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Abstract. Let H(k) be the group of all homotopy classes of k-string links. It has been proved that f, g ∈ H(k)

have the same closure if and only if there is β ∈ Sk(1) such that β · f = g , where Sk(1) is the stabilizer of 1 for a

certain action of the group H(2k) on the set H(k). If β ∈ Sk(1), Artin’s automorphism β , induced by β on RF(2k),

the reduced free group in 2k generators, induces an automorphism β ∈ A(RF(k)), the group of all automorphisms
of RF(k) that send each generator to one of its conjugates. This can be used to compare the homotopy classes of

links obtained by closing f and g . The association β �→ β is a homomorphism from Sk(1) to A(RF(k)). In this
paper we determine its kernel.

1. Introduction

Artin [A1] introduced the group of (isotopy classes of) braids in k strings and proposed
to use them in order to study knots and links. He also introduced an isomorphism from this
group onto a certain group of automorphisms of a free group F(k) in k generators, what is
called Artin’s representation theorem. Every link can be obtained by closing a braid [A�],
however many different braids provide the same link and the condition for two braids to have
the same closure, provided by Markov [Ma], is not an easy one to verify due to the fact that
braids with a different number of strings may have the same closure.

Artin [A2] also proposed a notion of homotopy for braids. The group of braids up to
homotopy was studied by Goldsmith [G1].

Milnor [M1] proposed a notion of homotopy for links. He also obtained a homotopy
classification of links with 3 or fewer components. Levine [L2] provided such a classification
for links with 4 components. Habegger and Lin [HL] studied the relation between braids and
links up to homotopy, finally obtaining the classification of links up to homotopy.

In order to do that, a generalization of the concept of braid was useful. That was the
notion of a (pure) string link (see Definition 1). Even though any string link is homotopic to
a braid, the concept simplifies the study of the relation between braids and links. Although
the set of (isotopy classes of) string links with k strings does not form a group, Habegger
and Lin showed that the set of homotopy classes of k-string links forms a group and provided

Received January 19, 2009; revised April 17, 2010
2000 Mathematics Subject Classification: 57M25 (Primary)
Key words and phrases: string link, link-homotopy, braid



312 JOSÉ EDUARDO PRADO PIRES DE CAMPOS

for this group an analogous of Artin’s representation theorem, where the free group F(k) is
replaced by the reduced free group RF(k) (see Definition 3). All homotopy classes of links
of k components can be obtained by closing only the homotopy classes of string links of k

strings. Nevertheless, there still are different homotopy classes of string links with the same
closure. Habegger and Lin however obtained a necessary and sufficient condition for two
homotopy classes of string links to have the same closure.

In order to obtain their condition, they introduced an action of the group H(2k), of
homotopy classes of 2k-string links, on the set H(k), of homotopy classes of k-string links,
and showed that f, g ∈ H(k) have the same closure if and only if there is β ∈ Sk(1) such
that β · f = g , where Sk(1) = {β ∈ H(2k) | β · 1 = 1 ∈ H(k)} is the stabilizer of 1 for
the action. Due to that, Sk(1) plays a key role in the Habegger-Lin classification of links
up to link-homotopy and in the relation between the set of homotopy classes of links of k

components and the group of homotopy classes of k-string links. Habegger-Lin’s approach
however was similar to that used by Artin and Markov to study isotopy of links, and still left
open the problem of finding a more purely algebraic classification of links up to homotopy,
like that one started by Milnor and Levine.

In [C2] we observe that the symmetry of being an element β of Sk(1) can be alge-

braically characterized by the fact that Artin’s automorphism β of RF(2k), associated to

β, induces a certain automorphism β ∈ A(RF(k)), the group of all automorphisms of
RF(k) = RF(x1, . . . , xk) that send each generator xi to one of its conjugates (the so called

��

RF(k)�RF(k)
β

ξ ′ ξ ′

�

RF(2k)�RF(2k)

γ �

β

f̄ ∗ 1ḡ ∗ 1
�

RF(2k)RF(2k)

� �

RF(k)RF(k)
γ �

ξ ′ ξ ′

(i)
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“special automorphisms" of RF(k) ). The association β �→ β is a homomorphism that we use
there to provide an algebraic criterion to decide when two k-string links f , g have the same
closure up to link-homotopy. That happens if and only if there exists a certain commutative
diagram of group homomorphisms (see diagram (i) above) where β, γ ∈ Sk(1).

