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Some Results on Additive Number Theory IV
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§1. The main theorem.

Let ®w(n) denote the number of distinct prime factors of a positive
integer n. ‘

THEOREM. Let aa<pB. Let A(N; «, B) denote, for sufficiently large
~ positive integer N, the number of representations of N as the sum of
the form N=p+mn, where p is prime, and n is a positive integer such
that

log log N+aV'log log N<w(n)<log log N+ 5V Toglog N ,

then, as N— o, we have

. L N 1 (f
AN; &, )~ 1/21;8«'3 de .

We shall give a proof of this theorem in section 2. Our proof runs
in the same lines as in my paper [6], but it uses also Bombieri’s mean
value theorem and Brun-Titchmarsh’s inequality. It is to be noticed that
somewhat analogous theorem was proved in Halberstam [3] using Siegel-
Walfisz’s theorem. It might perhaps be possible to prove our theorem
in a similar style as in [3], but I hope that it would be of interest to
prove the theorem in our way.

As was shown in Gallagher [2], Bombieri’s theorem can be deduced
rather simply from Siegel-Walfisz’s theorem, and is far more conveniently
applicable in our situation. For Bombieri’s theorem cf. Bombieri [1],
Gallagher [2], Halberstam-Richert [4], p. 111, Mitsui [5], Chap. 8.

We shall shorten the paper by omitting the similar parts of the proof
as in Tanaka [6].

The author expresses his thanks to Prof. S. Iyanaga for his kind
advices.
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§2. Proof of the main theorem.

Let a and b be non-negative integers. Then

I

1, when a=0,
0, when >0 and b is even,

b a
1 Fe(?)
0, when a>0 and b is odd.

c

A IV

This is the same as Lemma 2 in [6].

Now we define some functions and sets which will be used in the
sequel. The positive integer N will be assumed to be sufficiently large
as occasion demands.

We define the set @, consisting of primes as

QN={pI p/|’ N, e(loglogN)2<p<N(loglogN)_2}
and put
_ 1
yN)= >, —.
PEQN D
Then we have
LEMMA 1. y(N)=log log N+ O(log log log N).
PrROOF. We can easily see that w(N)=O(log N), and hence

E}_s > _]‘_—_:O(logloglogN).

PIND  pia) P

The lemma can be obtained similarly as Lemma 4 in [6].
We denote by wy(n) the number of distinct prime factors of a
positive integer n, which belong to the set Q:

wy(n)= 3, 1.

Pln,peEQN

For any positive integer ¢, we define the set M,(f) consisting of
positive integers as

My(@t)={m: m is squarefree,
m has ¢ prime factors,
m is composed only of primese Q,} .

We put for convenience M,(0)={1}.
For any positive integer ¢, we denote by F(N;t) the number of
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representations of N as the sum of the form N=p+n, Where p is prime,
and » is a positive integer such that wy(n)=t.

For any positive integer m such that m e M,(f) with ‘some positive
integer t, we denote by G(N; m) the number of representations of NN as
the sum of the form N=p-+n, where p is prime, and » is a positive
integer such that

(2) 11 p=m .

pin,peQyN

We obviously have

F(N; t)-— Z, G(N m) .

For any positive integers ¢ and 7, we put

FZON; t, T)y= >, Z(N;m, T),

meMp(t)
SEON; m, T)=3,(~1y LN m, ),
SPOWN; b, V=3, SN m, T)

meMpy(t)
SEON; m, T)= 3 (1)L (N; m, ),
LN;m, )= 3, 3 1.

preMpy(r) p+n=N
(#,m)=1 myln

LEMMA 2. SF®Y(N; t, T)SF(N; H)=272"(N; t, T).

