A Generalization of the Fourier-Borel Transformation for the Analytic Functionals with non Convex Carrier

Mitsuo MORIMOTO

Sophia University and Université de Nancy I

Introduction

Let K be a compact set of C. For an analytic functional with carrier in K, $T \in \mathcal{O}'(K)$, we define the Fourier-Borel transformation by

$$\mathscr{F}(T)(u) = \langle T_z, \exp(uz) \rangle.$$

If K is convex, it is classical that the Fourier-Borel transformation establishes a linear isomorphism of the space $\mathcal{O}'(K)$ onto the space of the entire functions of exponential type in K, $\operatorname{Exp}(C, K)$. (Polya's representation, see for example Chapter 5 of Boas [1]. For the general theory of the Fourier-Borel transformation, see Martineau [6].) If K is not convex, this theorem is false. We shall consider in this paper the case where K is an annulus with center at the origin. Let $\lambda \neq 0$ be a fixed complex number. For $T \in \mathcal{O}'(K)$, we define the transformation \mathcal{F}_1 by

(0.2)
$$\mathscr{F}_{\lambda}(T)(u, v) = \left\langle T_{z}, \exp\left(\lambda\left(uz + \frac{v}{z}\right)\right)\right\rangle.$$

This simple transformation \mathcal{F}_{λ} generalizes the Fourier-Borel transformation in the case of annulus and we can determine the image of $\mathcal{O}'(K)$ under the transformation \mathcal{F}_{λ} (Theorem 4.2). (Kiselman [4] and Martineau [7] considered another kind of generalizations of the Fourier-Borel transformation.)

On the other hand, let S^{n-1} be the n-1 dimensional sphere and $\mathscr{B}(S^{n-1}) = \mathscr{A}'(S^{n-1})$ the space of hyperfunctions (analytic functionals) on the sphere. For $T \in \mathscr{B}(S^{n-1})$, Hashizume, Kowata, Minemura and Okamoto [2] defined the transformation \mathscr{P}_{λ} by

(0.3)
$$\mathscr{S}_{\lambda}(T)(x) = \langle T_{\omega}, \exp(i\lambda\langle x, \omega\rangle) \rangle$$
.

Received July 6, 1979

They constructed a space $\widetilde{\mathscr{B}}(S^{n-1})$ strictly larger than $\mathscr{B}(S^{n-1})$ and claimed \mathscr{P}_{λ} can be extended to the space $\widetilde{\mathscr{B}}(S^{n-1})$. They proved the image of $\widetilde{\mathscr{B}}(S^{n-1})$ under the transformation \mathscr{P}_{λ} is precisely the space of all C^{∞} functions on \mathbb{R}^n satisfying the differential equation

$$(0.4) \qquad (\Delta + \lambda^2) f = 0,$$

where Δ is the Laplacian on \mathbb{R}^n . This result can be understood in the frame work of the Ehrenpreis-Palamodov fundamental principl. I am interested in the following questions:

What is the space $\widetilde{\mathscr{B}}(S^{n-1})$ and what is the \mathscr{P}_{λ} -image of $\mathscr{B}(S^{n-1})$? When n=2, that is, in the case of circle, Helgason [3] gave a meaning to the space $\widetilde{\mathscr{B}}(S^1)$ as the space of "entire functionals". (We can give a meaning to $\widetilde{\mathscr{B}}(S^{n-1})$ for general n. See our forthcoming paper [8].) An answer to the second question can be given, in the case n=2, by our knowledge on the transformation \mathscr{F}_{λ} (Theorem 7.3(ii)).

The plan of this paper is as follows: §§1 and 2 are preliminary studies on the spaces of analytic functions and analytic functionals related to the unit circle S^1 . In §1 we define the space $\mathcal{O}(S^1)$ of real analytic functions on the unit circle S^1 and its subspaces, especially the space $\mathcal{O}(C^*)$ of holomorphic functions on C^* and the space $\operatorname{Exp}(C^*)$ of holomorphic functions of exponential type on C^* . We characterize these spaces by the growth conditions on their Laurent coefficients. In §2 we define the spaces of analytic functionals by the duality. $\mathcal{O}'(S^1)$ is the space of analytic functionals on the circle and $\operatorname{Exp}'(C^*)$ is the space of "entire functionals" of Helgason [3]. We characterize also these spaces by the growth conditions of their Laurent coefficients.

