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Introduction

Let $M_{1}(resp. M_{2})$ be an $m(resp. n-m)$-dimensional Riemannian manifold.
An isometric immersion $f$ of a Riemannian product $M_{1}\times M_{2}$ into an $(n+p)-$

dimensional Euclidean space $R^{n+p}$ is called a product immersion if there
is an orthogonal product decomposition $R^{n+p}=R^{n_{1}}\times R^{n_{2}}$ together with
isometric immersions $f_{1}:M_{1}\rightarrow R^{n_{1}}$ and $f_{2}:M_{2}\rightarrow R^{n_{2}}$ such that $f=f_{1}\times f_{2}$ .
Furthermore an isometric immersion $g$ of a Riemannian product $M_{1}\times M_{g}$

into an $(n+p)$-dimensional sphere $S^{n+p}(r)$ with radius $r$ in $R’+p+1$ is called
a product immersion if $g$ is a product immersion of $M_{1}\times M_{2}$ into $R^{n+p+1}$ .
S. B. Alexander [1] and J. Moore [4] obtained some conditions for an
immersion of a Riemannian product into Euclidean space to be a product
immersion. On the other hand, K. Yano and S. Ishihara [7] determined
compact orientable submanifolds with nonnegative sectional curvature
immersed into a unit sphere whose mean curvature vectors are parallel
and normal connections are trivial. These are products of spheres and
these immersions are product immersions into the unit sphere. In this
note, we shall investigate Riemannian products minimally immersed into
a real space form and prove some theorems.

THEOREM. A minimal submanifold of a hyperbolic $s$pace is $i\gamma re-$

ducible. A minimal immersion of a Riemannian product into Euclidean
space is a product of minimal immersions.

THEOREM. Let $M_{1}(\gamma esp. M_{2})$ be an $m(resp. n-m)$-dimensional compact
orientable Riemannian manifold and $M$ the Riemannian $p\gamma oduct$ of $M_{1}$

and $M_{2}$ minimally immersed into $(n+p)$-dimensional unit sphere. Then
we have an integral inequality
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$\int_{M}(nK-\lambda K-\mu K-\frac{2}{p}K^{2})*1\geqq 0$

where $*1$ is the volume element of $M$ and $\lambda$ (resp. $\mu$) is the minimum of
the Ricci curvature of $M_{1}(resp. M_{2})$ . The definition $fo\gamma K$ is given in
the section 5.

By the latter theorem, we shall characterize a Riemannian product
$S^{m}(1)\times S^{n-m}(1)$ minimally immersed into $S^{n+n(n-m)}(1)$ .

The auther expresses his deep gratitude to Professor K. Ogiue who
encouraged him and gave him a lot of valuable suggestions.

\S 1. Preliminaries.

We denote by $M^{k}(c)$ a k-dimensional space form of constant curvature
$c$ . Let $M_{1}(resp. M_{2})$ be an $m(resp. n-m)$-dimensional Riemannian manifold
and $M$ the Riemannian product of $M_{1}$ and $M_{l}$ isometrically immersed into
$M^{n+p}(c)$ . Then the second fundamental form $\sigma$ of the immersion is given
by $\sigma(X, Y)=\tilde{\nabla}_{X}Y-\nabla_{X}Y$ and it satisfies $\sigma(X, Y)=\sigma(Y. X)$ . We choose a
local field of orthonormal frames $e_{1},$ $\cdots,$ $e_{m}$ , (resp. $e_{n+1},$ $\cdots,$ $e_{n}$) of $M_{1}(resp$ .
$M_{2})$ , then we may consider $\{e_{a}\},$ $\{e_{\iota}\}$ as a local field of orthonormal frames
of $M^{*}$ . By an extension, we choose a local field of orthonormal frames
$e_{1},$ $\cdots,$ $e_{f\hslash},$ $e_{m+1},$ $\cdots,$ $e_{\hslash’+1}e,,,$ $\cdots,$ $e_{n+p}$ in $M^{n+p}(c)$ . With respect to the frame
field of $M^{+p}(c)$ chosen above, let $\omega^{1},$

