There exist three
points p1, p2, p3 on another sphere such that f (p1) = f (p2) = f (p3) = f (p). We assume
that faces around vertices p, p1, p2 and p3 are as in Figure 12. For a face X we denote X′ by

the face such that f (X) = f (X′) and X 	= X′. Faces Y1, Y2 and Y3 are self type and Y 1 ∩ Y 2

is not empty. So, by the condition (3) of type H, a face Y1 is a face Y2. Then Y 1 is not a 2-disk.
This contradicts the condition (2) of type H. Thus one of the faces is self type.

We put S = S2
1 ∪ S2

2 and B = B3
1 ∪ B3

2 . For i (i = 1, 2), we denote Ui by the union

of closures of faces in S2
i which are selft type. We put Hi = B3

i /f|Ui . Then H1 and H2 are
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FIGURE 12

handlebodies and (H1,H2; f (U1), f (U2)) is a Heegaard diagram.

In their papers ([6], [7]) elementary deformation of type I, elementary deformation of
type II and piping are defined as deformations for DS-diagram. We can regard their deforma-
tions as for generalized DS-diagram. Piping or piping along L is the operation as in Figure 13.
Elementary deformation of type I is the operation as in Figure 14. Elementary deformation of
type II is the operation as in Figure 15.

PROPOSITION 3.6. Elementary deformation of type I, elementary deformation of type
II and piping are GS-deformations.

PROOF. First we consider piping. Let � be a loop whose labels are a1, a2, a3 and a4

as in Figure 16. We apply S-move along � to given generalized DS-diagram. We obtain a
generalized DS-diagram as in Figure 17.

Let �′ be a loop whose labels are b1 and b2 in Figure 17. We apply S-move along �′. Next

we apply G-move along the face whose labels are a1A
−1
2 and G-move along the face whose

FIGURE 13
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FIGURE 14

FIGURE 15

labels are a3B
−1
2 . The generalized DS-diagram obtained by their operatons is the generalized

DS-diagram obtained by piping along L.
Elementary deformation of type I is piping along L in Figure 18.
Let � be a loop whose labels are a1, a2 and a3, and W be a region in Figure 19. We

apply S-moves along � , and we apply G-move along the face W . The generalized DS-
diagram obtained by their operations is the generalized DS-diagram obtained by elementary
deformation of type II.
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FIGURE 16

FIGURE 17

FIGURE 18

We note that their deformations do not change s-number.

LEMMA 3.7. For a generalized DS-diagram Σ , there exists a GS-deformation Σ �⇒
Σ ′ such that the closure of any face of Σ ′ is homeomorphic to a 2-disk. We can choose a GS-
deformation as finite application of pipings.
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FIGURE 19

FIGURE 20

PROOF. Let X be a face of Σ which is not homeomorphic to an open 2-disk. By piping
we can change X into an open 2-disk. So we assume that all faces of Σ are open 2-disks.

Suppose that X is not homeomorphic to a 2-disk. X is as in Figure 20 where X′ is a face
such that f (X) = f (X′) and X 	= X′. Let Y1, . . . , Ys, Z1, . . . , Zt be adjacent faces to X′.
If there exist Yi and Zj such that Yi 	= Zj , we choose an arc L on X′ connecting Yi and Zj .

By piping along L, we change X into two faces X̃1 and X̃2 where the number of boundary

components of X̃i is less than that of X (i = 1, 2). This operation does not generate a face
whose closure is not homeomorphic to a 2-disk.

If there does not exist such Yi and Zj , then Y1 = Y2 = · · · = Ys = Z1 = · · · = Zt .

There exists an edge e of X′ such that a label of e is not a label of the other edge of X′. Let

L1 be an arc on Y1 connecting an edge with a label B and the edge e. By piping along L1,
Y1 changes into two faces U1 and U2. This operation does not generate a face whose closure

is not homeomorphic to a 2-disk. There exists an edges e1 such that is contained in U1 and

is contained in Yi ∩ X′ for some i. And there exists an edges e2 such that is contained in U2

and is contained in Zj ∩ X′ for some j . Let L an arc on X′ connecting e1 and e2. By piping

along L, we change X into X̃ where the number of boundary components of X̃ is less than of

X. This operation does not generate a face whose closure is not homeomorphic to a 2-disk.
This completes the proof.
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LEMMA 3.8. For a generalized DS-diagram Σ , there exist a generalized DS-diagram
Σ ′ which is of type H and a GS–deformation Σ �⇒ Σ ′.

PROOF. By Lemma 3.7, we may assume that the closure of any face of Σ is homeo-
morphic to a 2-disk. If s(Σ) is greater than two, by G-move, we may assume s(Σ) is equal
to two. If s(Σ) is equal to one, by S-move, we may assume s(Σ) is equal to two. If this

operation generates a face X such that X is not an open 2-disk or X is not homeomorphic to
a 2-disk, we apply Lemma 3.7 once more.