In §3, we study the space $\mathcal{O}_{(\lambda)}(C^2)$ of the entire functions F(u, v) satisfying the differential equation $(\partial^2/\partial u\partial v)F = \lambda^2 F$. Our main remark is that the function $F \in \mathcal{O}_{(\lambda)}(C^2)$ is completely defined by its restrictions F(u, 0) and F(0, v) (Theorem 3.1). In §4 we define the transformation \mathcal{F}_{λ} for the analytic functionals by the formula (0.2) and determine the \mathcal{F}_{λ} -images of the spaces of analytic functionals introduced in §2. In §5 we determine the \mathcal{F}_{λ} -images of the spaces of analytic functions introduced in §1. But the description of the \mathcal{F}_{λ} -images becomes more complicated than in §4. In §6, we shall sum up the properties of the function F of $\mathcal{O}_{(\lambda)}(C^2)$.

In the final section §7, we apply our preceding results to the study of the transformations \mathscr{S}_{λ} . We can determine, among others, the \mathscr{S}_{λ} -images of $\operatorname{Exp}'(\tilde{S}^1) = \operatorname{Exp}'(C^*)$, $\mathscr{O}'(\tilde{S}^1) = \mathscr{O}'(C^*)$ and $\mathscr{B}(S^1) = \mathscr{O}'(K_{1,1})$.

This paper was written during my stay in France in the academic year 1978/1979. The discussions with French mathematicians, especially C. C. Chou and J. Faraut, were very informative. I am very grateful to them.

§ 1. Analytic functions on an annulus.

Let A>0 and B>0 satisfy $AB\geqslant 1$ (resp. AB>1). Consider the annulus:

(1.1)
$$K_{A,B} = \{z \in C; B^{-1} \leq |z| \leq A\}, \text{ (resp. } K_{A,B}^{\circ} = \{z \in C; B^{-1} < |z| < A\}).$$

Let ε be a sufficiently small positive number. $\mathcal{O}_b(K_{A,B}(\varepsilon))(\text{resp. }\mathcal{O}_b(K_{A,B}(-\varepsilon)))$ denotes the space of all continuous functions on $K_{A,B}(\varepsilon)(\text{resp. }K_{A,B}(-\varepsilon))$ which are holomorphic in its interior, where

$$(1.2) K_{A,B}(\varepsilon) = \{ z \in C; \ B^{-1}(1+\varepsilon)^{-1} \leqslant |z| \leqslant A(1+\varepsilon) \}$$

$$(\text{resp. } K_{A,B}(-\varepsilon) = \{ z \in C; \ B^{-1}(1-\varepsilon)^{-1} \leqslant |z| \leqslant A(1-\varepsilon) \}).$$

It is clear that the space $\mathcal{O}_b(K_{A,B}(\varepsilon))(\text{resp. }\mathcal{O}_b(K_{A,B}(-\varepsilon)))$, equipped with the norm

$$(1.3) \qquad ||f||_{\varepsilon} = \sup\{|f(z)|; z \in K_{A,B}(\varepsilon)\}$$

$$(\text{resp. } ||f||_{-\varepsilon} = \sup\{|f(z)|; z \in K_{A,B}(-\varepsilon)\}),$$

is a Banach space. We define the DFS space $\mathcal{O}(K_{A,B})$ of germs of holomorphic functions on $K_{A,B}$ as follows:

$$(1.4) \qquad \mathscr{O}(K_{A,B}) = \liminf_{s \to 0} \mathscr{O}_b(K_{A,B}(\varepsilon)) .$$

The FS space $\mathcal{O}(K_{A,B}^{\circ})$ of holomorphic functions on the domain $K_{A,B}^{\circ}$ is defined as follows:

$$(1.4') \qquad \mathscr{O}(K_{A,B}^{\circ}) = \lim_{\epsilon > 0} \operatorname{proj} \mathscr{O}_{b}(K_{A,B}(-\epsilon)).$$