In this paper we provide information about Sk(1) and about the previous diagram by

computing the kernel of the homomorphism(*) β �−→ β (Theorem 10).

2. String Links Homotopy

In this paragraph we briefly review some results of [HL].
We shall use the following notation: I is the interval [0, 1], D is the unit disk

{x ∈ R
2 | |x‖ ≤ 1}, k ≥ 1 is an integer number, k is the set {1, 2, ..., k}, ai is the point(

−1+ 2i
k+1 , 0

)
∈ D for i ∈ k and j0 : k × I → D × I is the map defined by j0(i, x)

= (ai, x).

DEFINITION 1. A k-string link is a smooth or piecewise linear proper imbedding
f : k × I → D × I such that f

∣∣
k × ∂I = j0

∣∣
k × ∂I

.

A k-string link, like a braid, has a closure f̂ , that is a link of k components f̂ :⋃k
i=1 S1

i → S3 formed by identifying points of ∂(D × I) with their images under the pro-
jection D × I → D.

FIGURE 1. a 2-string link

DEFINITION 2. k-string links f and g are link-homotopic if there is a homotopy of the
strings in D × I , fixing the endpoints and deforming f to g , such that the images of different
strings remain disjoint during the deformation.

(*)In [C2] we affirmed that this homomorphism was an epimorphism but there was a mistake in our argument. This
remains an open question.
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We will denote by H(k) the set of link-homotopy classes of k-string links.
The product of two k-string links f and g is given by stacking f on the top of g and

reparametrizing.
With this product, H(k) becomes a group. The homotopy class of j0 is the neutral

element.

DEFINITION 3. Let F(k) be the free group in k generators α1, α2, . . . , αk , and RF(k)

the quotient group obtained from F(k) by adding relations which say that each αi commutes
with all of its conjugates. We call RF(k) the reduced free group in k generators.

DEFINITION 4. Let f be a k-string link and let X(f ) = (D × I) \ f (k × I) be the
complement of the strings. The group π1(X(f ), p), where p = (0,−1, 0) is called the group
of f and is denoted by π(f ).

Let f be a k-string link. We shall denote by xi = xi(f ), for i ∈ k, the top meridians of
f and by yi = yi(f ), for i ∈ k, the bottom meridians of f (see [C1]).

FIGURE 2. top and bottom meridians of a 2-string link

There are homomorphisms µ0(f ) : F(k) = F(α1, α2, . . . , αk)→ π(f ), (αi)µ0(f ) =
xi(f ), and µ1(f ) : F(k)→ π(f ), (αi)µ1(f ) = yi(f ), called respectively, the top meridian
map for f and the bottom meridian map for f . Note that, as above, maps between groups
will be written on the right of the argument.

Let Rπ(f ) be the quotient group obtained from π(f ) by adding relations which say that
each xi(f ) commutes with all of its conjugates.

Similarly to what Artin did for braids, only replacing F(k) by RF(k) and π(f ) by
Rπ(f ), Habegger and Lin showed that if f is a k-string link, µ0(f ) and µ1(f ) induce iso-
morphisms

RF(k)

∼=−→
µ′0(f )

Rπ(f )

∼=←−
µ′1(f )

RF(k)
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that provide an automorphism f = µ′0(f )µ′1(f )−1 of RF(k) satisfying conditions

(1) (αi)f is a conjugate u−1
i αi ui of αi for any i ∈ k, and

(2) (α1 α2 · · ·αk)f = α1 α2 · · ·αk .

Furthermore, if f and g are link homotopic, f = g , and the association f �→ f is
an isomorphism between the group H(k) of link homotopic classes of k-string links and the
group A0(RF(k)) of all automorphisms of RF(k) satisfying conditions (1) and (2) above.

Habegger and Lin also studied the problem of relating homotopy classes of string links
to homotopy classes of links, obtained by closing them. They first introduced an action of the
group H(2k) on the set H(k). Consider a three ball B decomposed in three subballs B+ , B0

and B− .