$\cdots,$ $\omega^{n},$ $\omega^{\alpha*+1},$
$\cdots,$

$\omega^{\prime}’,$ $\omega^{n+1},$
$\cdots,$

$\omega\cdot+p$

be the field of dual frames. Then the structure equations of $M^{\hslash+p}(c)$ are
given by

(1.1) $d\omega^{A}=-\sum\omega_{B}^{A}$ A $\omega^{B}$ , $\omega_{B}^{A}+\omega_{A}^{B}=0$ ,

(1.2) $d\omega_{B}^{A}=-\sum\omega_{c}^{A}\wedge\omega_{B}^{\sigma}+c\omega^{A}\wedge\omega^{B}$ ,

Restricting these forms to $M$, we obtain the structure equations of the
immersion:

(1.3) $\omega^{\alpha}=0$ .
(1.4) $d\omega^{i}=-\sum\omega_{j}^{i}\wedge\omega^{j}$ , $\omega_{j}^{i}+\omega_{i}^{j}=0$ .
(1.5) $d\omega_{f}^{i}=-\sum\omega_{k}^{i}\wedge\omega_{j}^{k}+\Omega_{i}^{i}$ , $\Omega_{j}^{i}=\sum(1/2)R_{jkl}^{i}\omega^{k}\wedge\omega^{1}$ .

*We use the following convention on the range of indices unless otherwise stated: $ 1\leqq$

$A,$ $B,$ $C,$ $\leqq n+p:1\leqq a,$ $b,$ $0,$ $\leqq m<r,$ $\epsilon,$ $t,$ $u,$ $\leqq n$ ; 1Si, $j,$ $k,$ $l,$ $\leqq n<\alpha,$ $\beta,$ $\gamma,$ $\leqq n+p$ , and agree that
repeated indices under summation sign without any indication are summed over respective
ranges.
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(1.6) $d\omega_{\beta}^{\alpha}=-\sum\omega_{\gamma}^{\alpha}\wedge\omega_{\beta}^{\gamma}+\Omega_{\beta}^{\alpha}$ , $\Omega_{\beta}^{\alpha}=\sum(1/2)R_{\beta kl}^{\alpha}\omega^{k}\wedge\omega^{1}$ .
Since $M$ is the Riemannian product, we have

(1.7) $\omega_{l}^{a}=0$ for all $a$ and $s$ .
From (1.1) and (1.3) it follows that $\sum\omega_{i}^{\alpha}\wedge\omega^{i}=0$ . Therefore, by Cartan’s
lemma, we may write

(1.8) $\omega_{i}^{\alpha}=\sum h_{ji}^{\alpha}\omega^{j}$ , $h_{l_{J}}^{\alpha}=h_{ji}^{\alpha}$ .
The second fundamental form $\sigma$ and $h_{ij}^{\alpha}$ are related by $\sigma(e_{i}, e_{j})=\sum h_{ij}^{\alpha}e_{\alpha}$ .
The equations of Gauss and Ricci are given respectively by

(19) $R_{jkl}^{l}=c(\delta_{k}^{i}\delta_{\dot{g}l}-\delta_{l}^{i}\delta_{\dot{g}k})+\sum(h_{ik}^{\alpha}h_{jl}^{\alpha}-h_{il}^{\alpha}h_{jk}^{\alpha})$ ,

(1.10) $R_{\beta kl}^{\alpha}=\sum(h_{ik}^{\alpha}h^{\rho_{l}}-h_{il}^{\alpha}h_{ik}^{\beta})$ .
If we define $h_{ijk}^{\alpha}$ by

(1.11) $\sum h_{ljk}^{\alpha}\omega^{k}=dh_{ij}^{a}-\sum h_{ki}^{\alpha}\omega_{j}^{k}-\sum h_{kj}^{\alpha}\omega_{i}^{k}-\sum h_{ij}^{\beta}\omega_{\beta}^{\alpha}$ .
Then from (1.2), (1.3), and (1.8) we have $h_{ljk}^{\alpha}=h_{ikj}^{\alpha}$ . If we define $h_{ijkl}^{\alpha}$ by

(1.12) $\sum h_{ijkl}^{\alpha}\omega^{1}=dh_{ljk}^{\alpha}-\sum h_{lig}^{\alpha}\omega_{k}^{l}-\sum h_{lkj}^{\alpha}\omega_{i}^{l}-\sum h_{lik}^{\alpha}\omega_{f}^{l}+\sum h_{ijk}^{\beta}\omega_{\beta}^{\alpha}$ ,

and $\Delta h_{lg}^{\alpha}$ by $\sum h_{jkk}^{\alpha}$ , then we have the following.

