TOKYO J. MATH. Vol. 2, No. 1, 1979

The Class Group of the Rees Algebras over Polynomial Rings

Yasuhiro SHIMODA

Tokyo Metropolitan University

Introduction

Let A be a commutative ring with unit element and let A[X]denote a polynomial ring over A with an indeterminate X. For an ideal a of A we put $\mathscr{R}(A, a) = A[\{aX; a \in a\}, X^{-1}]$, the A-subalgebra of $A[X, X^{-1}]$ generated by $\{aX; a \in a\}$ and X^{-1} , and we call it the Rees algebra of a over A.

 $\mathscr{R}(A, \mathfrak{a})$ is a graded subring of $A[X, X^{-1}]$, whose graduation is given by $\mathscr{R}_n(A, \mathfrak{a}) = \mathfrak{a}^n X^n$ for $n \ge 0$ and $\mathscr{R}_n(A, \mathfrak{a}) = A$ for n < 0. Note that $\mathscr{R}(A, \mathfrak{a})$ is canonically identified with the ring $\bigoplus_{n \in \mathbb{Z}} \mathfrak{a}^n$ where $\mathfrak{a}^n = A$ for n < 0.

The aim of this paper is to prove the following theorem.

THEOREM. Let k be a Krull domain and let W_1, \dots, W_s be indeterminates over k. Then, for every positive integer $n, \mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ is a Krull domain and $C(\mathscr{R}) = C(k) \bigoplus Z/nZ$. (Here $C(\cdot)$ denotes the divisor class group.)

By the theorem we have the following result immediately.

COROLLARY. If k is a field, then $\mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ is a Macaulay normal domain and $C(\mathscr{R}) = Z/nZ$.

§1. Proof of Theorem.

Let k, W_1, \dots, W_s , n be as in the introduction and let $X^{-1} = U$. We denote $\mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ by T. Let Λ_n be the set of the indexes $(\alpha) = (\alpha_1, \dots, \alpha_s)$ where α_i 's are nonnegative integers with $\sum_{j=1}^s \alpha_j = n$ and let $R = k[W_1, \dots, W_s, U]$. Then $T = k[W_1, \dots, W_s, U,$ $\{W^{(\alpha)}/U\}_{\alpha \in \Lambda_n}]$ and T is a k-subalgebra of R[X], where $W^{(\alpha)}$ denotes $W_1^{\alpha_1} \cdots W_s^{\alpha_s}$.

Received June 22, 1978

YASUHIRO SHIMODA

Now we give a graduation to R and R[X] by putting $R_0 = k$, degree U = n and degree $W_j = 1$ for every $1 \le j \le s$, then they become graded rings. Moreover as degree $W^{(\alpha)}/U = 0$ in R[X], $T = T_0[W_1, \dots, W_s, U]$, where $T_0 = k[\{W^{(\alpha)}/U\}]$, $U \in T_n$ and $W_j \in T_1$ for every $1 \le j \le s$, is also a graded subring of R[X]. We put $\mathfrak{p} = T_+ = (W_1, \dots, W_s, U)T$. Of course \mathfrak{p} is a prime ideal of T and we have

PROPOSITION 1. (1) $\mathfrak{p}=\operatorname{rad}(UT)$.

(2) T_{ν} is a discrete valuation ring and $v_{\nu}(U) = n$. (Here v_{ν} denotes the discrete valuation corresponding to T_{ν} .)

PROOF. (1) For any $q \in \operatorname{spec}(T)$ such that $q \ni U$, we have $W_j^n = U \cdot W_j^n / U \in q$. Then $W_j \in q$ for every $1 \leq j \leq s$. Thus $q \supset p$. Therefore we have $\mathfrak{p} = \operatorname{rad}(UT)$.