PROPOSITION 1.1 (Cauchy-Hedamard). Let $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$ be the Laurent expansion of $f \in \mathcal{O}(K_{A,B})$ (resp. $\mathcal{O}(K_{A,B}^{\circ})$), then we have

$$\limsup_{k \to \infty} \sqrt[k]{|a_k|} < A^{-1} , \quad \limsup_{k \to -\infty} \sqrt[k]{|a_k|} < B^{-1} ,$$

$$(\text{resp. (1.5')} \lim_{k \to \infty} \sup \sqrt[k]{|a_k|} \leqslant A^{-1} , \quad \limsup_{k \to -\infty} \sqrt[k]{|a_k|} \leqslant B^{-1}) .$$

Conversely, if a sequence a_k , $k \in \mathbb{Z}$, satisfies the conditions (1.5) (resp. (1.5')), then the series $\sum_{k=-\infty}^{\infty} a_k z^k$ converges to a unique function $f \in \mathcal{O}(K_{A,B})$ (resp. $\mathcal{O}(K_{A,B}^{\circ})$) in the topology of $\mathcal{O}(K_{A,B})$ (resp. $\mathcal{O}(K_{A,B}^{\circ})$).

PROOF. Suppose $f \in \mathcal{O}(K_{A,B})$. Then there exists $\varepsilon > 0$ such that $f \in \mathcal{O}_b(K_{A,B}(\varepsilon))$. As we have

$$a_{k} = \frac{1}{2\pi i} \oint_{|z|=c} f(z) \frac{dz}{z^{k+1}}$$

for any c with $B^{-1}(1+\varepsilon)^{-1} \leqslant c \leqslant A(1+\varepsilon)$, we have $|a_k| \le ||f||_{\varepsilon} A^{-k}(1+\varepsilon)^{-k}$ for $k \ge 0$ and $|a_k| \le ||f||_{\varepsilon} B^k (1+\varepsilon)^k$ for k < 0. Hence we obtain (1.5).

Conversely if we have (1.5), there exists $\varepsilon > 0$ and $N \ge 0$ such that

$$\sqrt[k]{|a_k|} \leqslant A^{-1}(1+2\varepsilon)^{-1}$$
 for $k \geqslant N$.

Therefore $\sum_{k=0}^{\infty} a_k z^k$ converges uniformly in the disc $\{z; |z| \leqslant A(1+\varepsilon)\}$ and define a holomorphic function there. Similarly, $\sum_{k=-\infty}^{-1} a_k z^k$ converges uniformly in $\{z; |z| \geqslant B^{-1}(1+\varepsilon)^{-1}\}$ for some $\varepsilon > 0$. Therefore $\sum_{k=-\infty}^{\infty} a_k z^k$ converges uniformly in $K_{A,B}(\varepsilon)$ for some $\varepsilon > 0$ to a function $f \in \mathcal{O}_b(K_{A,B}(\varepsilon))$. The proof for the case $\mathcal{O}(K_{A,B}^{\circ})$ is similar.

COROLLARY 1. Let $A \geqslant 1$ (resp. A > 1). Then $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k \in \mathcal{O}(K_{A,A})$ (resp. $\mathcal{O}(K_{A,A})$) is equivalent to

$$(1.7) \qquad \limsup_{k \to \pm \infty} \sqrt[|k|]{|a_k|} < A^{-1} \quad (\text{resp. } \limsup_{k \to +\infty} \sqrt[|k|]{|a_k|} \leq A^{-1}) .$$

Now we denote by $\mathcal{O}(C^*)$ the Fréchet space of all holomorphic functions on $C^* = C \setminus (0)$. If $A_1B_1 \geqslant 1$, $A_1 < A$ and $B_1 < B$, the inclusions

$$(1.8) \qquad \mathcal{O}(K_{A,B}) \subset \mathcal{O}(K_{A,B}^{\circ}) \subset \mathcal{O}(K_{A_{1},B_{1}})$$

are defined by the restriction mappings. Taking the projective limit tending $A \to \infty$ and $B \to \infty$, we have

$$\mathscr{O}(C^*) = \lim \operatorname{proj} \mathscr{O}(K_{A,B}) = \lim \operatorname{proj} \mathscr{O}(K_{A,B}^{\circ})$$
.

