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On Best Approximation in Function Algebras

Junzo WADA

Waseda University

In this paper we consider best approximation in function algebras
and its application to projections on function algebras. After some
preliminaries in \S 1 we give in \S 2 a characterization of continuous
functions on $X$ which have elements of best approximation in certain
function algebras on a compact Hausdorff space $X$. In \S 3 we deal with
the estimation of the norms of projections on function algebras, in
particular, of projections on certain function algebras on planar sets
(Theorem 3.1.).

\S 1. Preliminaries.

Let $E$ be a Banach space and let $M$ be a closed subspace in $E$ . For
$x\in E$, a point $y$ in $M$ is said to be an element of best approximation
of $x$ in $M$ if $y$ satisfies that $||x-y||=d(x, M)=\inf\{||x-z||:z\in M\}$ . For
$x\in E$, in general, such an element $y$ does not exist, and it is not
necessary to be unique even if it exists.

We here investigate the cases of function algebras. Let $A$ be a
function algebra on a compact Hausdorff space $X$, i.e., let $A$ be a closed
subalgebra in $C(X)$ separating points in $X$ and containing constant func-
tions on $X$, where $C(X)$ denotes the Banach algebra of complex-valued
continuous functions on $X$ with the supremum norm. A complex Borel
measure $\mu$ on $X$ is said to be orthogonal to $A,$ $\mu\perp A$ , if I $fd\mu=0$ for each
$f\in A$ . Let $A$ be a function algebra on $X$ and let $\mu$ be a measure on $X$.
If $\mu\perp A$ , then there are a sequence $\{\mu_{n}\}$ of measures on $X$ and a measure
$\eta$ on $X$ such that $\mu=\sum_{n}\mu_{n}+\eta,$ $||\mu||=\sum,$ $||\mu_{n}||+||\eta||,$ $\mu_{n}\perp A(n=1,2,3, \cdots)$ ,
$\eta\perp A$ , each $\mu_{n}$ is absolutely continuous with respect to a representing
measure for a point in the maximal ideal space $M_{A}$ of $A$ , and $\eta$ is
completely singular, that is, $\eta$ is singular with respect to every repre-
senting measure for any point in $M_{A}$ . The fact is known as the
decomposition theorem for orthogonal measures (for example, [2], p. 45).
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Let $K$ be a compact subset in the complex plane $C$ and let $P(K)b$
the uniform closure on $K$ of the set of polynomials in $z$ . The $P(K)i$
a function algebra on $K$. If the complement $C\backslash K$ of $K$ is connected, th
maximal ideal space and the Shilov boundary of $P(K)$ are $K$ and th
boundary $bK$ of $K$ in $C$ respectively. Hence the restriction $P(K)|bKo$
$P(K)$ to $bK$ coincides with $P(bK)$ . Recall that if $C\backslash K$ is connected $P(K$

agrees with $A(K)$ , the function algebra consisting of the functions $i$ .

$C(K)$ which are analytic on the interior $K^{o}$ of $K$, and so $P(K)|bK=$

$P(bK)=A(K)|bK$. Suppose that $K$ is a compact subset in $C$ and tha
$K^{o}$ and $C\backslash K$ are both connected and the closure of $K^{o}$ is K. The]

$A=P(K)|bK=P(bK)$ is a maximal algebra ([9], p. 297) and is also $al$

essential algebra, i.e., if $F$ is any proper closed subset in $bK$, then ther
is a function $f$ in $C(bK)$ such that $f\not\in A$ and $f(F)=0$ . It follows tha
car $m$ , the closed carrier of $m$ , coincides with $bK$ whenever $m$ is a re
presenting measure on $bK$ for a point in $K^{o}$ ([1], [6]).

\S 2. Best approximation in function algebras.

Let $A$ be a function algebra on a compact Hausdorff space X. $W$

here assume the following condition.
$(*)$ If a complex measure $\mu$ on $X$ is orthogonal to $A$ and if it is com
pletely singular, then $\mu=0$ (cf. \S 1).

