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On the Global Monodromy of a Fibration of the
Fermat Surface of Odd Degree n
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Abstract. The purpose of this paper is to investigate the global topological monodromy of a certain fibration
of the Fermat surface without using numerical analysis by computer.

1. Introduction

Let M be a complex surface and let B be a complex curve. A holomorphic map f :
M → B is a degeneration map if f satisfies (1) f is proper and surjective, (2) there exist
finite number of critical values si ∈ B (i = 1, 2, . . . , r) and (3) if s �= si then f−1(s) is a
compact Riemann surface.

We consider a simple loop γi ⊂ B \ {si} surrounding only si with a base point s0. Then

f−1(γi) is a topological mapping torus and we obtain a self-homeomorphism ρi : f−1(s0) →
f−1(s0) of the reference fiber f−1(s0). We call it a local monodromy of the singular fiber

f−1(si). Choice of γi has ambiguity by isotopy and conjugation. Hence a local monodromy
ρi is determined up to isotopy and conjugation.

The local monodromy is well-studied from both of algebraic and topological aspects.
Matsumoto and Montesinos-Amilibia’s paper [9] is one of the most important ones because
they gave a perfect correspondence between local monodromies and degeneration maps from
a topological viewpoint.

On the other hand, if we fix the base point s0 (s0 �= si ), then the monodromy is given by
a homomorphism

ρ : π1(B \ {si}, s0) → M(f−1(s0)) ,

where M(f−1(s0)) is a mapping class group of the reference fiber f−1(s0). This ρ is called
a global monodromy. For a given degeneration map f : M → B, we are much interested in
how to calculate ρ concretely, but it is difficult to do that. Simply because if B and/or f are

given by high-degree polynomials, then we have few idea to ‘solve’ the equations on f−1(s)

generally.
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Experimental trials of getting global monodromies were done for some examples.
Ahara [1], [2] and Matsumoto [7] give the global monodromy of the degeneration map (1.1)
from the Fermat surface of degree 5 (and 6) to CP 1. Kuno [6] also determine the global mon-
odromy of another degenaration map on the Fermat surface of degree 4. In both examples, in
order to obtain the global monodromies they use numerical analysis by computer.

In this paper we give a way to get the global monodromy ‘by hand’, without useing
computer calculation. The recipe of calculation is the same as those of Matsumoto, Ahara,
and Kuno. In this paper, we use lots of tricks to pursue solutions of high-degree equations and
succeed in acquiring the results.

We fix a degeneration map f : Vn → CP 1 from the Fermat surface of degree n to CP 1

and assume n is an odd number. Also in the case that n is an even number, we have similar
results but we omit these for simple description. See [4] for detail.

This paper is organized as follows. In the remainder of this section, we prepare some
notations and introduce some basic results of the singular fibers. In section 2, we define a

branched covering map ps of each fiber f−1(s). In section 3, we obtain the configuration of

branch points of ps0 of the reference fiber f−1(s0). Finally in section 4, we show our main
results.

1.1. Preparation. We set

Vn := {[z0 : z1 : z2 : z3] ∈ CP 3 : zn0 − zn1 − zn2 + zn3 = 0} .
Then Vn is a complex projective hypersurface, and we call it the Fermat surface of degree n.
We regard CP 1 as C ∪ {∞} and define a fibration f : Vn → CP 1 by

f ([z0 : z1 : z2 : z3]) :=



zn−1

2

zn−1
0

if z0 = z1 and z2 = z3 ,

z0 − z1

z2 − z3
otherwise .

(1.1)

We take an open covering

CP 3 = U1 ∪ U2 ∪ U3 ∪ U4 ,

where Ui := {[z0 : z1 : z2 : z3] ∈ CP 3 : z0 �= zi} (i = 1, 2, 3) and U4 is an open

neighborhood of [1 : 1 : 1 : 1]. Here Ui ∼= C3 (i = 1, 2, 3). Setting

X := z0

z0 − z1
, Y := z2

z0 − z1
, Z := z3

z0 − z1
,

then

z1

z0 − z1
= X − 1 .
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Hence

Vn ∩ U1 = {(X, Y,Z) ∈ C3 : Xn − (X − 1)n − Yn + Zn = 0} ,
and f : Vn ∩ U1 → CP 1 is expressed as

f (X, Y,Z) = 1

Y − Z
.

For a nonzero s ∈ C, we can express f−1(s) ∩ U1 as

f−1(s) ∩ U1 = {(X, Y ) ∈ C2 : gs (X, Y ) = 0} ,
where

gs(X, Y ) := Xn − (X − 1)n − Yn +
(
Y − 1

s

)n
.

In order to know the positions of the singularities, we solve the system of equations

∂gs
∂X

= 0 ,
∂gs
∂Y

= 0 , gs (X, Y ) = 0 .

First, from ∂gs
∂X

= 0, we solve the equation

∂gs
∂X

= nXn−1 − n(X − 1)n−1 = 0 ,

which is rewritten as

Xn−1 = (X − 1)n−1 .

Then we obtain νkX = (X − 1) and

X = 1

1 − νk
,

where νk = exp
( 2kπi
n−1

)
(k = 1, 2, . . . , n− 2) is an (n− 1)st root of unity other than 1. We set

Xk := 1

1 − νk
. (1.2)

Next, from ∂gs
∂Y

= 0, we solve the equation

∂gs
∂Y

= −nYn−1 + n

(
Y − 1

s

)n−1

= 0 ,

which is rewritten as

Yn−1 =
(
Y − 1

s

)n−1

.
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Then we have τlY = (Y − 1/s) and

Y = 1

s(1 − τl)
,

where τl = exp
( 2lπi
n−1

)
(l = 1, 2, . . . , n− 2) is an (n− 1)st root of unity other than 1. We set

Yl(s) := 1

s(1 − τl)
. (1.3)

Substituting Xk , Yl(s) into gs (X, Y ), then we have

gs (Xk, Yl(s)) = 1

(1 − νk)n−1
− 1

sn(1 − τl)n−1
.

We solve the equation gs (Xk, Yl(s)) = 0 in s. Then the critical values of f : Vn → CP 1

other than 0 or ∞ are the solutions of

sn =
(

1 − νk

1 − τl

)n−1

.

We can rewrite the right hand side of this equation as

(−1)k−l
(

sin kπ
n−1

sin lπ
n−1

)n−1

by using Lemma 3.1.2. We denote the critical value by

s
(j)
k,l (j = 0, 1, . . . , n− 1 and k, l = 1, 2, . . . , n− 2) .

The singular points are given by

(X, Y ) =
(

1

1 − νk
,

1

s
(j)

k,l (1 − τl)

)
.

For a regular value s0 ( �= s
(i)
k,l , 0,∞), a general fiber f−1(s0) is defined by a polynomial

of degree n− 1. By Plücker’s formula, we obtain the following

PROPOSITION 1.1.1. If s0 is a regular value of f : Vn → CP 1, then f−1(s0) is a
complex curve of genus (n− 2)(n− 3)/2.

We remark that the fibers have some symmetry like

f−1(s) ∼= f−1(e2πi/ns)

and

f−1(s) ∼= f−1(1/s) .
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1.2. The shapes of singular fibers. Matsumoto [8] determined the topological types
of all singular fibers of f : Vn → CP 1.