LEMMA 1.1 ([2], [5]). If $M$ is minimal,

$\Delta h_{ij}^{\alpha}=\sum(\sum h_{kl}^{\alpha}R_{ljk}^{l}+\sum h_{li}^{\alpha}R_{kjk}^{l}-\sum h_{ki}^{\beta}R_{\beta jk}^{\alpha})$ .

\S 2. Lemmas.

LEMMA 2.1 ([4]). When $c=0$ , an immersion of $M=M_{1}\times M_{2}$ into
$M^{n+p}(0)$ is a product immersion if and only if a(X, $Y$) $=0$ , where $X(\gamma esp. Y)$

is tangent to $M_{1}(resp. M_{2})$ .
LEMMA 2.2 ([8]). An immersion of $M=M_{1}\times M_{2}$ into $M^{n+p}(c)$ with

$c>0$ , is a $p\gamma oduct$ immersion if and only if $\sigma(X, Y)=0$ , where $X(\gamma esp. Y)$

is tangent to $M_{1}(\gamma esp. M_{2})$ .
PROOF. We may regard $M^{n+p}(c)$ as the sphere $S’+p(\sqrt{1/c})$ of radius

$\sqrt{1/c}$ in $R^{n+p+1}$ and hence $M$ as a submanifold of $R^{n+p+1}$ . Let $\tilde{\sigma}(resp. \sigma^{\prime})$

be the second fundamental form of the immersion of $M(resp. S’+p(\sqrt{1/c}))$

into $R’+p+1$ If $X(resp. Y)$ is tangent to $M_{1}(resp. M_{2})$ , then we have
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$\tilde{\sigma}(X, Y)=\sigma(X, Y)$ since $\sigma^{\prime}$ is umbilical. From Lemma 2.1, we obtain the
result. Q.E.D.

LEMMA 2.3. When $M=M_{1}\times M_{f}i8$ min’imally immersed into $M^{t+p}(c)$ ,
we have $m(n-m)c-\sum_{\alpha}(\sum_{a}h_{aa}^{\alpha})^{2}-\sum h_{a\iota}^{\alpha}h_{as}^{\alpha}=0$ .

PROOF. Since $M$ is the Riemannian product of $M_{1}$ and $M_{2}$ , we have
$R_{a}^{a}.=0$ . From (1.9), we obtain $0=c+\sum_{\alpha}h_{aa}^{\alpha}h_{\iota\epsilon}^{a}-\sum_{\alpha}h_{a}^{\alpha}.h_{a}^{\alpha_{l}}$ and hence $0=$

$m(n-m)c+\sum_{\alpha}(\sum_{a}h_{aa}^{\alpha})(\sum.h_{\epsilon}^{\alpha}.)-\sum h_{a\iota}^{\alpha}h_{a\epsilon}^{\alpha}$ . Since $M$ is minimally immersed
into $M^{n+p}(c)$ , we obtain $\sum_{a}h_{aa}+\sum.h..=0$ . Q.E.D.

\S 3. In the case $c\leqq 0$ .
THEOREM 3.1. (1) A minimal submanifold of $M+p(c)$ with $c<0$ is

irreducible. (2) A minimal immersion of a Riemannian product into
$M^{\alpha+p}(0)$ is a product of minimal immersions.

PROOF. (1) Lemma 2.3 implies that a submanifold minimally im-
mersed into $M^{n+p}(c)$ with $c<0$ is irreducible. (2) We consider a Rieman-
nian product of $M_{1}$ and $M_{2}$ minimally immersed into $M+p(0)$ . From Lemma
2.3, we have $h_{a}^{\alpha}.=0$ which, together with Lemma 2.1, implies that the
immersion is a product immersion. Moreover, by $\sum h_{aa}^{\alpha}=\sum h^{\alpha}.=0$ , we
see that each immersion is minimal. Q.E.D.