FIGURE 3. 3-ball B

2k points p1 , . . . , pk , p̃k , . . . , p̃1 are chosen in B+ ∩ B0 and 2k points p ′1 , . . . ,

p ′k , p̃ ′k , . . . , p̃ ′1 are chosen in B0 ∩ B− .

FIGURE 4. B+ ∩ B0

We may think of a 2k-string link β as a (proper smooth or piecewise linear) imbedding
β : 2k × I → B0 such that β(i, 0) = pi , β(i, 1) = p ′i , β(k + i , 0) = p̃k−i+1 and

β(k + i , 1) = p̃ ′k−i+1 for any i ∈ k.
A k-string link f may be considered as an imbedding f : k × I → B− such that

f (i, 0) = p ′i and f (i, 1) = p̃ ′i for any i ∈ k. The “union” of f and β gives rise to an
imbedding k × I → B0 ∪ B− that may be considered as a k-string link β · f if as a part of a
string of β · f , the orientation of β(i × I) for i ∈ {k + 1 , . . . , 2k} is reversed.
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FIGURE 5. B0 ∪ B−

What has been done for string links can be done for the homotopies between them so as
to have an action of the group H(2k) on the set H(k) and the closure of a homotopy between
string links.

Let Sk(1) be the stabilizer of 1 ∈ H(k) for this action of the group H(2k) on the set
H(k), that is, Sk(1) = {β ∈ H(2k) | β · 1 = 1 ∈ H(k)} .

FIGURE 6. An element of S2(1).

THEOREM 1 (Habegger-Lin). Suppose f, g ∈ H(k), then f̂ = ĝ (that is, the closures
of their representatives are link-homotopic) if and only if there is β ∈ Sk(1) such that β · f =
g .

PROOF. see [HL].

3. The homomorphism �k

Let F(2k) be the free group in 2k-generators x1, x2, . . . , xk, x̃k, . . . , x̃2, x̃1 and ξ :
F(2k)→ F(k) be the homomorphism defined by (xi)ξ = xi and (x̃i)ξ = x−1

i for any i ∈ k.
Let A(RF(k)) be the group of all automorphisms of RF(k) that satisfy condition

(1) (xi)f is a conjugate u−1
i xiui of xi for any i ∈ k.

A proof for the next theorem can be found in [C2].
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THEOREM 2. For any k ≥ 1 , there is a homomorphism θ ′k : Sk(1)→ A(RF(k)),

(β)θ ′k=β such that the following diagram is commutative

β �

β

ξ ′ξ ′

RF(k)RF(k)

��

RF(2k)�RF(2k)

where ξ ′ is induced by ξ .

In [HL] it is observed that if 
 ∈ H(2k) has strings 1, 2, . . . , k, k̃, . . . , 2̃, 1̃ and σ ∈
H(k), for i ∈ k, the i-th and ĩ-th strings of 
 , that we shall call symmetric strings, become
part of the i-th string of 
 ·σ . Hence if 
 is changed by crossings of these pairs of strings, the
link-homotopy class of 
 · σ remains unchanged. Thus the action of H(2k) factors through
a quotient, denoted by H ∗(2k), where two string links are equivalent if by crossing pairs of
symmetric strings, if necessary, they are homotopic. The stabilizer of 1 for the new action is
denoted by S∗k (1) = {β ∈ H ∗(2k) | β · 1 = 1 ∈ H(k)} .

Let RF ∗(2k) be the quotient of RF(2k) = RF (x1, x2, . . . , xk, x̃k, . . . , x̃2, x̃1) by the
relations that say that conjugates of xi commute with conjugates of x̃i for any i ∈ k. If

β ∈ H(2k), its automorphism β ∈ A(RF(2k)) induces an automorphism of RF ∗(2k). If
β1, β2 ∈ H(2k) represent the same element in H ∗(2k) they induce the same automorphism
in RF ∗(2k). It follows that if β1, β2 ∈ Sk(1) represent the same element in S∗k (1), then

β1 = β2 . Therefore θ ′k induces a homomorphism �k : S∗k (1) −→ A(RF(k)). We shall

denote (β)�k by β . Our main goal is to determine the kernel of �k .

