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Introduction

Let f(x) be a probability density function on real line which vanishes
on (— oo, 0] and twice continuously differentiable in (0, ). We consider
the case that for a>2, f(x)~Ax** as x— +0 and f'()~Bz** as — +0
(0<A4, B< ). Let X, ---, X, be an independent identically distributed
random sample of size n (n=1, 2, ---) according to a distribution P, with
density f(x—#6), and let {8,})={0.(X,, ---, X,)} be the maximum likelihood
estimator (or MLE) of 4. In this paper we prove that under some as-
sumptions (See Section 1.), {f,} is asymptotically sufficient statistic for
{P): 8 € @} in the sense of LeCam [5]. Our theory of asymptotic sufficiency
of MLE is based on the asymptotic properties of MLE and likelihood
function, which have been studied in non-regular cases by Akahira [1],
Takeuchi [6], Takeuchi and Akahira [7] and Woodroofe [9]. Asymptotic
sufficiency of MLE has been discussed under the regular conditions by
Kaufman [4] and LeCam [5]. In Akahira [2], asymptotic sufficiency has
been discussed in a non-regular case when the density function, with a
location parameter, has a compact support on R' and positive values at
the end points.

In Section 1 notations and assumptions are stated, and in Section 2
we state some known results concerning order of consistency of MLE
and min (X, ---, X,) (cf. [1], [6], [7], [9]). In Section 3 we will show
that MLE is asymptotically sufficient for {P,: 6 €6} in our non-regular
case.

§1. Notations and assumptions.

Let X be a sample space whose generic point is denoted by x, <#
a o-field of subset of X and {P,: € ®} a set of probability measures on
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7, where 6 is called a parameter space. In this paper it will be assumed
that X=6=R'. For each n=12, ---, let (X*, &Z") be the cartesian
product of » copies of (X, <#) and P,, corresponding product measure of
P,. The point of X* will be denoted by %,=(x,,- -, ,) and the correspond-
ing random sample by X,=(X,, ---, X,). We suppose that P,(#¢c6) is
absolutely continuous with respect to the Lebesgue measure g on R'.
Then we denote the density dP,/dp by f(z, 0).

We suppose that @ is a location parameter (i.e., f(z, 6)=f(x—8)) and
consider following assumptions (I), (II), (III), (IV) and (V).

O  fle)>0 if >0

flx)=0 if =<0
(dI) f(x) is twice continuously differentiable in (0, ), and for a=2
lim 2" *f(x)=A 0<A<L o,

z—+0

lim z**f'(x)=B 0<B<L oo,

z—>+0
and
lim f(x)=0

x—+00

and f”(x) is a bounded function.
Let g(w)=lo°°gf(a:) 0<x < 0).
am |19 Awdn< oo,
V) for every >0, Sa g (@) f(x)dx < o,
(V) for every a>0, there exists a  (0<d<a) for which

S“ sup | 9" (@—1) | f@)dw < oo .

These assumptions are much the same as Woodroofe’s conditions in
[9] except for the assumption (III), but the assumption (II) is slightly
different from his condition. The assumption (III) will be needed to
prove the consistency of MLE (cf. Wald [8]).

§2. Order of consistency of MLE and minimum statistic.

Under the assumption (II), if X, ---, X, is an independent identically
distributed random sample from the population with density f(x—#@), then
maximum likelihood estimators exist in the interval (— <, M,), where
M,=min (X,, ---, X,). We denote it by {4,} = {6.(X,, ---, X.)}-

We have the following lemma by the similar method as in Akahira
[1], Takeuchi and Akahira [7] and Cramér [3].
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LEMMA 2.1. Suppose that the assumptions (I), (II), (IV) and (V) are
satisfied with a>2. Then I<o and I=—S 0"(x)f(x)de, where I=
o 0
S g'(x)*f(x)dx denotes Fisher information number.
0

The first part in the following theorem is obtained in [1], [6], [7],, [8]
and [9], and the second part is obtained in [1], [3], [6], [7] and [8].

THEOREM 2.1. Suppose that the assumptions (I)~(V) are satzsﬁed

(i) If a=2, then for any compact subset K of O, Vienlog n @4,—0)
converges in law to the standard mormal distribution N(0,1) as n— oo
uniformly in 0 € K, where c,=B?/2A.