REMARK. (1) More generally, a minimal submanifold immersed into
a Riemannian manifold of negative curvature is irreducible. (2) Theorem
3.1 (2) holds for a Riemannian product of any number of Riemannian
manifolds. (3) A K\"ahler immersion of a Riemannian product of Kahler
manifolds into complex Euclidean space is a product of Kahler immersions.

\S 4. In the case $c>0$ .
We may assume without loss of generality that $c=1$ and $M^{\hslash+p}(1)=$

$S+p(1)$ . When an immersion of $M=M_{1}\times M_{2}$ into $S+p(1)$ is a product
immersion, we have some positive numbers $r_{1},$ $\gamma_{l}$ such that $(r_{1})+(r_{2})^{2}=1$ ,
positive integers $k_{1},$ $k_{2}$ such that $k_{1}+k_{2}+1=n+p$ , and isometric immersions
$f_{1},$ $f_{2}$ such that $f_{i}(i=1,2)$ is an immersion of $M_{i}$ into $S^{k_{l}}(r)$ and $I\circ(f_{1}\times f_{2})$

is the immersion of $M$ into $S^{*+p}(1)$ , where $I(x, y)=(x, y)$ , where $x(resp. y)$

is the position vector of $S^{k_{1}}(r_{1})(resp. S^{k_{2}}(r_{2}))$ in $R^{k_{1}+1}(resp. R^{k_{2}+1})$ and $(x, y)$

is the position vector of $S^{n+p}(1)$ in $R’+p+1$ Immediately we have the
following.

THEOREM 4.1. When an immersion of $M=M_{1}\times M_{2}$ into $S+p(1)$ is a
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$p\gamma oductimme\gamma sion$ , it is minimal if and only if $r_{1}=\rceil/\overline{m/n,}r_{2}=\sqrt{(n-m)}/n$

and $f_{1},$ $f_{2}a\gamma e$ minimal immersions.

In [2] and [6], we have some examples of Riemannian products
minimally immersed into a unit sphere which are not product immersions.
Some examples are:

EXAMPLE 1. Let $S^{m}(1)=\{(x_{1}, \cdots, x_{m+1})\in R^{n+1};(x_{1})^{2}+\cdots+(x_{m+1})^{2}=1\}$ and
$S^{\alpha-m}(1)=\{(y_{1}, \cdots, y_{*-m+1})\in R^{n-m+1};(y_{1})^{2}+\cdots+(y_{n-m+1})^{2}=1\}$ . We define the
immersion $f$ of $S^{m}(1)\times S^{\prime\iota-m}(1)$ into $S^{n+m(’-m)}(1)$ by $f((x_{1}, \cdots, x_{m+1}),$ $(y_{1},$ $\cdots$ ,
$y_{n-rn+1}))=(\cdots, x_{a}y_{\epsilon}, \cdots)$ , where $1\leqq a\leqq m,$ $1\leqq s\leqq n-m$ .

EXAMPLE 2. Let $M_{1}(resp. M_{2})$ be an $m(resp. n-m)$-dimensional Rie-
mannian manifold minimally immersed into $S^{k_{1}}(1)(resp. S^{k_{2}}(1))$ . Then, by
Example 1, the Riemannian product $M_{1}\times M_{2}$ can be immersed minimally
into $S^{k_{1}+k_{2}+k_{1}k_{2}}(1)$ .

We characterize $S^{m}(1)\times S^{n-m}(1)$ in Example 1. We set $K=\sum h_{a\epsilon}^{\alpha}h_{a\iota}^{\alpha}$ ,
which measures the deviation of the immersion from being product.