Therefore we have

COROLLARY 2. $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k \in \mathcal{O}(C^*)$ is equivalent to

$$\lim \sup_{k \to \pm \infty} \sqrt[|k|]{|a_k|} = 0.$$

The holomorphic function f(z) on C^* is, by definition, of exponential type if

$$(1.10) \quad \text{there exist } M > 0 \text{ and } C \geqslant 0 \text{ such that } |f(z)| \leqslant C \exp\left(M\left(|z| + \frac{1}{|z|}\right)\right).$$

 $\operatorname{Exp}(C^*)$ is the space of all such functions. The topology of $\operatorname{Exp}(C)^*$ is

the inductive limit topology of the Banach spaces $X_{\scriptscriptstyle M}$, where

$$(1.11) X_{\mathtt{M}} = \left\{ f \in \mathscr{O}(C^*); \sup_{z \in C^*} |f(z)| \exp\left(-M\left(|z| + \frac{1}{|z|}\right)\right) < \infty \right\}.$$

PROPOSITION 1.2 (Helgason [3]). Let $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$ be the Laurent expansion of $f \in \text{Exp}(C^*)$. Then we have

$$(1.12) \qquad \qquad \lim \sup_{k \to +\infty} \sqrt[|k|]{|k|! |a_k|} < \infty .$$

Conversely if a sequence a_k , $k \in \mathbb{Z}$, satisfies the condition (1.12), then the series $\sum_{k=-\infty}^{\infty} a_k z^k$ converges to a unique function $f \in \operatorname{Exp}(\mathbb{C}^*)$ in the topology of $\operatorname{Exp}(\mathbb{C}^*)$.

In order to prove Proposition 1.2, we need the following well-known fact (see for example Boas [1]).

LEMMA 1.1. Let $F(\zeta) = \sum_{n=0}^{\infty} a_n \zeta^n$ be an entire function of one complex variable ζ and $M \geqslant 0$. Then the following two conditions are equivalent:

(1.13) F is of exponential type $\leq M$, i.e., for any $\varepsilon > 0$ there exists $C_{\varepsilon} \geq 0$ such that $|F(\zeta)| \leq C_{\varepsilon} \exp((M+\varepsilon)|\zeta|)$ for $\zeta \in C$.

$$\lim \sup_{n\to\infty} \sqrt[n]{n! |a_n|} \leqslant M.$$

PROOF OF PROPOSITION 1.2. Suppose $f \in \mathcal{O}(C^*)$ satisfies (1.10). Then by (1.6) we get $|a_k| \leq Cr^{-k} \exp(M(r+1/r))$ for all r with $0 < r < \infty$. But by an elementary calculus, we have

$$\min \left\{ r^{-k} \exp \! \left(M \! \left(r \! + \! rac{1}{r}
ight) \!
ight) ; \ 0 \! < \! r \! < \! \infty
ight\} = \! \left(rac{2M}{|k| + \! \sqrt{k^2 + 4M^2}}
ight)^{|k|} \exp \left(\! \sqrt{k^2 + 4M^2}
ight) .$$

Therefore we get, by Stirling's formula,

$$\begin{split} |k|! \; |a_k| &\sim 2 \sqrt{\,\pi\,} |k|^{|k|+1/2} \exp(-|k|) |a_k| \\ &\leqslant \! 2 \sqrt{\,\pi\,} |k|^{1/2} C \Big(\! \frac{2M |k|}{|k| \! + \! \sqrt{k^2 \! + \! 4M^2}} \!\Big)^{|k|} \exp(\!\sqrt{k^2 \! + \! 4M^2} \! - \! |k|) \; \text{,} \end{split}$$

from which we can conclude (1.12).

Conversely if we have (1.12), by Lemma 1.1, $\sum_{k=0}^{\infty} a_k z^k$ and $\sum_{k=-\infty}^{-1} a_k z^k$ are of exponential type. Therefore $\sum_{k=-\infty}^{\infty} a_k z^k$ is also of exponential type. The convergence in the topology of $\text{Exp}(C^*)$ can be checked easily.

q.e.d.