(ii) If a>2, then for any compact subset K of 6, v'nl (8,—6) con-
verges im law to the standard mormal distribution N(0,1) as m— o

uniformly in 6 € K. .

The following definition is due to Akahira [1] or Takeuchi [6].

DEFINITION 2.1. For an increasing sequence of positive numbers {c,}
(¢, tending to infinity) an estimator {7,} (=1, 2, ---) is called consistent
with order {c,}, if for every ¢>0 and every 6'€6, there ex1s?: a sufficient-
ly small number & and a sufficiently large number L such that
Im sup P,(fe,|T.—0|=Lh<e .
n—oo :10—6'|<3
By Definition 2.1 and Theorem 2.1 we can state that if a=2 then
MLE is consistent with order {(nlogn)?}, and if a>2 then MLE is
consistent with order {n'%.
Next we state a result concernmg M,.

THEOREM 2.2 (Woodroofe [9]). Suppose that the assumptions (I), (II)
are satisfied. If a=2, then M, is consistent with order {m*}.

More precisely, it will be obtained that if a=2, then for all t>0,
P, (nV*(M,—6)>1t)—exp (— At*/a) as n— oo uniformly in #€6. However
we will not require the exact limit distribution for M, in the sequel.
§3. Asymptotic sufficiency of MLE.

In the beginning we state some lemmas.

LEMMA 3.1 (Woodroofe [9]). Suppose that the assumptions (1) and
(IT) are satisfied with a=2. Let 0<d<co and define Z,=X;' if 0< X, <0
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and Z,=0 if X, =20 1=1,2, --+,n. Then

’

(eqnlog )™ 3} Z4—1 in probability as n—s oo
where c,= A/2.
We define
Pu(&s, 0)=11 f(@,—6)
N (T, 0)=log p,.(&,, ) if M,>6
GJ@)=[0*\.(%,, 6)/06%]-, .
Next we state a result concerning likelihood function. The following

lemma is a slight modification of Lemma 8.4 in [9] and it will be shown
by similar method.

LEMMA 3.2. Suppose that the assumptions (I), (I) and (V) are
satisfied.
(i) If a=2, then for positive B, satisfying Bi'=o(n"Y?),

sup | (e,m log %) G (0+865) +1|—0
1

in P,~probability as n— ~ wuniformly in 6 €6.
(i) If a>2, then for positive B, satisfying Bi'=o(n"V%),
sup [n7'GJ@+tRN+I|—0

It1s1
in P,o-probability as n— o uniformly in 6¢6.

PROOF. Since 6 is a location parameter, we can restrict our atten-
tion to the case 6=0.

At first we prove the part (i). From the assumption (II), we have
9" (x)~—B*(A’* as x— +0. For arbitrarily given 0<e<1, let a>0 be
so small that |(A’*¢"(x))/B*+1|<¢ for 0<x=<2a. For 0<c<d<, let
> denote the summation over all =1, 2, ---, n for which e<X,<d. If
M,=pB.'/e, which holds with probability approaching to one, then for ¢
and B, satisfying |¢|<1 and B;'<a respectively,

31 (emlog m) G
= (e log m) (33 0"(X,—t8:) + 3. ¢"(X,— 65 )

= —%}ﬂ(cln log 7)™ OZ (X, —tB:")*
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+(e,n log n)“i‘. sup |g"(X,—?t)|

¢ e1spyt
< —(L—e)(1+&) e log m)™* 3 X +0,(1)
0
— —(1—8&)(1+¢)? in P,-probability as n—— oo .

We have used Lemma 3.1 and assumptlon (V) in the final steps in (3 1).
Similarly we obtain

(3.2) 171_11_1 (e log n)'GL(EBN=— (A +e)(1—e)"

in P,,-probability. Since ¢>0 is arbitrary, from (3.1) and (3.2), we have
completed the proof of part (i).

Next we prove the part (ii). For arbitrarily given 0<e<1, probability
of the event M,>=p3;'/e approaches to one as n— . From the assump-
tion (II), if 2<a<3 then g"(x)~—B*A%® as z— +0 and if a=3 then
22 71g"(#)=0(1) as x— +0. Therefore, we divide the proof into two cases.
At first we prove the lemma in the case 2<a<3. Let a so small that

‘g':fzg"(w)—i—l <e for 0<x=2a .