THEOREM 4.2. Let $M_{1}(\gamma esp. M_{2})$ be an $m(resp. n-m)$-dimensional com-
pact orientable Riemannian manifold and $M$ be a $R\prime iemannian$ product
of $M_{1}$ and $M_{2}$ minimally $imme\gamma sed$ into $S^{n+p}(1)$ . Then we have an integral
inequality,

$\int_{M}(n-\lambda-\mu-\frac{2}{p}K)K*1\geqq 0$

where $*1$ is the volume element of $M$ and $\lambda(resp. \mu)$ is the minimum of
the Ricci curvature of $M_{1}(resp. M_{2})$ .

COROLLARY 1. $ Unde\gamma$ the same assumption as Theorem 4.2, if the
immersion is full and $(n-\lambda-\mu-(2/p)K)K\leqq 0$ , then $K$ is constant and
equal to $00\gamma(p/2)(n-\lambda-\mu)$ . When $K=(p/2)(n-\lambda-\mu)\neq 0,$ $M$ is $ S^{m}(1)\times$

$S^{n-m}(1)$ in Example 1 and the $imme\gamma sion$ is $\gamma igid$ .
COROLLARY 2. Under the same assumption as Theorem 4.2, if $x+$

$\mu\geqq n$ , then the immersion is a product immersion.

PROOF OF THEOREM 4.2. $K$ is a function on $M$. Let $\Delta$ be the Laplacian
of $M$. Then we obtain $(1/2)\Delta K=\sum h_{a\epsilon i}^{\alpha}h_{a\epsilon i}^{\alpha}+\sum(\Delta h_{a\epsilon}^{\alpha})h_{a\epsilon}^{\alpha}$ . From Lemma 1.1
we have

$\sum(\Delta h_{a\epsilon}^{\alpha})h_{a\epsilon}^{\alpha}=\sum h_{a}^{\alpha}.(\sum h_{ai}^{\alpha}R_{j\epsilon j}^{i}+\sum h_{ji}^{\alpha}R_{a\iota t}^{j}+\sum h_{ai}^{\beta}R_{\alpha\epsilon 5}^{\beta})$ .
Since $M$ is a Riemannian product, $R_{a\epsilon i}^{j}=0$ and hence we have
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$\sum(\Delta h_{a}^{\alpha}.)h_{a\iota}^{\alpha}=\sum h_{a*}^{\alpha}h_{ai}^{\alpha}R_{j\epsilon j}^{i}+\sum h_{a\epsilon}^{\alpha}h_{ai}^{\beta}R_{a\epsilon l}^{\beta}$ .
Since the Ricci curvature of $ M_{2}\geqq\mu$ , we obtain

$\sum h_{a\epsilon}^{a}h_{at}^{\alpha}R_{j\epsilon j}^{i}=\sum h_{a\iota}^{a}h_{at}^{\alpha}R_{u\epsilon u}^{t}\geqq\mu\sum h_{a}^{\alpha}.h_{a\epsilon}^{\alpha}=\mu K$ ,

and hence

$\sum(\Delta h_{a}^{\alpha}.)h_{a\epsilon}^{\alpha}\geqq\mu K+\sum h_{a}^{\alpha}.h_{ai}^{\beta}(\sum h_{\iota j}^{\beta}h_{ij}^{\alpha}-\sum h_{j}^{\beta}h_{*j}^{\alpha})$

$=\mu K+\sum h_{a\epsilon}^{\alpha}h_{ig}^{\alpha}h_{ai}^{\beta}h_{sj}^{\beta}-\sum h_{a\epsilon}^{\alpha}h_{\iota j}^{\alpha}h_{ai}^{\beta}h_{ij}^{\beta}$ .
From (1.9), we have

$\sum(\Delta h_{a\iota}^{\alpha})h_{a\iota}^{\alpha}\geqq\mu K+\sum h_{a\iota}^{\alpha}h_{ij}^{\alpha}(-R_{j\epsilon l}^{\alpha}+\delta^{a}.\delta_{i:}-\delta_{i}^{a}\delta_{j}.+\sum h_{a}^{\beta}.h_{j\ell}^{\beta})$

$-\sum h_{a}^{\alpha}.h_{j}^{\alpha}(-R_{iji}^{\alpha}+\delta_{f}^{a}\delta_{c:}-\delta_{j}^{a}\delta_{ij}+\sum h_{aj}^{\beta}h^{\rho_{i}})$