EXAMPLES. (1) Let $K$ be a compact subset in the complex plane $\langle$

and let $R(K)$ be the uniform closure on $K$ of the set of rational function
with poles off $K$. Then $R(K)$ is a function algebra on $K$ and it satisfie
$(*)$ ([9], p. 311).

(2) Suppose that $K$ is a compact subset in $C$ and $C\backslash K$ is connected
Then $P(K)|bK=P(bK)$ satisfies $(*)$ .

We first characterize continuous functions which have elements $0$

best approximation in function algebras satisfying $(*)$ .
THEOREM 2.1. Let $A$ be a function algebra on a compact Hausdorl

space $X$ having $(*)$ . Then $f$ in $C(X)\backslash A$ has an element of best approx
imation in $A$ if and only if $f$ is of the form $g+sh$ , where

(i) $g\in A,$ $h\in C(X),$ $||h||=1$ and $s>0$ .
(ii) there are a representing measure $\mu$ for some point in $M_{A}$ ant

a function $\varphi\in L^{1}(\mu)$ such that $\int|\varphi|d\mu\neq 0,$ $h\varphi=|\varphi|$ (a.e. $\mu$) and $\varphi d\mu\perp A$ .
PROOF. Let $f$ have an element $g$ of best approximation in $A$ , tha

is, $||f-g||=d(f, A)=\inf\{||f-a||:a\in A\}$ . If we put $s=||f-g|!$ ’ then $s>|$

because $f\in C(X)\backslash A$ . Set $h=s^{-1}(f-g)$ . Then $||h||=d(h, A)=1$ . So, $b$ ]
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Hahn-Banach theorem and Riesz representation theorem, there is a
complex measure $\nu$ on $X$ satisfying that $\int hdv=||\nu||=1$ and $\nu\perp A$ . Since
$\nu\perp A$ , by the decomposition theorem for orthogonal measures (\S 1) and
$(*)$ , there is a sequence $\{\mu_{n}\}$ of measures such that $\nu=\sum_{n}\mu_{n},$ $||\nu||=\sum_{n}||\mu_{\iota}||$ ,
$\mu_{n}\perp A(n=1,2,3, \cdots)$ and each $\mu_{n}$ is absolutely continuous with respect
to a representing measure $\lambda_{n}$ for a point in $M_{A}$ . From this,

$1=\int hd\nu=\sum_{n}\int hd\mu_{n}=|\sum_{n}\int hd\mu_{n}|\leqq\sum_{n}|\int hd\mu_{n}|$

$\leqq||h||(\sum_{n}||\mu_{n}||)=||h||||v||=1$ .
It implies that for each $n,$ $\int hd\mu_{n}\geqq 0$ and

(2.1) $\int hd\mu_{n}=||h||||\mu_{n}||=||\mu_{n}||$ $(n=1,2,3, \cdots)$ .

Since $\mu_{n}$ is absolutely continuous with respect to $\lambda_{n}$ , there is a
function $\varphi_{n}\in L^{1}(\lambda_{n})$ such that $d\mu_{n}=\varphi_{n}d\lambda_{n}$ . We see easily that

(2.2) $\int hd\mu_{n}=\int h\varphi_{n}d\lambda_{n}$ ,

(2.1) and (2.2) also tell us that

(2.3) $\int h\varphi_{n}d\lambda_{n}=\int|\varphi_{n}|d\lambda_{n}$

So $h\varphi_{n}\geqq 0$ (a.e. $\lambda_{n}$) and

$||\mu_{n}||=\int|\varphi_{n}|d\lambda_{n}$ .

$(n=1,2,3, \cdots)$ .

(2.4) $h\varphi,$ $=|\varphi_{n}|$ (a.e. $\lambda_{n}$).

We choose $n$ such that $||\mu_{n}||\neq 0$ . Put $\varphi=\varphi_{n}$ and $\mu=x_{n}$ . Then $h\varphi=|\varphi|$

(a.e. $\mu$) and $\int|\varphi|d\mu\neq 0$ . Since $f=g+sh$ and $\varphi d\mu\perp A,$ $(i)$ and (ii) are satis-
fied.