(2) As $\mathfrak{p} \cap T_0 = (0)$, we have $\mathfrak{p} \cap k = (0)$. Thus we may assume that k is a field. Since $W_1^*/U \in T \setminus \mathfrak{p}$, $U = W_1^* \cdot U/W_1^*$ and $W_j = W_1 \cdot W_j W_1^{*-1}/U \cdot U/W_1^*$ are contained in $W_1T_{\mathfrak{p}}$ for every $2 \leq j \leq s$. Therefore $\mathfrak{p}T_{\mathfrak{p}} = (W_1)T_{\mathfrak{p}}$. Thus $T_{\mathfrak{p}}$ is a discrete valuation ring.

Next we prove $v_{\mathfrak{p}}(U) = n$. As $W^{(\alpha)} = U \cdot W^{(\alpha)}/U$, we have $\mathfrak{p}^{n}T_{\mathfrak{p}} \subset (U)T_{\mathfrak{p}}$. On the other hand, as $U = W_{\mathfrak{p}}^{n} \cdot U/W_{\mathfrak{p}}^{n} \in \mathfrak{p}^{n}T_{\mathfrak{p}}$ we have $\mathfrak{p}^{n}T_{\mathfrak{p}} \supset (U)T_{\mathfrak{p}}$. Thus we have $v_{\mathfrak{p}}(U) = n$.

We need the following Proposition 2 that is a result of Valla [3]. Here we give a simple proof for it.

PROPOSITION 2. Let A be a Macaulay ring and let $\{a_1, \dots, a_r\}$ be an A-regular sequence. Then, for any positive integer n, $\mathscr{R}(A, (a_1, \dots, a_r)^*)$ is a Macaulay ring.

PROOF. We put $a = (a_1, \dots, a_r)$. Let φ be an A-algebra endomorphism of $A[X, X^{-1}]$ defined by $\varphi(X) = X^n$ and φ' be the restriction of φ to $\mathscr{R}(A, a^n)$.

Then φ' is an injection and its image is the Veronesean ring $\mathscr{R}(A, \alpha)^{(n)}$. Therefore if $\mathscr{R}(A, \alpha)$ is a Macaulay ring, $\mathscr{R}(A, \alpha^n)$ is a Macaulay ring since $\mathscr{R}(A, \alpha^n)$ is a direct summand of $\mathscr{R}(A, \alpha)$ and $\mathscr{R}(A, \alpha)$ is integral over $\mathscr{R}(A, \alpha^n)$. (cf. [2] Proposition 12) Thus we may assume n=1. As $\mathscr{R}(A, \alpha)/U\mathscr{R}(A, \alpha)=G_{\alpha}(A)$, we have only to prove that $G_{\alpha}(A)$ is a Macaulay ring. This follows immediately from the fact that $G_{\alpha}(A)$ is a polynomial ring over A/a since $\{a_1, \dots, a_r\}$ is a regular sequence.

We put B=R[X]. Note that we have also B=T[X].

LEMMA. $T = T_{\mathfrak{p}} \cap B$.

PROOF. First, we assume that k is a field. Then T is a Macaulay ring by the above proposition. Thus $T = \bigcap_{ht_{q=1}} T_q$. Let $q \in \text{spec}(T)$ of $ht_q = 1$ and suppose $q \neq \mathfrak{p}$. As $\mathfrak{p} = \text{rad}(UT)$, we have $q \neq U$. Thus we have $T_q \cap T[X] = B$ and hence $T \supset T_{\mathfrak{p}} \cap B$. The opposite inclusion is trivial.

Now suppose that k is not necessarily a field and let $f \in T_{\mathfrak{p}} \cap B$. Then $rf \in T$ for some $r \in k \setminus (0)$ by virtue of the result in case k is a field. On the other hand, since $f \in B = T[X]$, we can express $U^N f = g \in T$ for some integer N > 0. Therefore $U^N a = rg$ in T where a = rf. Since $T/rT \cong \mathscr{R}(k/rk[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ and U is a nonzero divisor on $\mathscr{R}(k/rk[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$, we have $\{r, U\}$ is a T-regular sequence. Therefore we have $a \in rT$. Hence we have $f \in T$.