THEOREM 1.2.1 (Matsumoto [8]). We assume that the degree n is greater than 3.
Then the singular fiber is as follows:

(I) If n is odd (and if n ≥ 13, then n �≡ 1 (mod 6)), then there appear four types of
singular fibers:
(1) For s0 = 0 or ∞, f−1(s0) consists of n− 1 projective lines. Each projective

line intersects the others projective lines at only one point.

(2) For s0 which is an nth root of unity, each fiber f−1(s0) consists of a plane
curve of degree n−3 and two projective lines. Each projective line intersects
the plane curve at n− 3 points and intersects the other line at one point.

(3) For an integer k (1 ≤ k < n−3
2 ), letting s0 be an nth root of

(−1)
n−1

2 +k
(

sin
kπ

n− 1

)n−1

or

(−1)
n−1

2 +k
(

1

sin kπ
n−1

)n−1

,

then each fiber f−1(s0) is an irreducible plane curve of degree n − 1 with
two nodes. Its vanishing cycles corresponding to the two nodes are non-
separating simple closed curves and they are not homologous to each other.

(4) For an ordering pair of integers (k, l) (1 ≤ k, l ≤ n−3
2 ), letting s0 be an nth

root of

(−1)k−l
(

sin kπ
n−1

sin lπ
n−1

)(n−1)

,

then each fiber f−1(s0) is an irreducible plane curve of degree n − 1 with
four nodes. Its vanishing cycles corresponding to the four nodes are non-
separating simple closed curves and they are not homologous to each other.

(II) If n is even, then there appear three types of singular fibers:
(1) For s0 = 0 or ∞, each fiber f−1(s0) consists of n − 1 projective lines and

each projective line intersects the others projective lines at only one point.

(2) For s0 which is a 2nth root of unity, each f−1(s0) consists of a plane curve
of degree n − 2 and a projective line. The line intersects the plane curve at
n− 2 points.

(3) For an ordering pair of integers (k, l) (1 ≤ k, l ≤ n−2
2 ), letting s0 be a 2nth
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root of (
sin kπ

n−1

sin lπ
n−1

)2(n−1)

,

then each fiber f−1(s0) is an irreducible plane curve of degree n − 1 with
two nodes. Its vanishing cycles corresponding to the two nodes are non-
separating simple closed curves and they are not homologous to each other.

Moreover, Matsumoto told us that he had a certain result about the singular fibers in case
n ≡ 1 (mod 6) in a joint paper with K. Masuda but it is not published yet.

2. Branched covering map

Is this section, we define a branched covering map ps from a fiber f−1(s) to CP 1 for a
general s. This map plays an important role to describe the reference fiber and to determine
the topological monodromy around a singular fiber.

2.1. Definition of a branched covering map. Before we define the branched cover-
ing map, we note that the following lemma.

LEMMA 2.1.1. If s is not zero nor infinity, then f−1(s) ∩ {z0 = z1} consists of n− 1
points.

PROOF. From the definition of the map f ;

f ([z0 : z1 : z2 : z3]) =
{

0 if z2 �= z3 ,

(z2/z0)
n−1 if z2 = z3 ,

if s �= 0, then the equation zn−1
2 = szn−1

0 has n − 1 solutions. We solve the equation as
z2 = y1, y2, . . . , yn−1. Then we obtain

f−1(s) ∩ {z0 = z1} = {[z0 : z1 : y1 : y1], [z0 : z1 : y2 : y2], . . . , [z0 : z1 : yn−1 : yn−1]} .

Now, we define a branched covering map ps : f−1(s) → CP 1 = C ∪ {∞} by

ps([z0 : z1 : z2 : z3]) := z0

z0 − z1
.

Since the inverse image p−1
s (∞) of the infinity point consists of n − 1 points from Lemma

2.1.1, ∞ is not a branch point of ps . Hence we consider a branched covering map ps from

f−1(s) \ {n− 1 points} to C defined by

ps : f−1(s) \ {n− 1 points} → C , ps(X, Y ) := X .

Here f−1(s) ∩ {z0 �= z1} = {(X, Y ) ∈ C2 : gs (X, Y ) = 0}. Let s0 be a regular value of

f : Vn → CP 1. Then this map is an (n − 1)-fold branched covering map from a smooth
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complex curve f−1(s0) of genus (n − 2)(n − 3)/2 to CP 1 . Hereafter, for simplicity, we
denote f−1(s0) \ {n− 1 points} by f−1(s0).

2.2. Branch points and ramification points. We determine the branch points of

ps0 : f−1(s0) → C. For a general point X0 ∈ C, the number of the solutions of the equation
in Y

Xn0 − (X0 − 1)n − Yn +
(
Y − 1

s0

)n
= 0 (2.1)

is n − 1. The Y -coordinate of the ramification points are the multiple roots of the equation

(2.1). Solving
∂gs0
∂Y

= 0, then we have

Yl = Yl(s0) = 1

s0(1 − τl)
, l = 1, 2, . . . , n− 2 .

The branch points of ps0 : f−1(s0) → C is the solutions of the equation in X

Xn − (X − 1)n − Ynl +
(
Yl − 1

s0

)n
= 0 , l = 1, 2, . . . , n− 2 . (2.2)

Let X(l)j (j = 1, 2, . . . , n − 1) be the solution of (2.2). That is, the branch points are the

solutions of the equation in X

n−2∏
l=1

{
Xn − (X − 1)n − Ynl +

(
Yl − 1

s0

)n}
= 0 .

As in Lemma 3.1.2.

Ynl −
(
Yl − 1

s0

)n
= 1

sn0 (1 − τl)n−1

= in−1(−1)l

2n−1sn0 (sin(lπ/(n− 1)))n−1
.

If l′ = n− 1 − l, then Ynl − (Yl − 1/s0)n = Yn
l′ − (Yl′ − 1/s0)n and {X(l)j }j = {X(l′)j }j . Hence

we can reduce the running number l and obtain

[(n−1)/2]∏
l=1

{
Xn − (X − 1)n − 1

sn0 (τl − 1)n−1

}
= 0 , (2.3)

where [·] is Gauss symbol. Generally in order to identify X(l)j to X(l
′)

j , we need to permute

the index j . But if l′ = n − 1 − l, then the equations (2.2) coincide for l and l′, so we may

identify X(l)j to X(l
′)

j naturally.



26 KAZUSHI AHARA AND IKUKO AWATA

Hence if s0 is a regular value of f : Vn → CP 1, the number of the branch points is{
(n− 1)2/2 if n is odd ,
(n− 1)(n− 2)/2 if n is even .

LEMMA 2.2.1. For a general fiber f−1(s0), the ramification index of each ramifica-

tion point of the branched covering map ps0 : f−1(s0) → C is two.

PROOF. There exist no solutions of the system of equations


gs0(X0, Y ) = Xn0 − (X0 − 1)n − Yn +
(
Y − 1

s0

)n
= 0 ,

∂gs
∂Y

= 0 ,

∂2gs
∂Y 2 = 0 .

This leads to the assertion.

It is easy to check that if s0 is a regular value of f : Vn → CP 1, then the equation (2.3)

does not have any multiple roots. If s is a critical value of f : Vn → CP 1, then the equation
(2.3) has multiple roots. (Precisely speaking, they are double roots from Lemma 2.2.1.)