If M,=pB;'/e, then for ¢ and B, satisfying |[t[{=1 and B;'<a respectively
and for a suitable 6>0 and b>a we have

WG (EBR)
=03 0" (X8 + 3 0" (X~ t6:")

<-BA-9 3 (x,—tg) 7+ 3 sup ¢"(Xi—1)

= nA? N o g5t
< Bd—e@+e Z x*+L1 3 sup ¢"(X,—t)
nA? N oo syt

é(l-—S)(l-{—B) Z g"(X,)—t-; za: ﬁ‘llslg g"(X,—t)

+= Zsup 9"(X,—1?)
b t|1ss

=(1""6)(1+8 - ln(a)+J2n(a’9 by 8)+J5ﬂ(b! a) ’

where

Ja@=23"(X)



328 HARUYOSHI MITA

a [t}s8

Jon(@, b, 6)=% > sup g"(X,~1)
T, =L 3 sup ¢"(X,—1) .
n o itissy

By Lemma 2.1 and assumption (V),
3.3) Ji(@)—> Ji(a) in P,,-probability as n— « ,
(3.4) Jum(@, b, 8)— Jy(a, b, 5) in P,-probability as n— = ,
(3.5) Jaa(b, ) —— J3(b, 6) in P,,-probability as n—> o ,
where

J@=\o"@ @,

Ja, b, =’ sup ¢"(e—t)f(w)dw ,

Ji(b, 8)= S sup g” (& —t)f(@)dz .

b [t|s8

From Lemma 2.1, assumption (V) and the continuousness of g"(x), we
obtain that for sufficiently small a, sufficiently large b and suitable 9,

(3.6) Ji@)<e,

3.7 Ji(a, b, a)<§"g"(a;)f(x)dx+e<—I+2e,
(3.8) Jy(b, &) <e .

By (3.3)~(8.8), we have

3.9 (1—-8)(A+e)°J . (a) +Tenla, b, 8)+J,,(b, 6)

—(1—-e)(A+e)2J (a) + Jx(a, b, 6)+Jy(b, 0)
(in P,,-probability as n—— o)
se(l—e)(1+e)24+8e—1T1.

Similarly we obtain

(3.10) lim n7'G}(¢8:) = —e(1+6)(1—e)*—8¢—1 in P,-probability .

Since ¢>0 is arbitrary, from (3.9) and (8.10) we have completed the
proof in the case 2<a<3.
Next we prove the lemma in the case 3<a. For some constant
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M > 0, let a be so small that
|e*"1g" () |<M for 0<x=2a .

If M,=g3.'/e, then for t and B, satisfying |t|<1 and B.'<a respectively
and for a suitable 6>0 and b>a we have

1 144 -1
;Gn (t;Bn )

U5 @—tgy+ L 3 x-tem)

1—a a b
<MA+T" S xi-ai 1 S5 sup g"(X,—0)
n 0 N e (tiss
+1 3 sup g (X, — 1)
n b itlse

=M1 +e)'"*J,(a) + Jia(a, b, 8)+J5.(b, 0) ,

where
, 1 & via
Ji(@)==—23 Xi™*,
n 0
1 b
Ji.(a, b, 0)=— >, sup ¢"(X;,—1) ,
N a jt|Iss

J2.(b, 3) ———;1; S sup ¢”"(X,—1) -

b |tlse
By the assumptions (II) and (V),

(3.11) J! (@)—— M'a in P,,-probability as n— o, where M’>0 is some
constant,

(3.12) Ji.(a, b, 8)— Ji(a, b, 8) in P,,-probability as n— oo,
(3.13)  J..(b, 8)— Ji(b, 8) in P,,-probability as n— oo,
where
Ji(a, b, 0)= Sb sup 9" (x—0)f(w)dx ,
J3(b, 0) =S sup g’ (x—1t)f(x)dx .
b |tIse

According to the similar method treated in the case 2<a<3, we have
for a sufficiently small a>0 and a sufficiently large b,
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(3.14) Ma<e,
(3.15) Ji(a, b, 0) < —I+2¢,
(3.16) Ji(b, 0)<e .