At last, let us denote by $P(C^*)$ the space of all polynomials of z and z^{-1} , i.e., finite Laurent series:

(1.15)
$$P(C^*) = \left\{ \sum_{k=-N}^{N} a_k z^k; \ a_k \in C, \ N=0, 1, 2, \cdots \right\}.$$

The topology of $P(C^*)$ is defined as the inductive limit of the finite dimensional vector space $P_N(C^*) = \{\sum_{k=-N}^N a_k z^k; a_k \in C\}$.

PROPOSITION 1.3. Suppose $A_1B_1 \ge 1$, $A_1 < A$ and $B_1 < B$. Then the following chain of inclusion relations is valid:

$$(1.16) \quad P(C^*) \subset \operatorname{Exp}(C^*) \subset \mathcal{O}(C^*) \subset \mathcal{O}(K_{A,B}) \subset \mathcal{O}(A_{A,B}) \subset \mathcal{O}(K_{A,B}) \subset$$

the last inclusion taking place only if $A_1 \ge 1$ and $B_1 \ge 1$. The space $P(C^*)$ is dense in any of other spaces.

The proof is almost trivial.

$\S {f 2.}$ Analytic functionals with carrier in an annulus.

We shall denote by $\mathcal{O}'(K_{A,B})(\text{resp. }\mathcal{O}'(K_{A,B}), \mathcal{O}'(K_1), \mathcal{O}'(C), \text{Exp}'(C^*), P'(C^*))$ the dual space of $\mathcal{O}(K_{A,B})(\text{resp. }\mathcal{O}(K_{A,B}^{\circ}), \mathcal{O}(K_1), \mathcal{O}(C^*), \text{Exp}(C^*), P(C^*))$. By Proposition 1.3, we have the following inclusion relations:

$$(2.1) \quad P'(C^*) \supset \operatorname{Exp}'(C^*) \supset \mathcal{O}'(C^*) \supset \mathcal{O}'(K_{A,B}) \supset \mathcal{O}'(K_{A,B}^\circ) \supset \mathcal{O}'(K_{A_1,B_1}) \supset \mathcal{O}'(K_1) \text{ ,}$$

where $A_1B_1\geqslant 1$, $A_1< A$ and $B_1< B$ and the last inclusion takes place only if $A_1\geqslant 1$ and $B_1\geqslant 1$. We shall call an element T of $\mathcal{O}'(C^*)$ an analytic functional on C^* and an element T of $\operatorname{Exp}'(C^*)$ an entire functional on C^* (see Helgason [3]). If T is in $\mathcal{O}'(K_{A,B})$, T is said to have a carrier in $K_{A,B}$. Remark that

$$\mathcal{O}'(C^*) = \liminf \{ \mathcal{O}'(K_{A,B}); A > 0, B > 0, AB \ge 1 \}$$

= $\liminf \{ \mathcal{O}'(K_{A,B}^{\circ}); A > 0, B > 0, AB > 1 \}$.

We shall denote by \langle , \rangle the canonical inner product of duality. The Laurent coefficients c_k of $T \in P'(C^*)$ are defined as follows:

$$(2.2) c_k = \langle T_z, z^{-k} \rangle for k \in \mathbb{Z}.$$

We have clearly

(2.3)
$$\langle T, f \rangle = \sum_{k=-N}^{N} c_{-k} a_k \text{ for } f(z) = \sum_{k=-N}^{N} a_k z^k \in P(C^*)$$
.

The formal Laurent series $\sum_{k=-\infty}^{\infty} c_k z^k$ is called the (formal) Laurent

expansion of $T \in P'(C^*)$.

LEMMA 2.1. Let $T \in \mathcal{O}'(K_{A,B})(\text{resp. } \mathcal{O}'(K_{A,B}^{\circ}), \mathcal{O}'(C^*), \text{Exp}'(C^*))$ and $c_k = \langle T_z, z^{-k} \rangle, k \in \mathbb{Z}$. Then we have

(2.4)
$$\langle T, f \rangle = \sum_{k=-\infty}^{\infty} c_{-k} a_k$$

for any $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k \in \mathcal{O}(K_{A,B})$ (resp. $\mathcal{O}(K_{A,B}^{\circ})$, $\mathcal{O}(C^*)$, $\operatorname{Exp}(C^*)$).