Moreover, we can determine the positions of all branch points. See Figure 6. In order to
draw the positions of branch points, we need more discussions. Hence we leave the conclusion
to subsection 3.3.

In order to determine the topology of a reference fiber f −1(s0), we want to know the
permutation of the solutions of gs0(X, Yl) = 0 when we move X from X0 to the branch point

X
(l)
j . We investigate the branched covering map ps0 in detail and determine the permutation

in section 3. In order to determine the monodromy around the singular fiber f−1(s
(j)

k,l ), we

want to know the trace of the branch points X(l)j when s moves from s0 to the singular value

s
(j)

k,l and we determine it in section 4.

3. Determination of the reference fiber

We keep the notation as above. In order to determine topological structure of the refer-

ence fiber f−1(s0), we need some technical theorems. We have to separate into two cases that
(i) n is odd and (ii) n is even. In this article, we only state the case that n is odd, but we can
get similar results for even n. See [4].

3.1. Technical theorems. For “good” s0 and X0, we want a good configuration of
the solutions of the equation gs0(X0, Y ) = 0 and that of the branch points of ps0 . The key
theorem is
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FIGURE 1. The solutions Y (j) of gs0 (X0, Y ) = 0 and the solutions

Yl of
∂gs0
∂Y

= 0 in the case that n = 7.

THEOREM 3.1.1. Let X0 = 1/2 and let Y (1), Y (2), . . . , Y (n−1) be the solutions of

gs0(X0, Y ) = 0. If s0 is a sufficiently small positive real number, then Y (1), Y (2), . . . , Y (n−1)

lie on a line {Y ∈ C | Re Y = 1/2s0} (ImY (1) > Im Y (2) > · · · > ImY (n−1)). Moreover,

there exists Yl between Y (l) and Y (l+1) on the line. See Figure 1.

Before we proceed the proof of Theorem 3.1.1, we show technical lemmas.

LEMMA 3.1.2. Let θ = π/(n− 1). The following equalities hold:
(i) τl + 1 = 2elθi cos lθ.

(ii) 1 − τl = −2ielθi sin lθ.

(iii) Yl(s)
n −

(
Yl(s)− 1

s

)n
= 1

sn(1 − τl)n−1 .

(iv) Yl(s) = 1

s(1 − τl)
= 1

2s
+ i

sin 2lθ

2s(1 − cos 2lθ)
.

PROOF.
(i) τl + 1 = e2lθi + 1

= elθi{elθi + e−lθi}
= 2elθi cos lθ .

(ii) 1 − τl = 1 − e2lθi

= elθi{e−lθi − elθi}
= −2ielθi sin lθ.
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(iii) Yl(s)
n −

(
Yl(s)− 1

s

)n
=
(

1

s(1 − τl)

)n
−
(

τl

s(1 − τl)

)n

= (1 − τl)

sn(1 − τl)n
= 1

sn(1 − τl)n−1
.

(iv)
1

s(1 − τl)
= 1

s(1 − cos 2lθ − i sin 2lθ)

= 1 − cos 2lθ + i sin 2lθ

2s(1 − cos 2lθ)

= 1

2s
+ i

sin 2lθ

2s(1 − cos 2lθ)
.

COROLLARY 3.1.3. The real part of 1/(1 − τl) is 1/2.

From Corollary 3.1.3, if we take s a real number, then not only the real part of Yl(s)
is 1/2s but also the real part of Xk is 1/2. (We note that Yl(s) is the Y -coordinate of the
ramification point of ps .) We remark that the real part of Yl(s) is independent of n. It depends
only on s.

Let s0 be a regular value of f and let X0 be a regular value of ps0 , that is, X0 is not a
branch point. We investigate the solutions of the equation

Xn0 − (X0 − 1)n − Yn +
(
Y − 1

s0

)n
= 0 . (3.1)

LEMMA 3.1.4. The equation (3.1) has solutions of the form

Y = 1

2s0
± βj ,

where βj ∈ C (j = 1, 2, . . . , (n− 1)/2).

REMARK 3.1.5. This lemma implies that the configuration of the solutions of (3.1)
has symmetry on 1/2s0. If all βj are purely imaginary numbers and s0 is a real number, then
the solutions of (3.1) lie on the line {Y ∈ C | Re Y = 1/2s0} (See Figure 1).

PROOF. We set Y ′ := Y − 1/2s0. Then the equation (3.1) is rewritten as

Xn0 − (X0 − 1)n −
(
Y ′ + 1

2s0

)n
+
(
Y ′ − 1

2s0

)n
= 0 .

The left hand side of this equation is

−2nC1(Y
′)n−1

(
1

2s0

)
− 2nC3(Y

′)n−3
(

1

2s0

)3

− · · · − 2nCn−2(Y
′)2
(

1

2s0

)n−2

−2

(
1

2s0

)n
+Xn0 − (X0 − 1)n .

(3.2)
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Since n is odd (and n − 1 is even), the polynomial (3.2) has only the terms of even degree.
Hence there exist some complex numbers βj (j = 1, 2, . . . , (n− 1)/2), we have solutions as

(Y ′)2 = β2
j ,

and we have

Y ′ = ±βj .
Substituting this into Y = Y ′ + 1/2s0, we can solve

Y = 1

2s0
± βj , βj ∈ C , j = 1, 2, . . . ,

n− 1

2
.

We set

Ψ (X) := Xn − (X − 1)n

and

φ(Y ′) := Ψ (X0)−
(
Y ′ + 1

2s0

)n
+
(
Y ′ − 1

2s0

)n
.

Expanding φ(Y ′), we have

φ(Y ′) = −2nC1(Y
′)n−1

(
1

2s0

)
− 2nC3(Y

′)n−3
(

1

2s0

)3

− · · · − 2nCn−2(Y
′)2
(

1

2s0

)n−2

−2

(
1

2s0

)n
+ Ψ (X0) .

Now, we prove that all solutions of φ(Y ′) = 0 are purely imaginary numbers for X0 =
1/2 and a sufficiently small positive number s0. We obviously obtain.

LEMMA 3.1.6. Let Y ′ = vi be a purely imaginary number and let s0 be a real number.
If Ψ (X0) ∈ R, then φ(Y ′) ∈ R.

Under the assumption of Lemma 3.1.6, we can define a function φ(v) : R → R by

φ(v) := φ(vi). That is,

φ(v) :=−(−1)(n−1)/22nC1v
n−1 − (−1)(n−3)/22nC3v

n−3
(

1

2s0

)2

− . . .

−(−1)2nCn−2v
2
(

1

2s0

)n−2

− 2

(
1

2s0

)n
+ Ψ (X0) .

We draw a graph of w = φ(v). In order to know the extreme points of w = φ(v), we solve
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dφ
dY ′ (Y ′) = 0.

(
Equivalently

dgs0 (X0,Y )

dY
= 0.

)
From (1.3),

Y ′ = Yl − 1

2s0
= τl + 1

2s0(1 − τl)
, l = 1, 2, . . . , n− 2 .

We denote this by Y ′
l . From Lemma 3.1.2, we obtain

Y ′
l = i cot lθ

2s0
. (3.3)

We set bl := ImY ′
l = (cot lθ)/2s0. Then the following inequalities hold:

LEMMA 3.1.7. b1 > b2 > · · · > b(n−1)/2 = 0 > b(n+1)/2 > · · · > bn−2.