Conversely, suppose that $f=g+sh$ for $g,$ $h$ and $s$ with (i) and (ii).

We can assume that $\int|\varphi|d\mu=1$ without loss of generality, since $\int|\varphi|d\mu\neq 0$ .
For $a\in A,$ $f-a=g-a+sh$ and

$||f-a||\geqq\int|f-a||\varphi|d\mu=]|(f-a)\varphi|d\mu$

$=\int|(g-a)\varphi+sh\varphi|d\mu=\int|(g-a)\varphi+s|\varphi||d\mu$

$\geqq|\int\{(g-a)\varphi+s|\varphi|\}d\mu|=s\int|\varphi|d\mu=s$ .
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On the other hand, we see that $||f-g||=s$ . This shows that $f$ has
$g$ as an element of best approximation in $A$ .

We next consider $P(bK)$ as a special case. Let $K$ be a compac $\cdot$

subset in $C$ such that $C\backslash K$ is connected. Then $A=P(K)|bK$ is a Dirichle $\cdot$

algebra, and so any point in $M_{A}$ has a unique representing measure $n$

on $bK$. We denote by $H^{1}(m)$ the Hardy space, that is, $H^{1}(m)$ is th$($

closure of $A$ in $L^{1}(m)$ .
COROLLARY 2.3. Let $K$ be a compact subset in $C$ such that $K^{o}$ anc

$C\backslash K$ are both connected and the closure of $K^{o}$ is $K$, and let $A=P(K)|bK=$
$P(bK)$ . Then $f\in C(bK)\backslash A$ has an element of best approximation in $i$.

if and only if $f$ is of the form $f=g+sh$ , where
(i) $geA,$ $h\in C(bK),$ $s>0$ and $|h(z)|=1(z\in bK)$ .
(ii) let $z_{0}$ be a fixed point in $K^{o}$ , then there is a function $\varphi\in H^{1}(m$

such that $\int\varphi dm=0,$ $\varphi\neq 0$ (a.e. m) and $h=|\varphi|\varphi^{-1}$ (a.e. m) for the repre.
senting measure $m$ on $bK$ for $z_{0}$ .

PROOF. Let $f\in C(bK)\backslash A$ have an element $g$ of best approximatior
in $A$ . Then, by Theorem 2.1, $f=g+sh,$ $g\in A,$ $h\in C(bK),$ $s>0,$ $\int|\varphi|dm\neq 0$

$h\varphi=|\varphi|$ (a.e. m) and $\varphi dm\perp A$ for the representing measure $m$ (on $bK$

of a point $z$ of $K^{o}$ and for a function $\varphi\in L^{1}(m)$ . This is because of thal
the only non-trivial Gleason part of $A$ is $K^{o}$ (cf. [9], p. 296). The poinl
$z$ can be replaced by $z_{0}$ since $z$ and $z_{0}$ are both in the same part $K^{o}$

Since $\varphi dm\perp A,$ $\varphi\in H^{1}(m)$ . And $\varphi\neq 0$ on a set of positive measure. This
leads us to that $\varphi\neq 0$ (a.e. m) (cf. [9], p. 291). Hence, we can write
$h=|\varphi|\varphi^{-\iota}$ (a.e. $m$), and so $|h|=1$ (a.e. $m$). We now assert that $|h|=1$

everywhere on $bK$. Suppose otherwise. Then $E=\{z\in bK:|h(z)|=1\}$ is a
proper closed subset in $bK$ since $h$ is continuous. Since $|h|=1$ (a.e. m)
we have $m(bK\backslash E)=0$ , and so carm does not coincides with $bK$. This
is a contradiction because car $m=bK$ (see \S 1), and it follows that $|\varphi|=1$

on $bK$.
REMARK 2.4. We see easily that $g$ is uniquely determined for any

$f$ of Corollary 2.3. For, if $g_{1}$ and $g_{2}$ are two elements of best approx.
imation of $f$ in $A$ , then $2^{-1}(g_{1}+g_{2})$ is also an element of best approx.
imation of $f$ in $A$ . If $f=g_{1}+sh_{1}=g_{2}+sh_{2}$ , then $f=2^{-1}(g_{1}+g_{2})+2^{-1}s(h_{1}+h_{2})$ ,

As in the proof of Corollary 2.3, we have $|h_{1}+h_{2}|=2$ and $|h_{1}|=|h_{2}|=1$ ,
which yields $h_{1}=h_{2}$ .