PROOF OF THEOREM. If k is a Krull domain, then R is also a Krull domain. As U is a prime element of R, B is a Krull domain. Also by Proposition 1 T_{*} is a discrete valuation ring. From these results and the above lemma, T is a Krull domain.

Next we have an exact sequence

$$0 \longrightarrow Z_{\operatorname{cl}(\mathfrak{p})} \longrightarrow C(T) \longrightarrow C(B) \longrightarrow 0 \text{ .}$$

Since we have C(B) = C(R) = C(k) by Cor. 7.3 and Prop. 8.9 in [1], the natural map $C(k) \rightarrow C(T)$ makes the sequence split. Hence we have $C(T) = C(k) \bigoplus Z_{cl(p)}$.

Now we must prove that $cl(\mathfrak{p})$ is of order n in C(T). Put $m = order(cl(\mathfrak{p})), (0 < m \le n)$, and we have $m \cdot cl(\mathfrak{p}) = cl(aT)$ for some nonzero $a \in Q(T)$, where $Q(\cdot)$ denotes the quotient field. Hence we have $aT = A: (A: \mathfrak{p}^m) = \bigcap_{ht_T^{q=1}} \mathfrak{p}^m T_q = \mathfrak{p}^{(m)}$. Thus we have $\mathfrak{p}^{(m)} = aT$ for some nonzero $a \in T$. Now we claim that $\mathfrak{p}^{(m)}$ is a graded ideal and a is a homogeneous element in T with degree m. Indeed, we put $\widetilde{T} = Q(T_0)[U, W_1, \cdots, W_s] = Q(T_0)[W_1]$. Then we have $\mathfrak{p}^{(m)} = \mathfrak{p}^m T_{\mathfrak{p}} \cap T = [\mathfrak{p}^m T_{\mathfrak{p}} \cap \widetilde{T}] \cap T = \mathfrak{p}^m \widetilde{T} \cap T$. Thus $\mathfrak{p}^{(m)}$ is a graded ideal. And $\mathfrak{p}^m \widetilde{T} = W_1^m \widetilde{T} = a\widetilde{T}$. Hence a is a homogeneous element and a equals to W_1^m up to unit in \widetilde{T} . Thus we have degree $a = degree W_1^m = m$.

If m < n, $\mathfrak{p}^{(m)} \supset \mathfrak{p}^{(n)} \ni U$. Thus we have $U = ab \in aT$. Since $a \in T$ and degree a = m, we can write $a = \sum_{\lambda} c_{(\lambda)} U^{\lambda_0} W_1^{\lambda_1} \cdots W_s^{\lambda_s}$ where $n\lambda_0 + \lambda_1 + \cdots + \lambda_s = m$. Hence $\lambda_0 = 0$ as m < n. Thus we have $a \in (W_1, \dots, W_s)T$. As $T \subset R[X]$, we can express $U = ab = d/U^i \cdot e/U^j$ where $d \in (W_1, \dots, W_s)R$ and

YASUHIRO SHIMODA

 $e \in R$. Thus we have $U^{i+j+1} \in (W_1, \dots, W_s)R$, which is a contradiction since U, W_1, \dots, W_s are indeterminates. The proof of the theorem is now complete.

PROOF OF COROLLARY. As k is a field, $T = \mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^*)$ is a Macaulay ring by Proposition 2. By the theorem, T is a Krull domain and $C(T) = C(k) \bigoplus Z/nZ = Z/nZ$. Since T is a Noetherian ring and completely integrally closed, T is a normal domain.

References

- R. FOSSUM, The Divisor Class Group of A Krull Domain, Ergeb. der Math., Band 74, Springer 1973.
- [2] M. HOCHSTER and J. A. EAGON, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math., **93** (1971), 1020-1058.
- [3] G. VALLA, Certain Graded Algebras are Always Cohen Macaulay, J. Algebra, 42 (1976), 537-548.

Present Address: Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya-ku Tokyo, 158