We note that φ(bl) is the extremum. Now we investigate the sign of φ(bl). We compute

φ(bl):

φ(bl) = φ(Y ′
l ) = gs0(X0, Yl) = Ψ (X0)− 1

sn0 (1 − τl)n−1
.

From Lemma 3.1.2 (ii), we have

φ(bl)= Ψ (X0)− 1

sn0 (2ie
lθi sin lθ)n−1

= Ψ (X0)− (−1)(n−1)/2+l

sn0 2n−1(sin lθ)n−1 .

For X0 = 1/2, Ψ (X0) = Xn0 − (X0 − 1)n = 1/2n−1 and we have

φ(bl) = 1

2n−1
− (−1)(n−1)/2+l

sn0 2n−1(sin lθ)n−1
.

Obviously, for any n and l, there exists an small positive real number s0 such that the following
inequalities hold:

0 < sn0 < 1 . (3.4)

Therefore we deduce

LEMMA 3.1.8. Suppose that X0 = 1/2 and s0 is sufficiently small positive real num-
ber satisfying (3.4). Then

(I) If (n− 1)/2 is even, then

φ(bl) =
{

negative if l is even ,
positive if l is odd .

(II) If (n− 1)/2 is odd, then

φ(bl) =
{

positive if l is even ,
negative if l is odd .
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From this lemma, it follows that the graph w = φ(v) is as Figure 2. Since φ(v) is a

polynomial of degree n − 1, the number of solutions of the equation φ(v) = 0 is n − 1 and
we obtain

PROPOSITION 3.1.9. Let s0 be a positive real number satisfying (3.4). Setting X0 :=
1/2, then any solution of the equation φ(Y ′) = 0 is a purely imaginary number.

We denote the solutions of φ(v) = 0 by v(j) (j = 1, 2, . . . , n − 1) such that v(1) >

v(2) > · · · > v(n−1). Then φ(v(j)i) = 0 and hence the solution Y (j) of φ(Y ) = 0 is expressed
as

Y (j) = 1

2s0
+ v(j)i ,

By Lemma 3.1.4 and Proposition 3.1.9, we conclude

COROLLARY 3.1.10. Let s0 and X0 be as in Proposition 3.1.9. Then Y (1), Y (2), . . . ,

Y (n−1) lie on the line defined by Re Y = 1/2s0. See Figure 1.

As seen in Figure 2, the inequalities

v(n−1) < bn−2 < v
(n−2) < bn−1 < · · · < v(2) < b1 < v

(1)

hold. Then we conclude Theorem 3.1.1 for the case n is odd.

3.2. The curve C defined by ImΨ (X) = 0. In order to investigate the permutation

of Y (l)’s when we move X from the base pointX0 to the branch pointsX(l)j , we find a “good”

path from X0 to X(l)j . In this section, we assume that s0 is a real number.

FIGURE 2. The graph w = φX0
(v) in the case n = 11: The extremums decrese in

order.
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We set

φX(v) := gs0(X,
1

2s0
+ vi)

= −(−1)(n−1)/22nC1v
n−1

(
1

2s0

)
− (−1)(n−3)/22nC3v

n−3
(

1

2s0

)3

− · · · − (−1)2nCn−2v
2
(

1

2s0

)n−2

− 2

(
1

2s0

)n
+ Ψ (X) .

We remark that φX0
= φ. If X = X

(l)
j , then φX(bl) = 0. It follows that the graph

w = φ
X
(l)
j

(v) is tangent to the v-axis at (bl, 0). If X moves along a path satisfying that

Ψ (X) is a real number, that is ImΨ (X) = 0, then we can see the movement of the graph

w = φX(v) and how the intersection points v(l) and v(l+1) converse to bl . Here we consider

v(j) as a continuous function of X, whenever they exist. In this subsection, we investigate a
curve defined by ImΨ (X) = 0.

We set X := x + iy. Then Ψ (X) = (x + iy)n − (x + iy − 1)n. We often denote Ψ (X)
by Ψ (x, y) and we define the curve

C := {X ∈ C : ImΨ (X) = 0}(= {(x, y) ∈ R2 : ImΨ (x, y) = 0}) .
PROPOSITION 3.2.1. The notation is as above. Then the imaginary part of Ψ (x, y)

is factorized as ImΨ (x, y) = y(x − 1/2)h(x, y). Moreover the curve C passes through the

points X(l)j and Xk = 1/(1 − νk).

We remark that h(x, y) is a polynomial of degree n− 3 in y.
In order to show this proposition, we need three lemmas.

LEMMA 3.2.2. If x = 1/2, then Ψ (1/2, y) is a real number.

PROOF. Substituting X = 1/2 + iy into Ψ (X), then

Ψ

(
1

2
+ iy

)
=
(

1

2
+ iy

)n
−
(

1

2
+ iy − 1

)n

=
(

iy + 1

2

)n
−
(

iy − 1

2

)n
.

Since n is odd, this is a polynomial of (iy)2. Hence Ψ (1/2 + iy) is a real number.

LEMMA 3.2.3. If y = 0, then Ψ (x, 0) is a real number.

PROOF. Let X be a real number. Then

Ψ (x, 0) = xn − (x − 1)n ,

and it is obviously a real number.
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From Lemma 3.2.2 and 3.2.3, it follows that ImΨ (x, y) factorize as ImΨ (x, y) = y(x−
1/2)h(x, y). Moreover all the branch points X(l)j and Xk are on the curve C from the next

lemma.

LEMMA 3.2.4. (i) Ψ (X
(l)
j ) ∈ R and (ii) Ψ (Xk) ∈ R.

PROOF. (i) Since X(l)j is a solution of the equation

gs0(X, Yl) = Ψ (X)− 1

sn0 (1 − τl)n−1
= 0 ,

Ψ (X
(l)
j ) = 1/sn0 (1 − τl)

n−1. Now from Lemma 3.1.2,

Ψ (X
(l)
j ) = (−1)(n−1)/2+l

sn0 2n−1(sin lθ)n−1 .

Clearly, Ψ (X(l)j ) is a real number.

(ii) Since the real part of Xk is 1/2 from Lemma 3.1.3, Ψ (Xk) ∈ R from Lemma
3.2.2.

Therefore we obtain Proposition 3.2.1.
For convenience, we set

L :=
{
(x, y) ∈ R2 : x = 1

2

}
⊂ R2 = C

and

H := {(x, y) ∈ R2 : yh(x, y) = 0} .
We note that C = L ∪H . We next show

PROPOSITION 3.2.5. The line L and the curveH intersect atXk . Moreover, the num-
ber of the intersection points is n− 2.

In order to show Proposition 3.2.5, we first show

LEMMA 3.2.6. Let yk be a solution of h(1/2, y) = 0. Then 1/2+iyk = Xk , a solution

of dΨ
dX

= 0.

PROOF. We separate the holomorphic function Ψ (X) into the real part and the imag-
inary part: Ψ (X) := u(x, y) + iv(x, y) where X = x + iy. Since Ψ (X) is a holomorphic
function, Cauchy-Riemann formula is followed:

∂Ψ

∂X
= ∂v

∂y
+ i

∂v

∂x
. (3.5)
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From Proposition 3.2.1, the imaginary part v(x, y) = y(x − 1/2)h(x, y). We compute the

derivatives ∂v
∂x

and ∂v
∂y

:

∂v

∂x
= y

{
h(x, y)+

(
x − 1

2

)
∂h

∂x

}
, (3.6)

∂v

∂y
=
(
x − 1

2

){
h(x, y)+ y

∂h

∂y

}
. (3.7)

The conditions h(1/2, yk) = 0 and x = 1/2 imply that ∂v
∂x

= ∂v
∂y

= 0. Hence dΨ
dX
(1/2, yk) =

0.