4. Generators for S
∗
k (1)

The following theorem is a consequence of [HL : Lemma 2.11.].

THEOREM 3. S∗k (1) is generated by the class of the 2k-string links aij , bij , cij (1 ≤
i < j ≤ k) given in figure 7 below.

PROOF. By omitting the external pair of strings (strings 1 and 1̃ in our notation),
Habegger and Lin obtained a split short exact sequence

(I) 1 −→ K1k −→ S∗k (1) −→ S∗k−1(1) −→ 1

and proved that K1k is generated by the elements a1j , β−1
1j , γ−1

1j (2 ≤ j ≤ k) where β1j

and γ1j can be represented, in our notation, as in figure 8 below.



318 JOSÉ EDUARDO PRADO PIRES DE CAMPOS

FIGURE 7

Now it is enough to observe that, for j ∈ {2, 3, . . . , k}, β1j = b1j a−1
1j and γ1j =

c1j a−1
1j .

Let us consider again the disk D with k > 1 aligned points a1 , a2 , . . . , ak . Any
element λ ∈ F(k − 1) represents a path γ in D � {a2 , a3 , . . . , ak} based at a1 . A pure k-
braid σ(λ) in D× I can be associated to λ by letting the i-th string be given by t �→ (γ (t), t)
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FIGURE 8

if i = 1 and t �→ (ai, t) if i > 1 . This provides a split short exact sequence

(II) 1 −→ F(k − 1)
σ−→ PB(k) −→ PB(k − 1) −→ 1 ,

where PB(i), i ∈ {k−1, k} , is the group of pure i-braids and the map PB(k)→ PB(k−1)

is given by omitting the first string.
The same reasoning taking into account the equivalence classes provides the split short

exact sequences below (see [HL]).

(III) 1→ RF(k − 1)→ H(k)→ H(k − 1)→ 1 ,

(IV) 1→ RF ∗(2k − 2)× RF ∗(2k − 2)→ H ∗(2k)→ H ∗(2k − 2)→ 1 ,

where in (IV) the map H ∗(2k)→ H ∗(2k−2) is given by omitting the external pair of strings
as in the short exact sequence (I) . Comparing (I) and (IV) we see that each element β in K1k is
given by an ordered pair (�1 , �̃1) of elements of RF ∗(2k−2) = RF ∗(x2, . . . , xk, x̃k, . . . , x̃2).

For example, a1j is given by pair (x−1
j , x̃j ), b1j is given by pair (̃x−1

j x−1
j , 1) and c1j is given
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by pair (1, xj x̃j ). Furthermore, since β stabilizes 1 it follows that [�1]−1[�̃1] = 1 thus

[�1] = [�̃1] , where [ ] stands for the equivalence class in RF(k − 1) = RF(x2, . . . , xk)

obtained by identifying x̃i with x−1
i (i ∈ {2, 3, . . . , k}).

5. The kernel of �k

�k is not injective, for example, bij = cij , for 1 ≤ i < j < k . In order to get some of
its geometric flavour, let us consider the following proposition, where β ′ is the k-string link
obtained from a 2k-string link β by deleting the last k strings.

PROPOSITION 4. Given any γ ∈ H(k), there is β ∈ ker �k with β ′ = γ .

PROOF. Let us take a pure k-braid that represents γ (see [HL] for its existence). It
can be written (see [B]) as a product of the k-braids a′ij . Now it is enough to replace each

occurrence of a′ij by c−1
ij bij .