From (3.11)~(3.16),

3.17) M1 +e)*Ji.(a)+J5.(a, b, 8)+ J3,(b, 0)
—s MM'(1+e)**a+JYa, b, 8)+Ji(b, 8) (in P,,-probability as
n ————> oo )

SMe(l4+¢e)*+8¢—1I.
Similarly we obtain

(3.18) lim »7'G,(tB,) = — Me(1+¢)'*—8¢—1I in P,,-probability as

N——m>o0 .,

By (3.17) and (3.18), we have completed the proof in the case 3<a, since
¢>0 is arbitrary.
In the following we make use of next notations.

L@ ={&:Vvnlogn |6,—6|<8}
AB©O)={&.: V' n |8,—0|<6)
B (e)={Z,: | (c;n log n)'GY(@,)+1| <&}
BP(©)={Z,: |n*G)@,)+I|<é&}
CP={%,: 0,4+ (nlog n) 2 < M,}
CO={%,:0,+n2<M,)} .

LEMMA 3.3. Suppose that the assumptions (I), (II), (III), AV) and
(V) are satisfied. If a=2 (a>2), then for any compact subset K of O,
P, (CY) (Po(CE)N)—1 as n— o uniformly in 6ec K, and there exists a
positive null sequence {e,} and a positive divergent sequence {0,} such
that P,s(As(0,) (Puo(A(©0,))— 1 and P, (BY (e,))(P(B2(e,) —1 ag n— oo
both uniformly on any compact subset of € and that dic,—0 as n— .

ProOF. Let K be any compact subset of € throughout this proof.
By Theorem 2.1 we obtain that for any positive divergent sequence {5,},
P,o(A%(5,))—1 as n— o uniformly in 8 € K when a=2, and P,,(4%(5,))—1
as n— oo uniformly in § € K when a>2. By Theorems 2.1 and 2.2, we
have
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P,(C3)
=P,,({&%,:Vnlogn (,—0)+1<Vnlog n (M,—0)})
——1 as n—> o uniformly in 6 € K when a=2,
and
P,o(C)
=P,({%,: V1 (@,—0)+1<V n(M,—0)})
——1 as n—— o uniformly in # € K when a>2.

By the first part in Lemma 8.2, there exists a positive null sequence {g,}
such that

(8.19) P,,({%,: I51;1'1p | (e,n log n)'GY(0+t(n log log n) V5 +1|>e,})—0
=1
as n— oo uniformly in e K .

Moreover, for the sequence {¢,} satisfying (3.19) we can choose a positive
divergent sequence {d,} such that

(8.20) o2e,——0 as n——> o and §, V' nloglogn /v nlogn —0

as Nn——> oo .,

From (3.19) and (8.20), we can choose a positive null sequence {¢,} and a
positive divergent sequence {9,} such that

(8.21) P.o({%,: sup | (e,n log n)"'GY (6 +td,.(n log n) V) +1|>¢e,})—0

as n—— o uniformly in e K,

(8.22)  o%¢,——0 as n—— o and 3,V nloglog n/V/nlogn —0

as n—— oo .,
By (3.21), (8.22) and the result which was shown in the beginning,

P,o(By'(ew)
= P,s({%,: | (cyn log )G (6,) +1]|<e,))
= P,o({&,: | (c,n log m) TG (@B,) +1]|<e,} N A(D,))
= P,o({&,: | (c;n log )G (B,)+ 1| <e,}| A%D.)
X P,o(AL}(0,))
=P, ,({%,: i1|1£ | (eym log 1) ~*G (6 +16,(n log ») ™)) +1]|<¢e,})

X Ppns(A83(0.))
——1 as n—— o uniformly in e K.
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Next, by the second part in Lemma 3.2 there exists a positive null
sequence {¢,} such that

(3.23) P,,({%,: F{Pp |n'Gr@+tn"¥*)+I|>¢,}) —0
s1
as n—— c uniformly in e K.

For the sequence {¢,} satisfying (3.23), we can choose a positive divergent
sequence {0,} such that

(3.24) 03e,—0 as n—> o and 0,n¥*/n?*——0 as n—> o .,

Thus we can choose a positive null sequence {¢,} and a positive divergent
sequence {0,} such that

P, ,({%,: sup |G @+t ,n B+ I|>e,})—0
as n—— o uniformly in e K,
0xe,——0 as n——> ~ and 9,n¥*/n"*——0 as n—> o .
By the similar method as that of previous argument, we have
P,o(B¥(e,)——1 as n—— ~ uniformly in e K .