Next we show the converse.

LEMMA 3.2.7. Let Xk = 1/2 + iyk. Then ykh(1/2, yk) = 0.

PROOF. We note that Xk = 1/2 + iyk is a solution of dΨ
dX

= 0. Then from (3.5),

∂v

∂x

(
1

2
, yk

)
= 0 .

From (3.6), we obtain

ykh(
1

2
, yk) = 0 .

Moreover, we have

PROPOSITION 3.2.8. The curve C is symmetric about the line L and the x-axis.

PROOF. Easily we can show that

ImΨ (x, y) = y{nC1[xn−1 − (x − 1)n−1] − nC3[xn−3 − (x − 1)n−3]y2

+ · · · + (−1)(n−3)/2
nCn−2[x2 − (x − 1)2]yn−3} .

Therefore we have ImΨ (x, y) = −ImΨ (x,−y) and ImΨ (x, y) = −ImΨ (1 − x, y).
These are followed by the conclusion.

We can move X from X0 to X(l)j along the curve C by the following theorem.

THEOREM 3.2.9. The branch pointsX(l)j , the base pointX0 = 1/2 andXk are on the

same connected component of the curve C for any l, j , k.

In order to show Theorem 3.2.9, we need following two lemmas. For simplicity, We
denote

al(s) := (−1)(n−1)/2+l

2n−1sn(sin lθ)n−1 .
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LEMMA 3.2.10. If sn is a real number, then the solutions of Ψ (X)− al(s) = 0 are on
the curve C.

PROOF. Let X be a solution of Ψ (X)− al(s) = 0. Then Ψ (X) = al(s) and Ψ (X) is a
real number. It follows that the solution X is on the curve C.

LEMMA 3.2.11. There exists a positive real number s such that the solutions of
Ψ (X)− al(s) = 0 are on the line L.

PROOF. We denoteX = x+iy. If al(s) ∈ R, then (1) the solutions ofΨ (X)−al(s) = 0
are on the curve C, and (2) if X = 1/2 + iy ∈ L, then Ψ (X)− al(s) ∈ R. Therefore we can
define the function ψ : R → R defined by

ψ(y) := Ψ

(
1

2
+ iy

)
− al(s) .

We set yk := ImXk as in Lemma 3.2.6. Then ψ(yk) is an extremum.

ψ(yk) = 1

2n−1(−1)(n−1)/2+k

{
1

(sin kθ)n−1 − (−1)k−l

sn(sin lθ)n−1

}
.

If s is enough large, then ∣∣∣∣ 1

(sin kθ)n−1

∣∣∣∣ >
∣∣∣∣ 1

sn(sin lθ)n−1

∣∣∣∣ .
Hence the sign of ψ(yk) is determined whether (n − 1)/2 and k are odd or even. Therefore,
we summarize

(I) If (n− 1)/2 is odd, then

ψ(yk) =
{

positive k is odd ,
negative k is even .

(II) If (n− 1)/2 is even, then

ψ(yk) =
{

negative k is odd ,
positive k is even .

In the same way as in the proof of Proposition 3.1.9, there exist n − 1 zero points of ψ(y).

The function ψ(y) = Ψ (1/2 + iy) − al(s) is a polynomial of degree n − 1 in y. Hence all
solutions of Ψ (X)− al(s) = 0 lie on the line L.

PROOF OF THEOREM 3.2.9. Let s1 be a real number satisfying the condition of
Lemma 3.2.11. When we move s from s0 to s1 along the real axis, the solutions of

Ψ (X)− al(s) = 0 move from X
(l)
j to the point on the line L along the curve C from Lemma

3.2.10 and 3.2.11. Hence we obtain the assertion.
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From Theorem 3.2.9, we can choose a path γ from X0 to X(l)j such that Ψ (X) is a real

number. If we move X along the path γ , then we can see the movement of the Y -coordinate

Y (l) of the ramification points of ps0 : f−1(s0) → CP 1.

3.3. The positions of the branch points. We determine the positions of the branch
points of ps0 : f−1(s0) → CP 1. In this subsection, we assume that (n − 1)/2 is odd. In the
case that (n− 1)/2 is even, similar discussion holds. Hence we omit the case that (n− 1)/2 is
even. We keep notation and take s0 a sufficiently small positive real number satisfying (3.4).

We recall that

φX0
(bl) = 1

2n−1 − (−1)(n−1)/2+l

sn0 2n−1(sin lθ)n−1

is an extremum of the graph w = φX0
(v). Then we obvious obtain.

LEMMA 3.3.1. The following inequalities hold: If (n− 1)/2 is odd, then

(i) φX0
(b1) < φX0

(b3) < · · · < φX0
(b(n−1)/2) < 0, and

(ii) φX0
(b2) > φX0

(b4) > · · · > φX0
(b(n−3)/2) > 0.

Hence the graph w = φX0
(v) is concretely drawn as Figure 2. Now we investigate

increase (or decrease) of the value Ψ (X) on the curve C.

LEMMA 3.3.2. Let X(t) ∈ C = {ImΨ (X) = 0} be a path such that (i) X(t) is of

class C1, (ii) | d
dt
X(t)| �= 0 and (iii) for each t , X(t) �= Xk . Then d

dt
Ψ (X(t)) �= 0.

PROOF. Since the condition (ii) means d
dt
X(t) �= 0 for any t and the condition (iii)

means d
dX
Ψ (X) �= 0,

d

dt
Ψ (X(t)) = d

dX
Ψ (X)× d

dt
X(t) �= 0 .

From Lemma 3.3.2, Ψ (X(t)) ∈ C is monotone increase or monotone decrease on the
path X(t) which does not pass through Xk .

If X = 1/2 + iy, then Ψ (X) ∈ R. Hence we can define the function

Ψ : R → R , Ψ (y) := Ψ

(
1

2
+ iy

)
.

The function Ψ (y) has extremums at yk (= ImXk). The function Ψ (y) is a degree (n − 1)
polynomial in y and there exist n − 2 extreme points. Then the increase/decrease table of

Ψ (y) is as follows:

y . . . yn−2 . . . yn−3 . . . . . . . . . y3 . . . y2 . . . y1 . . .

Ψ (y) ↗ ↘ ↗ ↗ ↘ ↗ ↘ (3.8)
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FIGURE 3. The direction of increase of Ψ (X) on L.

FIGURE 4. The direction of increase of Ψ (X) around Xk .

Hence we have

LEMMA 3.3.3. The direction of increase of Ψ (y) on the line L is as Table (3.8) and
Figure 3.

From the maximum principle of a holomorphic function, we have.

LEMMA 3.3.4. Around the point Xk , the direction of increase is either of two cases in
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FIGURE 5. The direction of increase of Ψ (X) on C around L.

Figure 4.

From Lemma 3.3.3 and 3.3.4, we deduce.