PROOF. By Propositions 1.1 and 1.2, $f_N(z) = \sum_{k=-N}^N a_k z^k$ converges to f as $N \to \infty$ in the topology of $\mathscr{O}(K_{A,B})(\text{resp. }\mathscr{O}(K_{A,B}^\circ),\mathscr{O}(C^*), \operatorname{Exp}(C^*))$. Therefore, by (2.3), $\langle T, f \rangle = \lim_{N \to \infty} \langle T, f_N \rangle = \lim_{N \to \infty} \sum_{k=-N}^N c_{-k} a_k$. q.e.d. Suppose $K_{A_1,B_1} \cap K_{A,B} \neq \varnothing$ (resp. $K_{A_1,B_1}^\circ \cap K_{A,B} \neq \varnothing$). We define, for $g(z) = \sum_{k=-\infty}^\infty b_k z^k \in \mathscr{O}(K_{A_1,B_1})$ (resp. $\mathscr{O}(K_{A_1,B_1}^\circ)$) and $f(z) = \sum_{k=-\infty}^\infty a_k z^k \in \mathscr{O}(K_{A,B})$

(2.5)
$$(g, f) = \frac{1}{2\pi i} \oint_{|z|=c} g(z) f(z) \frac{dz}{z}$$

where $\max(B_1^{-1}, B^{-1}) \leqslant c \leqslant \min(A_1, A)$ (resp. $\max(B_1^{-1}, B^{-1}) < c < \min(A_1, A)$). Then, by Cauchy's integral theorem, (2.5) is defined independently of c and (g, f) is a bilinear form on $\mathcal{O}(K_{A_1,B_1}) \times \mathcal{O}(K_{A,B})$ (resp. $\mathcal{O}(K_{A_1,B_1}) \times \mathcal{O}(K_{A,B})$). The mapping $T_g: f \mapsto (g, f)$ is a continuous linear functional on $\mathcal{O}(K_{A,B})$. By an elementary calculus, we have

(2.6)
$$(g, f) = \left(\sum_{k=-\infty}^{\infty} b_k z^k, \sum_{k=-\infty}^{\infty} a_k z^k\right) = \sum_{k=-\infty}^{\infty} b_{-k} a_k$$

Especially the Laurent coefficients of the functional T_g are equal to those of the function g. Identifying the function g with the functional T_g we can consider

$$(2.7) \qquad \mathscr{O}(K_{A_1,B_1}) \subset \mathscr{O}'(K_{A,B}) (\text{resp. } \mathscr{O}(K_{A_1,B_1}^{\circ}) \subset \mathscr{O}'(K_{A,B})) \ .$$

Therefore we can graft the chain of inclusions (2.1) on (1.16). We get especially the following proposition:

PROPOSITION 2.1. Let A>1 and put $K_A=K_{A,A}$. Then we have the following inclusion relations:

$$(2.8) P(C^*) \subset \operatorname{Exp}(C^*) \subset \mathcal{O}(C^*) \subset \mathcal{O}(K_A) \subset \mathcal{O}(K_A^\circ) \subset \mathcal{O}(K_1)$$
$$\subset \mathcal{O}'(K_1) \subset \mathcal{O}'(K_A^\circ) \subset \mathcal{O}'(K_A) \subset \mathcal{O}'(C^*) \subset \operatorname{Exp}'(C^*) \subset P'(C^*) .$$

If $f \in P(C^*)$, then, for any formal Laurent series $g(z) = \sum_{k=-\infty}^{\infty} b_k z^k$, we can define (g, f) by (2.6). And it is clear the space $P'(C^*)$ coincides with the space of all formal Laurent series.