COROLLARY 2.5 (Shapiro [8]). Let $A$ be a disc algebra and let
$f\in C(\Gamma)\backslash A$ , where $\Gamma$ is the unit circle in C. Then $g$ is the element of



BEST APPROXIMATION IN FUNCTION ALGEBRAS 109

best approximation of $f$ in $A$ if and only if $f$ and $g$ satisfy the following
$pr$

.operties:
(i) $|f(z)-g(z)|=||f-g||(z\in\Gamma)$ ,
(ii) there is a non-zero $k\in H^{1}(d\theta)$ ( $ d\theta$ : Lebesgue measure on $\Gamma$) such

that $z(f(z)-g(z))k(z)\geqq 0$ (a.e. $ d\theta$ on $\Gamma$).

PROOF. In Corollary
$2.3-1$ set $\Gamma=bK$ ($K$ is the closed unit disc), $z_{0}=0$

(the origin of $C$) and $k=z$ $\varphi$ .
REMARK 2.6. W. Hintzman [4] proved the existence of the element

of best approximation in the disc algebra $A$ for any polynomials in $\overline{z}$

on $\Gamma$ . He also constructed a continuous function of $\Gamma$ which has no
element of best approximation in $A$ ([5]).

\S 3. Projections on function algebras.

W. Rudin [7] has proved that there is no projection of $C(\Gamma)$ onto
the disc algebra $A$ . I. Glicksberg [3] extended the result to the cases
of certain algebras and also proved that if $A$ is a function algebra (in
more general case) on a compact Hausdorff space $X$ such that $A\neq C(X)$

and the Shilov boundary $\partial_{A}$ of $A$ coincides with $X$, and if $T$ is a pro-
jection of $C(X)$ onto $A$ , then $||T||>2$ . Thereafter we deal with projec-
tions of $N$ onto $A$ for $A=P(bK)$ and closed linear subspaces $N$ in $C(bK)$

containing $A$ .
THEOREM 3.1. Let $K$ be a compact subset in $C$ such that $K^{o}$ and

$C\backslash K$ are both connected, and let $A=P(K)|bK=P(bK)$ . Let $N$ be a
closed subspace in $C(bK)$ such that $N\supset A$ and let $A$ have at least two
codimension in $N$, that is, $\dim N/A\geqq 2$ . If $T$ is any projection of $N$

onto $A$ , then $||T||>2$ .
In order to prove the theorem, we need the forthcoming lemma and

theorem.

LEMMA 3.2. Let $A$ be a function algebra on a compact Hausdorff
space $X$ and let $\partial_{A}=X$. Let $N$ be a closed subspace in $C(X)$ containing
$A$ with $N\neq A$ . Let $T$ be a projection of Nonto A. Then for any $f\in N$,
$Tf$ is an element of best approximation in $A$ if and only if $||T||=2$ .

PROOF. Let $T$ be a projection of $N$ onto $A$ . Then $||T-I||=||T||-1$

by Glicksberg ([3]), where $I$ is the identity operator. If $||T||=2$ , then
$||I-T||=1$ . For $feN$ and $g\in A,$ $(I-T)(f-g)=(I-T)f=f-Tf$, and so
$||f-Tf||=||(I-T)(f-g)||\leqq||f-g||$ . This shows that $Tf$ is an element of
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best approximation of $f$ in $A$ . Conversely, if $Tf$ is an element of best
approximation of $f$ in $A$ , then $||f-Tf||=d(f, A)\leqq||f||$ . Since $N\neq A,$ $w\in$