Thus the proof has been completed.
The following definition is due to LeCam [5].

DEFINITION 3.1. A statistic {T,}={T.(X,)} is called asymptotically
sufficient for {Ps: @ € ©} if there exist non-negative functions ¢,(%,, 6) such
that for each »=1,2, -.., ¢,(%,, 0) is the product of a function of Z,
only by a function of T, and 6 only and

timsup | |11 @, 0)—a.(@,, 0)| 1T de=0

n—co feK

for any compact subset K of 6.
Now we prove the asymptotic sufficiency of MLE.

THEOREM 3.1. If the assumptions (I)~(V) are satisfied, then MLE
18 asymptotically sufficient for {P,: 6 € 6}.

ProOOF. At first we prove the theorem in the case a=2. Let {¢c,}
and {d,} be the sequences which were given in the previous lemma, and
let

0., 0)= 2., 0) exp| —2(/nTog 7 0. —0))']
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XIA}}g(ant,‘,“(sn)noﬁ) (%,) ,

where I;(-) denotes the indicator function of a set E.

sup | 19,@,, 0)—a.@,, ) 1] do,
feK JXn 1=

<s ~ 880 9) | p 3, 0) 11 da,

up S
oex Jal) e nBl ey nold 0. (%, 0)

+8up Poo({425(0,) N B (€.) N C°})

By Lemma 3.8, the second term in the right-hand side converges to zero
as n— oo for any compact subset K of ©®. We prove that the first term
converges to zero as n— . If %, e CP, then \,(%,, 0) is twice continuous-
ly differentiable with respect to 6 in (n log ») “*-neighborhood of 4,.
Thus, for each %, € CY® we can expand \,(%,, ) with respect to # around
@, by Taylor’s theorem. We have

7\'9;(&57” 0) = x’n(%ﬂr 9%) + (0 - 9%)[“'8_)\'%(%n9 0):[ A
30 =0y,

L o
+g0—0] T 0]

where |0f—6|<|0,—0|. Since 8, is MLE for each =, the second term in
the right-hand side vanishes. Therefore, from Lemma 3.3, %, € A%}, N
B®(,)NCY implies that

\1_ g%, 6)
0(Zn, 0)
= ! 1—exp [— %(Vm((?” — 0))2(61n ﬁ)g n[ o v En 0)1 )] ‘

<exp [—91—(1/ nlog n (0,—06))? 1 & Mo (B, 0)] +1H 1

emlognlog

<exp< 65,6) -1
—0 as n——> 0 .

Thus we have

q‘n(‘f‘nr 0) p”(xm g) H dxi———>0 as n——co ,
Du(Z, 6)

sup S
vek Jal) ) nBY cpnell
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The proof has been completed in the case a=2.
Next we prove the theorem in the case a>2. Let {¢,} and {5,} be
the sequences which were given in Lemma 3.3, and let

0@, O)=2,(Es, 0) exD| —LV/ T Ou=0) [LiunPennts @) -
Then

sup S Ipn(En’ 0)—qn(§ny 0)[ H dxi
feK JX»

qn(wn, 0)
Du(T,, 0)
+sup P,,({45(3.) N BP(e,)NCPY)

<sup |
dek Ja2 6 nB® e nol?

Du(Z, 6) II da,

By Lemma 3.3, the second term in the right-hand side converges to zero
as n— o, By the similar method as that of previous argument, for
each %, €C{® we have

n(xm 0) 7\'»(xm 0n)+_(0 _0)2L——x'n(xm 0):] ]

=0

where |0 —6|<|4d, -—0|
From Lemma 3.3, %, € A%, N B?(,)NCY implies that

| 1 — q,s(aim
Da (&, )

= |1—exp [—%(1/7(5,,—0))2 i

a o, 0)],,:,, +I):”

[sg—mm 0], 1]~

<exp [%(1/'47(0 —6)):

1. \_
=exp (—2—3,6,,) 1
—0 as n—— o .,
Thus we have

_ 0%, 0)

su —
P.(%,, 6)

D S
2
bekx JaB e nBP e nel®

p.(%,, ) ﬁ dx,——0 as n—— o .
=1

The proof has been completed in the case a>2.
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