PROPOSITION 2.2. Let c_k be the Laurent coefficients of $T \in \mathcal{O}'(K_{A,B})$ (resp. $\mathcal{O}'(K_{A,B}^{\circ})$). Then we have

$$(2.9) T_z = \sum_{k=-\infty}^{\infty} c_k z^k$$

in the weak topology of $\mathcal{O}'(K_{A,B})$ (resp. $\mathcal{O}'(K_{A,B})$). We have also

$$(2.10) \qquad \qquad \limsup_{k \to \infty} \sqrt[k]{|c_k|} \leqslant B \;, \quad \limsup_{k \to -\infty} \sqrt[k]{|c_k|} \leqslant A$$

$$(ext{resp. } (2.10') \quad \limsup_{k o \infty} \sqrt[k]{|c_k|} \!<\! B \;, \quad \limsup_{k o \infty} \sqrt[|k|]{|c_k|} \!<\! A) \;.$$

Conversely, if a formal Laurent series satisfies the condition (2.10) (resp. (2.10')), then it converges to a functional $T \in \mathcal{O}'(K_{A,B})$ (resp. $\mathcal{O}'(K_{A,B}^{\circ})$) in the weak topology of $\mathcal{O}'(K_{A,B})$ (resp. $\mathcal{O}'(K_{A,B}^{\circ})$).

PROOF. Suppose $T \in \mathcal{O}'(K_{A,B})$, $c_k = \langle T, z^{-k} \rangle$, $k \in \mathbb{Z}$. Consider the (formal) Laurent expansion of $T: \sum_{k=-\infty}^{\infty} c_k z^k$. Then by Lemma 2.1, the sequence $\sum_{k=-N}^{N} c_k z^k$ is convergent to $T_z \in \mathcal{O}'(K_{A,B})$ in the weak topology, i.e., we have (2.9). Now by the continuity of T, for all $\varepsilon > 0$, there exists $C_{\varepsilon} \geqslant 0$ such that

$$(2.11) |\langle T, f \rangle| \leq C_{\varepsilon} ||f||_{\varepsilon} \text{for} f \in \mathcal{O}_{b}(K_{A,B}(\varepsilon)).$$

In particular, we have

$$|\,c_{\scriptscriptstyle k}\,|\!\leqslant\! C_{\scriptscriptstyle \varepsilon} \sup\{|\,z\,|^{-k};\,B^{\scriptscriptstyle -1}(1+\varepsilon)^{\scriptscriptstyle -1}\!\leqslant\!|\,z\,|\!\leqslant\! A(1+\varepsilon)\}$$
 .

Therefore we have $|c_k| \leq C_{\varepsilon} B^k (1+\varepsilon)^k$ for $k \geq 0$ and $|c_k| \leq C_{\varepsilon} A^{\lfloor k \rfloor} (1+\varepsilon)^{\lfloor k \rfloor}$ for k < 0. Hence we get (2.10).

Conversely, if (2.10) is valid, $\sum_{k=-\infty}^{\infty} c_{-k} a_k$ converges for any $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k \in \mathcal{O}(K_{A,B})$ because of (1.5). By the proof of Proposition 1.1, it is clear that $f \mapsto \sum_{k=-\infty}^{\infty} c_{-k} a_k$ is continuous on every $\mathcal{O}_b(K_{A,B}(\varepsilon))$. The proof for $\mathcal{O}'(K_{A,B}^{\circ})$ is similar and is omitted.

COROLLARY 1. Let $A \geqslant 1$ (resp. A > 1) $\cdot T_z = \sum_{k=-\infty}^{\infty} c_k z^k \in \mathcal{O}'(K_{A,A})$ (resp. $\mathcal{O}'(K_{A,A}^{\circ})$) is equivalent to

(2.12)
$$\limsup_{k \to +\infty} \sqrt[k]{|c_k|} \leqslant A \quad (\text{resp. } \limsup_{k \to +\infty} \sqrt[k]{|c_k|} \leqslant A) .$$

COROLLARY 2. $T_z = \sum_{k=-\infty}^{\infty} c_k z^k \in \mathcal{O}'(C^*)$ is equivalent to

$$\limsup_{k\to\pm\infty}\sqrt{|c_k|}<\infty.$$

PROPOSITION 2.3 (Helgason [3]). Let $c_k = \langle T_z, z^{-k} \rangle$ be the Laurent

coefficients of an entire functional $T \in \text{Exp}'(C^*)$. Then we have

$$\lim_{k\to\pm\infty}\sup_{\nu}\sqrt{|c_k|/|k|!}=0.$$

Conversely, if we have (2.14), the series $\sum_{k=-\infty}^{\infty} c_k z^k$ converges in the weak topology to an entire functional $T \in \operatorname{Exp}'(C^*)$ for which we have $\langle T_z, z^{-k} \rangle = c_k$ for $k \in \mathbb{Z}$.