$=\mu K+\sum h_{a}^{\alpha}.h_{ij}^{\alpha}h_{a}^{\beta}.h_{ji}^{\beta}+\sum h_{a}^{\alpha}.h_{j}^{\alpha}R_{iji}^{\alpha}-nK$

$\geqq-nK+\lambda K+\mu K+\sum h_{a}^{\alpha}.h_{ij}^{\alpha}h_{a\iota}^{\beta}h_{j}^{\beta}$

$=(x+\mu-n)K+\sum h_{a\iota}^{\alpha}h_{bc}^{\alpha}h_{a\iota}^{\beta}h_{be}^{\beta}+\sum 2h_{a\epsilon}^{\alpha}h_{bt}^{\alpha}h_{a\epsilon}^{\beta}h_{bt}^{\beta}$

$+\sum h_{a\epsilon}^{\alpha}h_{tu}^{\alpha}h_{a\epsilon}^{\beta}h_{tu}^{\beta}\geqq(x+\mu-n)K+2\sum h_{a}^{\alpha}.h_{bt}^{\alpha}h_{a*}^{\beta}h_{bt}^{\beta}$ .
We set $S_{\alpha\beta}=h_{a}^{\alpha}.h_{a\epsilon}^{\beta}$ . Then $(S_{\alpha\beta})$ is a symmetric matrix. $Therefore_{\lfloor}^{-\prime}we$

have $\sum h_{a}^{\alpha}.h_{bt}^{\alpha}h_{a}^{\beta}.h_{bt}^{\beta}=\sum S_{\alpha\beta}S_{\alpha\beta}\geqq(1/p)(\sum S_{\alpha\alpha})^{2}=(1/p)(\sum h_{a}^{\alpha}.h_{a}^{\alpha}.)^{2}=(1/p)K^{2}$ . The
equality holds if and only if $(S_{\alpha\beta})$ is proportional to the identity matrix.
Since $M$ is compact and orientable, we obtain the integral inequality

$\int_{H}(n-\lambda-\mu-\frac{2}{p}K)K*1\geqq 0$ .

PROOF OF COROLLARIES 1 and 2. If $(n-\lambda-\mu-(2/p)K)K\leqq 0$ , we obtain
$(n-\lambda-\mu-(2/p)K)K=0$ and $K$ is constant. Furthermore we have

(1) $h_{a*}^{\alpha}=0$ for all $a,$ $s,$
$i$ , and $\alpha$ ,

(2) $\sum h_{a}^{\alpha}.h_{a}^{\beta}.=0$ for all $\alpha\neq\beta$ ,
(3) $\sum_{a},.h_{a}^{a}.h_{a}^{\alpha}.=\sum_{a}$ ., $h_{a}^{\beta}.h_{a}^{\beta}$ . for all $\alpha$ and $\beta$ ,
(4) $\sum h_{a}^{\alpha}.h_{ba}^{\alpha}=0$ for all $a,$ $b,$ $c$ , and $s$ ,
(5) $\sum h_{a\epsilon}^{\alpha}h_{tu}^{\alpha}=0$ for all $a,$ $s,$

$t$ , and $u$ .
If we have $b_{0}$ and $c_{0}$ such that $\sigma(e_{b_{0}}, e_{e_{0}})\neq 0$ , we set $e_{n+1}=(\sigma(e_{b_{0}}, e_{e_{0}}))/||\sigma(e_{b_{0}}, e_{t_{0}})||$ .
we choose $e_{n+2},$ $\cdots,$ $e_{n+p}$ so that $e_{n+1},$ $\cdots,$ $e_{n+p}$ form a local field of normal
frames. Then from (4) we have $h_{al}^{l+1}=0$ and hence from (3) we have.
$h_{a}^{\alpha}.=0$ for all $\alpha$ . So by Lemma 2.2 the immersion is a product $immer8ion$ .
Hence we assume the immersion is not a product immersion, i.e., $K\neq 0$ .
Then from the above discussion we have $\sigma(e_{b}, e_{e})=0$, i.e., $h_{b\iota}^{\alpha}=0$ for all $b,$ $c$ ,
and $\alpha$ . Similarly we have $h_{\epsilon t}^{\alpha}=0$ . This implies that $M$ is $S^{*}(1)\times S^{n-m}(1)$ .
We shall prove that the immersion is rigid. By the definition,