Furthermore β ′ does not determine β ′′ for β ∈ ker �k , where β ′′ is the k-string link
obtained from β by deleting its first k strings. This immediately follows from the next propo-
sition (with b1j replaced by c1j ). Let us first observe that the association a1j �→ a′1j

is an isomorphism from 〈 a1j | j = 2, . . . , k 〉 to 〈 a′1j | j = 2, . . . , k 〉 and, if we iden-

tify these groups, then the restriction �k | 〈a1j | j = 2, . . . , k〉 becomes the isomorphism

a′1j �→ a′1j . The association b1j �→ b′1j is also an isomorphism from 〈b1j | j = 2, . . . , k〉 to

〈b′1j | j = 2, . . . , k〉 = 〈a′1j | j = 2, . . . , k〉 ∼= RF(k−1), but in this case we have the follow-

ing proposition, where Z is the abelian group of integers and 〈 b1j 〉 = 〈 b1j | j = 2, . . . , k 〉 .
PROPOSITION 5. There is a commutative diagram of group homomorphisms

∼= ∼=
��

Z
k−1RF(k−1)

im(�k | 〈 b1j 〉)〈 b1j 〉
�k | 〈 b1j 〉 �

�

where the vertical maps are isomorphisms and the map RF(k − 1) → Z
k−1 is the abelian-

ization.

PROOF. For any s ∈ {2, . . . , k}, we have

(xi) b1s =


xi if i < s

x−1
1 xs x1 if i = s

[x1, xs ] xi [xs, x1] if i > s ,
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where [a, b] is the commutator a−1 b−1 ab , hence if s, t ∈ {2, . . . , k} with s < t , we have

(xi) b1s b1t =



xi if i < s

x−1
1 xs x1 if i = s

[x1, xs ] xi [xs, x1] if s < i < t

x−1
1 [x1, xs] xt [xs, x1]x1 if i = t

[x1, xt ] [x1, xs] xi [xs, x1] [xt , x1] if i > t ,

and

(xi) b1t b1s =



xi if i < s

x−1
1 xs x1 if i = s

[x1, xs ] xi [xs, x1] if s < i < t

[x1, xs ] x−1
1 xt x1[xs, x1] if i = t

[x1, xs ] [x1, xt ] xi [xt , x1] [xs, x1] if i > t ,

and taking into account that x1 commutes with its conjugates we have b1s b1t = b1t b1s ,

for any s, t ∈ {2, . . . , k}. Therefore im(�k | 〈 b1j 〉) is an abelian group generated by b1j ,
j ∈ {2, . . . , k}.

Let Z
k−1 have generators z2 , z3 , . . . , zk and consider the epimorphism zj �→ b1j

from Z
k−1 to im(�k | 〈 b1j 〉). The image of the element z

n2
2 · · · znk

k , n2 , . . . , nk ∈Z, by

this epimorphism is the element b
nk

1k · · · b
n2
12 given by

(xi) b
nk

1k · · · bn2
12 =

=



x1 if i = 1
x
−n2
1 x2 x

n2
1 if i = 2

x
−n3
1 [x1, x2]n2 x3 [x2, x1]n2 x

n3
1 if i = 3

x
−n4
1 [x1, x3]n3 [x1, x2]n2 x4 [x2, x1]n2 [x3, x1]n3 x

n4
1 if i = 4

� � �

x
−nk

1 [x1, xk−1]nk−1 · · · [x1, x2]n2 xk [x2, x1]n2 · · · [xk−1, x1]nk−1 x
nk

1 if i = k ,

and since powers of different variables do not commute, if b
nk

1k · · · b
n2
12 is the identity map,

then n2 = 0 , n3 = 0 , . . . , nk = 0 .

Of course a similar result is true if we replace b1j by c1j .
Let us recall from Section 4 that if β ∈ K1k = 〈 a1j , b1j , c1j | j = 2, . . . , k 〉 then β

is given by an ordered pair (�1 , �̃1) ∈ RF ∗(x2, . . . , xk , x̃k, . . . , x̃2) where [�1] = [�̃1] ∈
RF(x2, . . . , xk) .

PROPOSITION 6. If β ∈ K1k is given by the pair (�1 , �̃1) then, for s ∈ {2, 3, . . . , k}
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and δ ∈ {−1, 1} ,

(xi) β bδ
1s β−1 =


xi if i < s

([�1]−1 xδ
1 [�1])−1 xs ([�1]−1 xδ

1 [�1]) if i = s[[�1]−1 xδ
1 [�1], xs

]
xi

[
xs , [�1]−1 xδ

1 [�1]
]

if i > s .