PROPOSITION 3.3.5. The direction of the increasing of Ψ (X) around the line L is as
Figure 5.

We investigate the positions of the branch pointsX(l)j on C. First, we show that for small

s0 > 0, there exists no branch point X(l)j on the segment from X1 to Xn−2. In order to show

this, we assume that X(l)j is on the segment from X1 to Xn−2. Since

Ψ (Xk) = (−1)(n−1)/2+k

2n−1(sin kθ)n−1 ,

we have

|Ψ (X(l)j )| < |Ψ(X1)| = 1

2n−1(sin θ)n−1 .
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On the other hand, φ
X
(l)
j

(bl) = Ψ (X
(l)
j )− al(s0) = 0 is followed by

|Ψ (X(l)j )| = |al(s0)| = 1

2n−1|s0|n(sin lθ)n−1
>

1

2n−1|s0|n .

Hence if s0 satisfies

|s0|n < (sin θ)n−1 , (3.9)

then

|Ψ (X(l)j )| >
1

2n−1|s0|n >
1

2n−1(sin θ)n−1 > |Ψ (X(l)j )|

and this is a contradiction.
We fix s0 > 0 satisfying (3.9). Let Bk be a divisor of the curve H = {yh(x, y) = 0}

intersecting L = {x = 1/2} at Xk and set Bk,+ := {X ∈ Bk : Re X > 1/2}, Bk,− := {X ∈
Bk : Re X < 1/2}, B+ := {X ∈ L : ImX > ImX1} and B− := {X ∈ L : ImX < ImXn−2}.
We call Bk , Bk,+, Bk,−, B+ and B− branches of the curve C. If k is odd, then when X moves
fromXk along the branch Bk,+ or Bk,−, Ψ (X) is positive and is monotone increasing. On the
other hand, if k is even, then when X moves from Xk along the branch Bk,+ or Bk,−, Ψ (X)
is negative and is monotone decreasing (See Figure 5).

LEMMA 3.3.6. Each branch Bk,+, Bk,− B+ or B− of the curve C does not intersect
with other branches.

PROOF. In the case (n− 1)/2 is odd, from Proposition 3.3.5,

Ψ (Bk) ⊂
{

{w ∈ R : Ψ (Xk) ≤ w} (k : odd)

{w ∈ R : Ψ (Xk) ≥ w} (k : even) .

The value Ψ (Xk) is positive (resp. negative) when k is odd (resp. even). Hence Bk and Bk+1

never intersect. From Proposition 3.3.5 again,

Ψ (B±) ⊂ {w ∈ R : Ψ (X1) ≥ w} .
(Remark that Ψ (X1) = Ψ (Xn−2).) Therefore B± and B1 (B± and Bn−2) never intersect.

Around the line L, the curve H intersects to L at Xk . Then there exist at least n − 2
divisors in yh(x, y) = 0. Since the degree of yh(x, y) = 0 in y is n − 1, yh(x, y) = 0 is
factorized into a product of analytic functions:

∏
k(y − hk(x)) = 0.

We assume that (n− 1)/2 is odd. For any l,

Ψ (X
(l)
j ) = (−1)l+1

2n−1sn0 (sin lθ)n−1 .

Hence

Ψ (X
(1)
j ) > Ψ (X

(3)
j ) > · · · > Ψ (X

((n−1)/2)
j ) > 0
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and

Ψ (X
(2)
j ) < Ψ (X

(4)
j ) < · · · < Ψ (X

((n−3)/2)
j ) < 0 .

From the assumption (3.9),

Ψ (X
((n−1)/2)
j ) > Ψ (X1) (> Ψ (X3) > · · · > Ψ (X(n−1)/2) > 0)

and

Ψ (X
((n−3)/2)
j ) < Ψ (X2) (< Ψ (X4) · · · < Ψ (X(n−3)/2) < 0) .

Hence for each odd k, X((n−1)/2)
j , X

((n−5)/2)
j , . . . , X

(3)
j , X

(1)
j lie on Bk,± in this order and

for each even k, X((n−3)/2)
j , X

((n−7)/2)
j , . . . , X

(4)
j , X

(2)
j lie on Bk,± in this order. Similarly,

X
((n−3)/2)
j , X

((n−7)/2)
j , . . . , X

(4)
j , X

(2)
j lie on B± in this order. We renumber the indices j and

we summarize as follows:

PROPOSITION 3.3.7. The position of branch points X(l)j and Xk is as follows:
(I) If k is odd, then X

((n−3)/2)
k , X

((n−7)/2)
k , . . . , X

(3)
k , X

(1)
k (resp. X((n−3)/2)

k+1 ,

X
((n−7)/2)
k+1 , . . . , X

(3)
k+1, X(1)k+1) is on the kth branch Bk,+ (resp. Bk,−) in this

order.

FIGURE 6. The curve C and the positions of the branch points of ps0 .
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(II) If k is even, then X
((n−1)/2)
k , X((n−5)/2)

k , . . . , X
(4)
k , X

(2)
k (resp. X((n−1)/2)

k+1 ,

X
((n−5)/2)
k+1 , . . . , X

(4)
k+1, X

(2)
k+1 ) is on the kth branch Bk,+ (resp.Bk,−) in this order.

(III) X
((n−1)/2)
1 , X((n−5)/2)

1 , . . . , X
(4)
1 , X(2)1 (resp. X((n−1)/2)

n−1 , X
((n−5)/2)
n−1 , . . . , X

(4)
n−1,

X
(2)
n−1 ) on B+ (resp. B−) in this order.

And the outline of the curve C is as Figure 6.

3.4. The monodromy permutations of the branch covering map ps0 . In subsection
3.3, we get the configuration of the branch loci of ps0 . Next we determine its monodromy
permutations.

Let π := π1(C \ {X(l)j },X0) be the fundamental group of non-branched locus domain of

ps0 . The map

ps0 : p−1
s0
(C \ {X(l)j }) → C \ {X(l)j }

is a covering map and any path [γ ] ∈ π gives a permutation of p−1
s0
(X0) =

{Y (1), Y (2), . . . , Y (n−1)} through the liftings of γ . We denote this permutation by γ and we
call it the monodromy permutation.

For l = 1, 2, . . . , (n − 1)/2, j = 1, 2, . . . , n − 1, we define a path γ (l)j as follows: The

path γ (l)j starts at X0 and goes (almost) along C toward near X(l)j and turns around X(l)j once

and goes back on the coming path. See Figure 7. Here, around the the branch points X(l
′)

j ′ and

FIGURE 7. The path γ (l)
k

along the curve C.
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X
(l)
j , the path γ (l)j goes along ε-circles.

THEOREM 3.4.1. The monodromy permutation γj (l) is as follows:
(I) For 1 ≤ l < (n− 1)/2, γj (l) = (l, l + 1)(n− 1 − l, n− l).

(II) For l = (n− 1)/2, γj (l) = ((n− 1)/2, (n− 1)/2 + 1).