PrROOF. We can write

so that

(N m, T)=p+§‘N :E:% (__1),((01\7(’:)—15) ,
min

SO m, T)= 3 "S(—1y (“’”(Z)—t)-

+n=N =0
mln

Now, since m € My(t) and m|n, (2) is equivalent to the equality wy(n)=t.
Hence, by (1), we have

ZYNN; m, T)SGN; m)=22""(N; m, T) .
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The lemma follows from this and the definitions of F(N; t), S#Z“(N; ¢t, T)
and SFY(N; ¢, T).
We further put

H®(N; ¢, T)= 3, K°(N;m, T),

meMpy(t)
KO(N; m, T)= 3,(~17L(N; m, ),
HY(N; t, T)= 5__‘, KYN;m, T,

meMy(t)
K®(N; m, T)= Z..)(—l)’L(N: m,T) ,
. _ 1
L(N, m’ T)—l(l::Z)N:(;) q)(m”) ?

where @(my) is Euler’s function of mp.

LEMMA 3. Let T=[5y(N)]. Then, as N— , we have

HOW; o, 1) =W 20 oy

HO(N; ¢, T)=& i},e "1+ o)}

uniformly in t with t<2y(N).

PROOF. The formulas in the lemma can be proved quite similarly
as Lemma 6 in [6], if we replace the L(N; m, 7)’s contained in the
definitions of H(N; ¢, T) and HY(N; t, T) by

L*N;m, )= S -L1_,
iy

Hence it will suffice for the proof of the lemma to show that
(3) L*(N; m, t)=L(N; m, 7){1+0o(1)}

uniformly in the relevant L(N; m, 7)’s.

Now, for each summand of L(N; m, 7), the pair of positive integers m
and ¢ is such that (m, ¢)=1, m € My(t), t<2yN), ¢t € My(7), T<10y(N)+1,
so that, by the definitions of the sets Qu(t), My(t), and Lemma 1, my is
squarefree, w(my)<cloglog N, ¢>0, and each of the prime factors of
myt is greater than e!°s°s™®  Hence
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1 1 1 1
mr < ¢(m#) my ?:l[‘"]l:l‘( P < mp p|mp( + )
< _].'_(1 —+ Q¢ (loglogN) 2)clog logN 14 0(1)
mp mpe
or
1 _1+o@)
my plmpy)

from which we see that (8) holds with the required uniformity.

LEMMA 4. Let T be an increasing function of N such that T=
O(log log N). Then, as N— c, we have

SN ¢, T)— H'(N: t, T)li N= o(N {z('ll‘f) th"(lv’) ,

SN (N; t, T)— H'(N; t, T) li N=0(N{yt('ﬁ)g§wm>

uniformly in t with t<2y(N), where 1i N is the logarithmic integral of N.

PrOOF. The definition of .<(N; m, ) can be rewritten as

L(N;m, v)= 3, n(N; mp, N)
HeMpy(t)
(&, m)=1
where w(N; my, N) is the number of primes p such that p<N and p=
my(mod N). Hence, by the definitions of S#Z7“(N; t, T) and H(N; ¢, T),
we can write

| % (N; t, T)— HN; t, T) li N|
=3 5 S |z me - BN

meMpy(t) =0 e My () m
(#,m)=1 ¢( #)

Put here mu=y, then the same value of v occurs at most d(v) times,
where d(v) is the number of divisors of y; by our assumptions, vy is
squarefree and ye My(z), t<cloglog N, so that w()<cloglog N and
d (V) <es°s¥ =]log®° N, where c¢ is a suitable positive constant; by the
definition of the set @, each prime factor of v is less than NUeslosM™?
and so y< Netoslosm™  Hence we have

ye(logloghN)— 1 ].l N
SNy t, T)Y—HN;t, T) llN <log'°N (%‘, 7'c(N y, N ()
v,N)=1
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Now it follows from Bombieri’s theorem that
FON;t, ) -H(N; t, T)li N=O(N log=*N)

with arbitrary positive constant a. (For our purpose somewhat weaker
result than Bombieri’s would suffice.) Again, since we assume t<2y(N),

{y(N)}t i t,l= —t —2Y(N)
T >(2)‘ - 27'>e¢ .

Hence we have

S£9(N; t, T)— H'(N; t, T) li N=0( Ny e ™
t!log®* N

Similar result can be obtained for S#“(N; ¢, T), and, since y(N)~
log log N by Lemma 1, the lemma follows when we take a sufficiently
large.