PROOF. Let γ ∈ 〈 a1j , b1j | j = 2, . . . , k 〉 be such that

(xi) γ =


xi if i < s

(w−1 xδ
1 w)−1 xs (w−1 xδ

1 w) if i = s[
w−1 xδ

1 w , xs

]
xi

[
xs , w−1 xδ

1 w
]

if i > s ,

where w ∈ RF(x2, . . . , xk).

If ε ∈ {±1} we have

(xi) bε
1j =


xi if i < j

x−ε
1 xj xε

1 if i = j[
xε

1 , xj

]
xi

[
xj , xε

1

]
if i > j .

Taking into account that x1 commutes with its conjugates and that in the composition

bε
1j γ each letter xt of w is replaced by a conjugate of xt by a product of conjugates of x1 , we

obtain

(xi) bε
1j γ b−ε

1j =


xi if i < s

(w−1 xδ
1 w)−1 xs (w−1 xδ

1 w) if i = s[
w−1 xδ

1 w , xs

]
xi

[
xs , w−1 xδ

1 w
]

if i > s .

On the other side,

(xi) aε
1j =


x−ε
j x1 xε

j if i = 1
[xj , x

ε
1] xi [xε

1, xj ] if 1 < i < j

x−ε
1 xj xε

1 if i = j

xi if i > j ,

hence

(xi) aε
1j γ a−ε

1j =


xi if i < s

(w−1 x−ε
j xδ

1 xε
j w)−1 xs (w−1 x−ε

j xδ
1 xε

j w) if i = s[
w−1 x−ε

j xδ
1 xε

j w , xs

]
xi

[
xs , w−1 x−ε

j xδ
1 xε

j w
]

if i > s .

The result now follows by induction on the length of β as a product of aε
1j , bε

1j , cε
1j

taking into account that cε
1j = bε

1j .

Let 〈 b1j 〉N = 〈 b1j | j = 2, . . . , k 〉N be the normal subgroup of 〈 a1j , b1j | j =
2, . . . , k 〉 generated by b1j , j = 2, . . . , k .
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COROLLARY 7.
(〈 b1j 〉N

)
�k is an abelian group.

PROOF. Let s, t ∈ {2, . . . , k} with s < t . If

(xi) β b1s β−1 =


xi if i < s

(w−1
1 x1 w1)

−1 xs (w−1
1 x1 w1) if i = s[

w−1
1 x1 w1 , xs

]
xi

[
xs , w−1

1 x1 w1

]
if i > s ,

and

(xi) γ b1t γ−1 =


xi if i < t

(w−1
2 x1 w2)

−1 xt (w−1
2 x1 w2) if i = t[

w−1
2 x1 w2 , xt

]
xi

[
xt , w−1

2 x1 w2

]
if i > t ,

then both (β b1s β−1) (γ b1t γ−1) and (γ b1t γ−1) (β b1s β1) are given by sending xi to

xi if i < s

(w−1
1 x1 w1)

−1 xs (w−1
1 x1 w1) if i = s[

w−1
1 x1 w1 , xs

]
xi

[
xs , w−1

1 x1 w1

]
if s < i < t

(w−1
2 x1 w2)

−1
[
w−1

1 x1 w1 , xs

]
xt

[
xs , w−1

1 x1 w1

]
(w−1

2 x1 w2) if i = t[
w−1

2 x1w2 , xt

] [
w−1

1 x1 w1, xs

]
xi

[
xs,w

−1
1 x1w1

] [
xt , w

−1
2 x1w2

]
if i > t .

THEOREM 8. 〈 a1j , b1j | j = 2, . . . , k 〉 is isomorphic to RF ∗(2k − 2) =
RF ∗(x2, . . . , xk, zk, . . . , z2) through the association a1j �→ x−1

j , b1j �→ z−1
j and the re-

striction �k | 〈a1j , b1j | j = 2, . . . , k〉 has kernel
[〈 b1j 〉N , 〈 b1j 〉N

]
.