PROOF. We assume that l, k are odd integers other than l = (n− 1)/2. If we move X

fromX0 viaXk toX(l)k , strictly along the curveC, then we can strictly pursue the movement of

Y (l). Indeed a real solution v of φX(v) = 0 gives a solution Y = 1/2s0 + iv of gs0(X, Y ) = 0.
The function

φX(v) = Ψ (X)− Ψ (X0)+ φ(v)

has extreme points bl′ and extremums Ψ (X) − al′(s0) (l′ = 1, 2, . . . , n − 2). We note that

while we move X fromX0 toXk , the number of real solutions of φX(v) = 0 does not change,
because of the discussion around the condition (3.9). On the other hand, while we move from

Xk to X(l)j , on the branch Bk,+, Ψ (X) is monotone increasing, and the extremum

Ψ (X
(l)
k )− al(s0) = 0 (also Ψ (X(n−1−l)

k )− an−1−l (s0) = 0) .

This means if we pursue the movement of Y (l)’s when we make X at X(l)j , Y (l) meets Y (l+1)

at a point Yl , and Y (n−1−l) meets Y (n−l) at a point Yn−1−l . This is the result of the halfway

of γ (l)j with ε → 0. This means that γ (l)j = (l, l + 1)(n − 1 − l, n − l). For other l, k, the

statements are shown in the same way.

From Theorem 3.4.1, the reference fiber f−1(s0) is obtained by the following way: (I)
Prepare n − 1 projective lines with (n − 1)(n − 2) holes and (n − 1)(n − 2)/2 annuli. (II)
Paste projective lines and annuli along the hole with rules in Theorem 3.4.1. We can construct
a smooth complex curve of genus (n− 2)(n− 3)/2.

4. Determination of the global monodromy

In this section, we determine the global monodromy. We investigate the movement of

branch points of ps : f−1(s) → CP 1 when we move s from s0 to the singular value s(j)k,l .

4.1. Recipe for the global monodromy. We setΨ (X) := Xn−(X−1)n and consider
the equation

gs(X, Yl(s)) = Ψ (X)− al(s) = 0 ,

where al(s) := 1/sn(1 − τl)
n−1. First we note that the solutions of gs (X, Yl(s)) = Ψ (X) −

al(s) = 0 (l = 1, 2, . . . , (n − 1)/2) give all branch points of the branched covering map

ps : f−1(s) → C. We investigate the movement of the solutions of gs (X, Yl) = 0 when we
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FIGURE 8. The path γ starting point s0 such that go around s(j)
k,l

.

move s. In the case that n is odd, if al(s) ∈ R then the solutions of Ψ (X) − al(s) = 0 lie on
the curve C = {ImΨ (X) = 0}. Since n− 1 is even, (1 − τl)

n−1 is a real number by Lemma
3.1.2 and al(s) is a real number precisely when s is an nth root of a real number. Hence we
obtain.

LEMMA 4.1.1. If n is an odd number and sn is a real number, then every solution of
the equation gs(X, Yl) = 0 is on the curve C. That is, all branch points of ps are on the curve
C.

We recall that X(l)j (j = 1, 2, . . . , n − 1) are all solutions of gs0(X, Yl(s0)) = 0 and

Xk satisfies g
s
(j)
k,l

(Xk, Yl(s
(j)
k,l )) = 0 (See subsection 1.1). For every s, there exist solutions of

gs (X, Yl(s)) = 0 and X is continuous with respect to s. Then we conclude.

PROPOSITION 4.1.2. We fix k and l. If we move s from s0 to s(0)k,l along the real axis,

then some of the branch points X(l)j of ps0 move to Xk along the curve C.

PROOF. Since X(l)j (resp. Xk) is a solution of gs0(X, Yl) = 0 (resp. g
s
(j)
k,l

(X, Yl) = 0),

we obtain the assertion from Lemma 4.1.1.

For simplicity, we put S = 1/sn and set Al(S) := S/(τl − 1)n−1, gS(X, Yl) := Ψ (X)−
Al(S), S0 := 1/sn0 and Sk,l := 1/(s(j)k,l )

n.

We discuss how to obtain the global monodromy. For details, see [2], [6], [7]. In our

case, we know that there occur single nodes except on f −1(0) or f−1(∞). Each single node
is correspondent to a vanishing cycle, so it is sufficient to know how to obtain the vanishing
cycles.

Let γ be a path in s-plane as in Figure 8. Our goal is getting vanishing cycles with
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FIGURE 9. The path γ starting point S0 such that go around Sk,l .

FIGURE 10. The path δ starting point S0 to Sk,l .

respect to γ . We push out γ into S-plane as in Figure 9 (Note: S = 1/sn). We denote by γ
the path in S-plane induced from γ . Let δ be a half path of γ in S-plane, that is, δ is a path
from S0 to Sk,l almost along γ . We set the end point of δ as Sk,l itself (Figure 10). We move
the parameter S along the path δ and observe movement of solutions of∏

l

(Ψ (X)− Al(S)) = 0 .

For example, we suppose that X(l)k1
meets X(l)k2

at Xk and other X(l
′)

k′ ’s never meet together

(Figure 11). We draw a loop ζ surrounding the trace of X(l)k1
and X(l)k2

(Figure 12), and let

ζ1, ζ2, . . . , ζr be non-zero-homologous liftings of ζ over ps0 . The liftings ζ1, ζ2, . . . , ζr are
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FIGURE 11. The movement of the branch points.

FIGURE 12. The path ζ surrouding the trace.

FIGURE 13

the vanishing cycles at Sk,l with respect to the loop γ . Using this procedure, in order to obtain
the global monodromy, it is sufficient for us to know movement and meetings (encounters) of

X
(l′)
k′ ’s for any half path δ in S-plane.

In S-plane, critical value Sk,l are on the real axis, hence we consider a half path δk,l to
Sk,l consisting of some segments on the real axis and of some half (or full) circles of radius
ε > 0 (Figure 13). The equation

∏
l(Ψ (X) − Al(S)) = 0 has multiple solutions if and only
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FIGURE 14. Q1,Q2, . . . ,Qn−1 are the solutions of Ψ (X) = 0 in the case that n = 6.

if S = 0,∞, Sk,l . We denote by {X(l)j } the set of the solutions of
∏
l (Ψ (X) − Al(S0)) = 0.

These facts are followed that there exist unique liftings (traces) of δk,l with start pointX(l)j for

each l and j .
When the parameter S goes to the end point Sk,l of δk,l (as in Figure 13), there happens

an encounter of X(l)k1
and X(l)k2

atXk for some k1 and k2 (from Proposition 4.1.2). On the other

hand, if ε > 0 is very small, then the liftings (traces) ofX(l)k ’s are almost on the curve C (from
Lemma 4.1.1). In the next subsection, we determine k1 and k2 for each δk,l , and pursue the

movement of X(l)k1
and X(l)k2

(almost) on the curve C.

4.2. Behavior of the solutions of gs (X, Yl) = 0 around the critical value 0 and
Sk,l . Let Q1,Q2, . . . ,Qn−1 be the solutions of the equation Ψ (X) = 0. Then we have the
following lemma.

LEMMA 4.2.1. The points Q1,Q2, . . . ,Qn−1 are on the line L = {Re X = 1/2}.
Moreover on the line L, there areQ1,X1,Q2,X2, . . . , Xn−2,Qn−1 in this order (See Figure
14).
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FIGURE 15

PROOF. The value Ψ (yk) (k = 1, 2, . . . , n − 2) are extremums of Ψ and

Ψ (yk)Ψ (yk+1) < 0 for any k. Hence there exist n − 1 real solutions for Ψ (y) = 0 and
they give n − 1 solutions of Ψ (X) = 0 on the line L. Recalling that yk = ImXk , it is clear
that Q1,X1,Q2,X2, . . . , Xn−2,Qn−1 are in this order.