LEMMA 5. Let T=[5y(N)]. Then, as N— o,

e"y(N

oW b, =220 oqy)
SPON; t, TY=2N {yt('ll\z );‘j\""‘”’ {1+o(L)}

uniformly in t with t<2y(N).
PrROOF. The lemma follows from Lemmas 3 and 4.

LEMMA 6. As N— oo,

FV; =220 1oy

uniformlu wm t with t<2y(N).
- PROOF. The lemma follows from Lemmas 2 and 5.

- LEMMA 7. Let a<B. Let t be a positive integer such that t=y(N)
+uVyY(N) with a<u<pB. Then, as N— o,

N .
V2ry(N)log N Hl+o()

F(N; t)=

uniformly in t with above-mentioned restrictions.
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ProoF. This lemma corresponds to Lemma 13 in [6]; and can be
proved similarly. The Stirling formula plays an important role in the
proof.

LEMMA 8. Let a<pB, and let A**(N; a, B) denote thé number of
representations of N as the sum of the form N=p-+mn, where p is prime,
and n 18 a positive integer such that

Y(N) +aV y(N) <wxy(n) <y(N)+BVY{N) .

Then, as N— oo, we have

* ok . ~ N R 1 Sﬁ —.’v2/2d
AT @, B) log N V2% o’ v

Proor. This lemma corresponds to Lemma 14 in [6], and can be
proved similarly.

LEMMA 9. Let a<pB, and let A*(N; a, B) denote the number of
representations of N as the sum of the form N=p-+mn, where p is prime,
and n 18 a positive integer such that

Y(N) +aVy(N) <w(n) <y(N)+BVy(N) .

Then, as N— , we have

N 1 (.
A*(N; @, B)~ - S 2rdy
N & B~ 1og N Vo)

ProOF. We shall estimate the sum
S(N)= p% {@(N—p)— wy(N—p)}

in utilizing Brun-Titchmarsh’s inequality. For this inequality, cf. Hal-
berstam-Richert [4], p. 110, Mitsui [5], p. 154. Now, noting the fact
that a positive integer has at most one prime factor greater than the
square root of itself, we argue as

SN)=S I 1=3 3 1+0(§11)

P<N q[(N—p) P<N g (N—DP) P<N
9€QN qEQN:Gé"‘N
=5 3 1+0(-2-)= 3 2 g, N)+O( )
4SVN __B< log N ¢S VN log N
aeQy P= N(mod ) qEQN

where ¢ runs through the primes satisfying the specified conditions. On
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applying Brun-Titchmarsh’s inequality to the last sum, we have

N N 1
N; q, N)=0 —_— _)=0(—2_ =
qszs;fv‘”( % N) (3%5 q Iog(N/q)) <log'N qszv"ﬁ q

9eQN ‘ ¢QN
Again, similarly as in the proof of Lemma 4 in [6], we obtain
> L —0Gog loglog N) .

esvYN ¢
7¢QN

Thus it has been proved that

S(N):O( loi‘vN log log log N) .

Now we can prove the lemma similarly as in the proof of Lemma
15 in [6], using this result in the form

— N =
2 o) —ovm)=o( VI ).
It follows from this that, for any given >0, we can take N,=N,(¢) so
large that, when N>N,, the number of representations of N as the sum
of the form N=p-+mn such that the inequality w(n)—wy(n)>eVy(N) holds,
is less thau ¢N/log N. Hence, for N>N,,

A**(N; @, B—6)—e—_< A*(N; @, B) <A**(N; a—e, B)+e—D__ .
log N log N

From this and Lemma 8, we conclude that

1 Sﬂ—'e‘”z/zdx—eglim inf A*(N; a, B) log N

V 21 Ja N N _
. A*(N; @, B) log N 1 S" a2
< l s 9 z4/2
< 1m_» Sup = v cMe dx+¢ ,

which gives the lemma.

THE LAST STEP OF THE PROOF OF THE THEOREM. The remaining task
is to replace y(N) by loglog N. This can be carried out quite similarly
as in the proof of Lemma 16 in [6]. We avoid the repetition.
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