PROOF. Let β ∈ K1k . We have seen that the association β �→ (�1, �̃1) ∈
RF ∗(2k − 2) × RF ∗(2k − 2), where RF ∗(2k − 2) = RF ∗(x2, . . . , xk , x̃k, . . . , x̃2),

sends a1j to (x−1
j , x̃j ) and b1j to (̃x−1

j x−1
j , 1) Noting that RF ∗(x2, . . . , xk , x̃k, . . . , x̃2) =

RF ∗(x2, . . . , xk , zk , . . . , z2) , where zj = xj x̃j , the association β �→ �1 provides the
required isomorphism.

We have seen that since β stabilizes 1 , [�1] = [�̃1], where [ ] stands for the equivalence

class in RF(k − 1) = RF(x2, . . . , xk). If β = id , since (x1) β = [�1]−1x1[�1], we obtain
[�1] = [�̃1] = 1, thus �1 and �̃1 belong to the normal subgroup of RF ∗(2k − 2) generated by

x2 x̃2 , x3 x̃3 , . . . , xk x̃k . In particular, if β ∈ 〈 a1j , b1j | j = 2, . . . , k 〉 , with β = id , we

have that �̃1 = 1 and β ∈ 〈 b1j 〉N .

Corollary 7 shows that
[〈 b1j 〉N , 〈 b1j 〉N

] ⊂ ker
(
�k | 〈 a1j , b1j | j = 2, . . . , k 〉).

We will show the other inclusion by showing that the induced homomorphism on
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〈 a1j , b1j | j = 2, . . . , k 〉[〈 b1j 〉N , 〈 b1j 〉N
] is injective.

Since a1j commutes with b1j , any element β ∈ 〈 b1j 〉N can be written as a product of

β−1
t b

εt

1t βt , where βt ∈ 〈 a1j | j = 2, . . . , k and j �= t 〉 and εt ∈ {±1} . Since, by Corollary

7,
(〈 b1j 〉N

)
�k is abelian, we have

(β) �k =
(

nk∏
s=1

βsk b
εsk

1k β−1
sk

)
· · ·

(
n2∏

s=1

βs2 b
εs2
12 β−1

s2

)
,

where βst ∈ 〈 a1j | j = 2, . . . , k and j �= t 〉 and εst ∈ {±1}.
To each βst there corresponds an element �1 = �1(βst ) ∈ RF(x2, . . . , xt−1 , xt+1, . . . ,

xk) . Let us denote �1(βs2) by ws , εs2 by εs and n2 by n .
From Proposition 6, we have

(x2) (β) �k = (x2)

n2∏
s=1

βs2 b
εs2
12 β−1

s2 =

= ([wn]−1x
εn

1 [wn]
)−1 · · · ([w1]−1x

ε1
1 [w1]

)−1
x2
([w1]−1x

ε1
1 [w1]

) · · · ([wn]−1x
εn

1 [wn]
)
.

If (x2) (β) �k = x2, since ws = �1(βs2) ∈ RF(x3, . . . , xk), it follows that there is an even

number of factors x1 ( since
n∑

j=1

εj = 0 ) and, commuting the factors [wj ]−1x
εj

1 [wj ] if

necessary, w2 = w−1
1 , ε2 = −ε1 , w4 = w−1

3 , ε4 = ε−1
3 , . . . , wn = w−1

n−1 , εn = ε−1
n−1 .

If we allow the factors βsj b
εsj

1j β−1
sj of β to commute among themselves, it follows by

induction that if (β)�k = id , then β is trivial.

COROLLARY 9. �k |K1k
has as its kernel the normal subgroup of K1k generated by

b1j c−1
1j (j = 2, . . . , k) and

[〈 b1j | j = 2, . . . , k 〉N , 〈 b1j | j = 2, . . . , k 〉N ] .
Let Bik = 〈 bij | j = i + 1, . . . , k 〉N be the normal subgroup of 〈 aij , bij | j =

i + 1, . . . , k〉 generated by bij (j = i + 1, . . . , k).

THEOREM 10. The kernel of the homomorphism �k : S∗(1) → A(RF(k)) is

〈 bij c−1
ij , [Bik , Bik ] | 1 ≤ i < j ≤ k〉N .

PROOF. Split short exact sequence (I) provides the split short exact sequence

1→ K1k ∩ ker �k → ker �k → ker �k−1→ 1 .

The result follows from Theorem 8 by induction.
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