We put S = S2
1 ∪ S2

2 . Suppose that there exist two different faces X and Y on S2
1 such

that X and Y are self type and X ∩ Y 	= ∅. We assume that there does not exist a face W

such that W is not self type, W ∩ X 	= ∅ and W ∩ Y 	= ∅ as in Figure 21 for any X and Y

such that X and Y are self type and X ∩ Y 	= ∅. Then all faces on S2
1 are self type. So M(Σ)

is not connected, this is a contradiction. There exists a face W such that W is not self type,

W ∩ X 	= ∅ and W ∩ Y 	= ∅ as in Figure 21 for some X and Y .

FIGURE 21

Let W1, W2, U , U1 and U2 be faces as in Figure 21. Since W is not self type, W1 and W2

are not self type. If U is self type, then U1 and U2 are self type and W 	= U , W1 	= U1 and
W2 	= U2. By elementary deformation of type II, we obtain Figure 22.

This operation may change a face whose closure is a 2-disk into a face whose closure is
not homeomorphic to a 2-disk. If W = U , this operation change a face W into a face whose
closure is not homeomorphic to a 2-disk. But then U is not self type. A face which is not self
type can be a face whose closure is not homeomorphic to a 2-disk. It is the same as in the
cases W1 = U1 and W2 = U2. Thus we obtain a generalized DS-diagram of type H.

LEMMA 3.9. Let Σ be a generalized DS-diagram defined by Heegaard diagram

(H1,H2; �D1, �D2) and Σ ′ be a generalized DS-diagram defined by Heegaard diagram

(H ′
1,H

′
2; �D′

1,
�D′

2). (H ′
1,H

′
2; �D′

1,
�D′

2) is obtained from (H1,H2; �D1, �D2) by attachings of triv-

ial handles. Then there exists a GS–deformation Σ �⇒ Σ ′.

PROOF. Let V = D1,g+1 × [−1, 1] and W = D2,g+1 × [−1, 1] be handles as in the

definition of attachings of trivial handles. So (V ∪W)∩H1 is a 2-disk, � = ∂
(
(V ∪W)∩H1

)
is a loop on S. So L2 × [−1, 1] is a 2-disk, �1 = ∂

(
L2 × [−1, 1]) is a loop on ∂

(
V ∪ W

)
.

We apply S-moves along a loop corresponding to � and S-moves along a loop corre-
sponding to �1. Next we apply G-moves along the face D1,g+1 ×{ 1 } and G-moves along the



182 MASAHARU KOUNO

FIGURE 22

face D2,g+1 ×{ 1 }. The generalized DS-diagram obtained by their operations is a generalized

DS-diagram defined by Heegaard diagram (H ′
1,H

′
2; �D′

1,
�D′

2).

LEMMA 3.10. Let Σ be a generalized DS-diagram defined by Heegaard diagram

(H1,H2; �D1, �D2) and Σ ′ be a generalized DS-diagram defined by Heegaard diagram

(H1,H2; �D′
1,

�D′
2). Then there exists GS-deformation Σ ⇒ Σ ′.

PROOF. First we consider the case �D1∩ �D′
1 = ∅. If each component of �D′

1 is parallel to

some component of �D1, then Σ ≡ Σ ′. Suppose that there exists D′
1,j which does not parallel

to any component of �D1. Let D+
1,i and D−

1,i be 2-disks on S2
1 corresponding to D1,i (i =

1, . . . , g). We put D̃1 ∪ D̃2 = S2
1 − g−1

1 (∂D′
1,j ). For all i, if both D+

1,i and D−
1,i are contained

in D̃1 or are contained in D̃2, D1,j ′ splits H1. This is a contradiction. So there exist D+
1,i and

D−
1,i such that D+

1,i ⊂ D̃1 and D−
1,i ⊂ D̃2. We apply S-move along g−1

1 (∂D′
1,j ) and G-move

along D+
1,i . We put �D′′

1 = D1,1 ∪ · · · ∪ D1,i−1 ∪ D′
1,j ∪ · · · ∪ D1,g . The Heegaard diagram

which is corresponding to the generalized DS-diagram is (H1,H2; �D′′
1 , �D2). So in this case,

we obtain a GS-deformation from a generalized DS-diagram defined by (H1,H2; �D1, �D2) to

a generalized DS-diagram defined by (H1,H2; �D′
1,

�D′
2).

Next we consider the case �D1∩ �D′
1 	= ∅. By isotopy we may assume that �D1∩ �D′

1 consists
of arcs. We show that the number of arcs can be decrease by GS-deformation. There exists a

outermost 2-disk d in �D′
1. We suppose that d ⊂ D′

1,1, ∂d = α ∪ β where β is a arc in ∂D′
1,1

and α = d ∩ �D1 = d ∩ D1,1. We put Da ∪ Db = D1,1 − α. Then (Da ∪ d,D1,2, . . . ,D1,g )

or (Da ∪ d,D1,2, . . . ,D1,g ) is a complete system of meridian disks. Suppose that (Da ∪
d,D1,2, . . . ,D1,g ) is a complete system of meridian disks. We apply G-move along the loop



GENELARIZED DS-DIAGRAM AND MOVES 183

corresponding to ∂d and S-move along the face corresponding to Db. Thus we can decrease

the number of arcs. We can prove similarly for �D2 ∩ �D′
2. This completes the proof.

By combining Theorem 3.3 and Lemmas 3.8, 3.9 and 3.10, we have Theorem 3.2.
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