From Lemma 4.2.1, if S goes near 0, thenX(l)j ’s go toward the pointsQ1,Q2, . . . ,Qn−1

on the line L since Al(0) = 0 for any l. We remark that for one point Qj , there are just

(n − 2)/2 of X(l)j ’s that converge to Qj . If a path δk,l contains a half circle of radius ε > 0

around 0, the movement of X(l)j ’s are given by Figure 15, since a lifting map S �→ X
(l)
j is a

holomorphic (and conformal) map.
When the parameter S goes near Sk′,l′ , it is sufficient for us to pay attention to the branch

points X(l
′)

j (j = 1, 2, . . . , n − 1) (and also X(n−1−l′)
j = X

(l′)
j ). Since any singularities are

single nodes, just two ofX(l
′)

j ’s converge to Xk′ . Therefore, if a path δk,l contains a half circle

of radius ε > 0 around Sk′,l′ , the movement of the two of X(l
′)

j ’s looks like in Figure 16. This

behavior is just the same as in the case y2 = x2 − s, standard single node.

4.3. The global monodromy for Sk,l . From now on, we assume that n is odd and
(n − 1)/2 is odd. In other cases, similar results hold. We determine how a branch point
encounters another one. Recall that

Sk,l = (−1)l−k
(

sin lθ

sin kθ

)n−1

,

where θ = π/(n− 1), and Sk,l = Sk,n−1−l , Sk,l = Sn−1−k,l . Then we obtain.
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FIGURE 16. The movement of S and X.

LEMMA 4.3.1. For a fixed k, the following inequalities hold:
(I) If l is odd, then

(i) 0 < S(n−1)/2,l < S(n−5)/2,l < · · · < S3,l < S1,l .

(ii) S2,l < S4,l < · · · < S(n−3)/2,l < 0.

(II) If l is even, then

(i) 0 < S(n−3)/2,l < S(n−7)/2,l < · · · < S4,l < S2,l .

(ii) S1,l < S3,l < · · · < S(n−1)/2,l < 0.

The condition (3.4) and (3.9) are followed by

S0 >
1

(sin θ)n−1 = |S1,(n−1)/2| = max
k,l

|Sk,l | .

We indexing of X(l)j is as in Figure 6. Let δk,l (resp. δ0) be a half path from S0 to Sk,l
(resp. 0) such as in Figure 13. Our final goal is the following theorem.

THEOREM 4.3.2. The encounter of X(l)j ’s with respect to δk,l or δ0 is as follows:
(I) If Sk,l > 0, that is k and l are both odd (or both even), then two branch points

X
(l)
k and X(l)k+1 ( resp. X(l)n−1−k and X(l)n−2−k) on the branches Bk,+ and Bk,− (resp.

Bn−1−k,+ and Bn−1−k,−) converge to Xk (resp. Xn−1−k). See Figure 17.

(II) If k ( �= 1, �= n − 2) is odd and l is even (Sk,l < 0), then two branch points X(l)k+1

and X(l)k (resp. X(l)n−k and X(l)n−1−k) on the branches Bk+1,+ and Bk−1,− (resp.
Bn−k,+ and Bn−k−2,−) converge to Xk (resp. Xn−k−1). See Figure 18.

(III) If k is even and l is odd then the branch points X(l)k+1 and X(l)k (resp. X(l)n−k and

X
(l)
n−1−k) on the branches Bk+1,+ and Bk−1,− (resp. Bn−k,+ and Bn−k−2,−) con-

verge to Xk (resp. Xn−k−1). See Figure 18.

(IV) If k = 1 (resp. n − 2) and l is even then the branch points X(l)1 and X(l)2 (resp.

X
(l)
n−2 and X(l)n−1) on the branches B+ and B2,+ (resp. Bn−3,− and B−) converge

to X1 (resp. Xn−2 ). See Figure 19.
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FIGURE 17. (I) The movement of the branch points: The bold arrow lines
are homotopically rearranged.

FIGURE 18. (II), (III) The movement of the branch points.

(V) If S = 0, then the movement of the branch points is as Figure 20.

PROOF. Let k and l be odd numbers and let k′ be an even number. If we move S from
S0 to Sk,l , then there exists no singular value Sk′,l between S0 and Sk,l from Lemma 4.3.1.
The solutions of the equation

∏
l (Ψ (X)− Al(S)) = 0 on the branch other than Bk do not go

to Xk , because if X(l)
k′′ on another branch Bk′ for even k′ goes to Xk , then it must pass through

Xk′ . The solutions on Bk are X(l)k and X(l)k+1, and they must encounter each other when S

goes to Sk,l . When X(l)k meets X(l)k+1, X(l
′)

k and X(l
′)

k+1 (l′ > l) move on Bk toward Xk , turn
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FIGURE 19. (IV) The movement of the branch points.

FIGURE 20. (V) The movement of the branch points: Qk and Qk+1
are the solutions of Ψ (X) = 0.

right at Xk , and finally go to a point on L. The other X(l
′)

k and X(l
′)

k+1 (l′ < l) move on Bk
toward Xk and finally go to a point on Bk (See Figure 21). From the definition of Sk,l , we

have Sk,l = Sn−1−k,l . Hence if S goes to Sk,l , then X(l)n−1−k (on Bn−1−k,+) encounters X(l)n−k
(on Bn−1−k,−) at Xn−1−k .

Similarly, let k and l be even numbers and let k′ be an odd number. If we move S from
S0 to Sk,l , then there exists no singular value Sk′,l . The solutions of the equation

∏
l (Ψ (X)−

Al(S)) = 0 on the branch other than Bk do not go to Xk Thus we have (I).
Suppose that k is odd, l is even, k �= 1 and k �= n − 2. Then Sk,l is negative and δk,l

pass near 0 once before arriving at Sk,l . Hence if X(l)j goes to Xk , then it must pass the points

Qk or Qk+1 once (Figure 22). Thus X(l)j must be on the branch Bk−1 or Bk+1 at the start. As

in Figure 16, X(l)j turns right when it visit a crossroad Xk−1 (or Xk+1). This means that X(l)j



GLOBAL MONODROMY OF A FIBRATION OF THE FERMAT SURFACE 51

FIGURE 21

FIGURE 22

must be on Bk−1,− or Bk+1,+ at the start. It follows that X(l)k (on Bk−1,−) encounters X(l)k+1
(on Bk+1,+) at Xk . Thus we have (II).

Suppose that k is even and l is odd. Then Sk,l is negative and Sk,l pass near 0 once. In

the same reason as (II), X(l)j must pass the solution Qk−1 or Qk , and hence X(l)k (on Bk−1,−)

encounters X(l)k+1 (on Bk+1,+) at Xk . Thus we have (III).

Suppose that k = 1 and l is even. Then Sk,l is negative and X(l)j must pass the solution

Q1 or Q2. Hence X(l)1 (on B+) encounters X(l)2 (on B2,+) at X1. In case that k = n− 2 and l
is even, we can show in the same way. Thus we have (IV).

In case (V), as in Figure 15, X(l)k turn right at Xk−1 or Xk . Therefore every X(l)k (l =
1, 2, . . . , n− 2) meet together at Qk .
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