have $||I-T||=1$ and $||T||=2$ .
Now, let $K$ be a compact subset in $C$ such that $C\backslash K$ is connected,

and let $A=P(K)|bK=P(bK)$ . Let $B$ be the set of functions in $C(bK_{J}^{\backslash }$

which have an element of best approximation in $A$ and let $N$ be a closed
linear subspace in $C(bK)$ with $B\supset N\supset A$ . If $T$ is a linear operator oi
$N$ to $A$ and if for $f\in NTf$ is an element of best approximation of $f$ in
$A$ , then we see easily that $T$ is a projection of $N$ onto $A$ with $||T||\leqq 2$ ,

For, $||Tf||\leqq 2||f||$ since $||f-Tf||=d(f, A)\leqq||f||$ .
THEOREM 3.3. Let $K$ and $A$ be as in Theorem 3.1. Let $N$ be a

linear subspace in $C(bK)$ with $B\supset N\supsetneqq A$ . If there is a projection $T$ of
$N$ onto $A$ such that for any $f\in NTf$ is an element of best approximation
of $f$ in $A$ , then $A$ has one codimension in $N$.

PROOF. We fix a function $f_{0}\in N\backslash A$ . In order to prove the theorem,
we must show that for any $f\in N\backslash A$ , there is a complex number $\alpha$ sucb
that $f-\alpha f_{0}\in A$ . But if we denote by $H$ the closure of $K^{o}$ , then $H^{o}$

and $C\backslash H$ are both connected and the closure of $H^{o}$ is $H$. It is not hard
to see that the essential set for $A$ is $bH=H\backslash H^{o}$ and $A|bH=P(bH)$ (see
[6] for essential sets). By this, we can assume that the closure of $K^{o}$

is $K$ without loss of generality. Now, by Corollary 2.3, we have

(3.1) $f- Tf=rh$ , $f_{0}-Tf_{0}=sh_{0}$ ,

where $r,$ $s>0,$ $h$ and $h_{0}$ are in $C(bK)$ and $|h|=|h_{0}|=1$ . Also, since $ f+f_{0}\in$ A
and $T(f+f_{0})=Tf+Tf_{0}$ ,

(3.2) $f+f_{0}-(Tf+Tf_{0})=th_{1}$ ,

where $t\geqq 0,$ $h_{1}$ is continuous on $bK$ and $|h_{1}|=1$ . If we put $p=r\cdot s^{-1}>0$ ,
$q=ts^{-1}\geqq 0,$ $g=hh_{0}^{-1}$ , and $g_{1}=h_{1}h_{0}^{-1}$ , then $g,$ $g_{1}$ are in $C(bK)$ and $|g|=|g_{1}|=1$ ,
and we have

(3.3) $1+pg=qg_{1}$ .
From this, we see $g$ is constant by a simple calculation since $bK$ is

connected (for example, [2] p. 35), and so $h=ch_{0}$ for some constant $e$

with $|c|=1$ . By (3.1) we have that $f-crs^{-1}f_{0}=Tf-crs^{-1}Tf_{0}\in A$ , which
complete the proof.

PROOF OF THEOREM 3.1. If $||T||\leqq 2$ , as in the proof of Lemma 3.2,
$Tf$ is an element of best approximation of $f$ in $A$ for $f\in N$. By Theorem
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3.3, $A$ has one codimension in $N$. This proves the theorem.

REMARK 3.4. (1) Let $A$ be the disc algebra and let $N=\{\alpha\overline{z}+h$ :
$\alpha\in C,$ $h\in A$}. If we put $T(\alpha\overline{z}+h)=h$ , then $T$ is a projection of $N$ onto
A. $Tf$ is the element of best approximation of $f$ in $A$ and $||T||=2$ . We
see that dim $N/A=1$ and the hypothesis for codimension of Theorem 3.1
is necessary.

(2) If $K^{o}$ is not connected, the conclusion of Theorem 3.1 fails even
if $C\backslash K$ is connected and $\dim N/A\geqq 2$ . We can construct easily such an
example.
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