MINIMAL IMMERSIONS 69

$\sum h_{abi}^{\alpha}\omega^{t}=dh_{ab}^{\alpha}-\sum h_{ai}^{\alpha}\omega_{b}^{i}-\sum h_{bi}^{\alpha}\omega_{a}+\sum h_{ab}^{\beta}\omega_{\beta}^{\alpha}$ .
From $h_{a/b}^{\alpha}=0$ and (1.7), we obtain $h_{abl}^{a}=0$ . Similarly $hg_{ti}=0$ . These, together
with (1), imply that the second fundamental form $a$ is parallel. From
the assumption that the immersion is full and a result in [3], the normal
space is spanned by the first normal space. Equation (1.9) shows that
$\sum h_{at}^{\alpha}h_{\epsilon b}^{\alpha}=\sum h_{ab}^{\alpha}h_{st}^{\alpha}+\delta_{b}^{a}\delta_{\epsilon t}$ , which, together with $h_{ab}^{\alpha}=0$ , implies $\sum h_{at}^{\alpha}h_{sb}^{\alpha}=$

$\delta_{b}^{a}\delta_{st}$ . Thus if we set $e_{(a,s)}=\sigma(e_{a}, e_{\epsilon})$ , then $e_{(a,\epsilon)},$ $1\leqq a\leqq m<s\leqq n$ , form a
local field of normal frames, with respect to which $ h_{bt}^{(a,\epsilon)}=\delta_{b}^{a}\delta$: holds. From
(1) we have

$0=\sum h_{bti}^{(a,s\}}\omega^{i}=dh_{bi}^{(as)}-\sum h_{bi}^{(a,\epsilon)}\omega_{t}^{l}-\sum h_{ti}^{(a,s)}\omega_{b}^{l}+\sum h_{bt}^{\beta}\omega_{\beta}^{(a,s)}$ ,

which implies

$\omega\{a\epsilon)=\delta_{b}^{a}\omega_{t}^{l}+\delta_{t}^{S}\omega_{b}^{a}$ .
So we have,

$\omega\}_{b,t)}^{a,\epsilon)}=0,$ $\omega_{(a,t)}^{(a\epsilon)}=\omega_{t}^{\epsilon}$ and $\omega_{(b,\epsilon)}^{(a,\epsilon)}=\omega_{b}^{a}$ ,

for all $a\neq b$ and $s\neq t$ . Therefore the immersion is rigid. Q.E.D.

For a result of [7], we have the following.

THEOBEM 4.3. Let $M_{1}(\gamma esp. M_{2})$ be an $m(\gamma esp. n-m)$-dimensional
compact and $0\gamma ientable$ Riemannian manifold and $M$ be a R,iemannian
product of $M_{1}$ and $M_{2}$ minimally $imme\gamma sed$ into $S^{n+p}(1)$ . If the normal
connection is $t\gamma ivial$ and either $M_{1}o\gamma M_{2}$ has positive Ricci $cu\gamma vatu\gamma e$ ,
then the $imme\gamma sion$ is a $p\gamma oductimme\gamma sion$ .

PROOF. We may assume that the Ricci curvature of $M_{2}$ is positive.
Similar to the proof of Theorem 4.2, we have $\sum(\Delta h_{a\epsilon}^{\alpha})h_{a\epsilon}^{\alpha}\geqq\mu K+\sum h_{a\epsilon}^{\alpha}h_{ai}^{\beta}R_{\alpha\epsilon l}^{\beta}$ .
Since the normal connection is trivial, we obtain $R_{\alpha\epsilon t}^{\beta}=0$ . So we have
$\sum(\Delta h_{a\epsilon}^{\alpha})h_{a_{S}}^{\alpha}\geqq\mu K$. Since $M$ is compact and orientable, we obtain $K=0$ .
From Lemma 2.2, the immersion is a product immersion. Q.E.D.
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