Proof is similar to that of Proposition 2.2 and is omitted.

REMARK. Let $T \in \mathscr{O}'(K_{A,B})$ and $c_k = \langle T, z^{-k} \rangle$, $k \in \mathbb{Z}$. By (2.10), $\varphi_1(z) = \sum_{k=1}^{\infty} c_k z^k$ is holomorphic in $\{z; |z| < B^{-1}\}$ and $\varphi_2(z) = \sum_{k=-\infty}^{0} c_k z^k$ is holomorphic in $\{z; |z| > A\}$. Let $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k \in \mathscr{O}(K_{A,B})$. Then we have

$$\begin{split} \langle T, f \rangle &= \sum_{k=-\infty}^{-1} c_{-k} a_k + \sum_{k=0}^{\infty} c_{-k} a_k \\ &= \frac{1}{2\pi i} \oint_{|z|=B^{-1}(1+\varepsilon)^{-1}} \varphi_1(z) f(z) \frac{dz}{z} \\ &+ \frac{1}{2\pi i} \oint_{|z|=A(1+\varepsilon)} \varphi_2(z) f(z) \frac{dz}{z} \end{split}$$

with a sufficiently small $\varepsilon > 0$. If we put

$$arphi(z)\!=\!egin{cases} arphi_1\!(z) & ext{for} & |z|\!<\!B^{-1} \ -arphi_2\!(z) & ext{for} & |z|\!>\!A \; , \end{cases}$$

then $\varphi \in \mathcal{O}(C \backslash K_{A,B})$ and

(2.16)
$$\langle T, f \rangle = \frac{-1}{2\pi i} \oint_{\partial K_{A,B}(\varepsilon)} \varphi(z) f(z) \frac{dz}{z}.$$

This is nothing but Köthe's duality [5].

§ 3. Entire functions which satisfy $(\partial^2/\partial u\partial v)F(u, v) = \lambda^2 F(u, v)$. Suppose that

(3.1)
$$F(u, v) = \sum_{n,m=0}^{\infty} a_{n,m} u^n v^m$$

is an entire function of two complex variables $(u, v) \in \mathbb{C}^2$ and that F(u, v) satisfies the differential equation

$$\frac{\partial^2}{\partial u \partial v} F(u, v) = \lambda^2 F(u, v) ,$$

where $\lambda \neq 0$ is a constant complex number. Let us denote by $\mathcal{O}_{(\lambda)}(C^2)$ the space of all such functions. For example, if $AB = \lambda^2$, then $\exp(Au + Bv) \in \mathcal{O}_{(\lambda)}(C^2)$. As we have

$$\frac{\partial^{2}}{\partial u \partial v} F(u, v) = \sum_{n,m=0}^{\infty} n m a_{n,m} u^{n-1} v^{n-1}
= \sum_{n,m=0}^{\infty} (n+1)(m+1) a_{n+1,m+1} u^{n} v^{m},$$

the condition (3.2) is equivalent to the condition (3.3) on the Taylor coefficients of F:

(3.3)
$$\lambda^2 a_{n,m} = (n+1)(m+1)a_{n+1,m+1}$$
 for $n, m=0, 1, 2, \cdots$

Hence we have

$$a_{n,n} = \frac{\lambda^{2n}}{n! \ n!} a_{0,0} \qquad \text{for} \quad n = 0, 1, 2, \cdots$$

$$a_{n,n+p} = \frac{p! \lambda^{2n}}{n! \ (n+p)!} a_{0,p} \qquad \text{for} \quad n, p = 0, 1, 2, \cdots$$

$$a_{n+p,n} = \frac{p! \lambda^{2n}}{(n+p)! \ n!} a_{p,0} \qquad \text{for} \quad n, p = 0, 1, 2, \cdots$$

On the other hand, the Bessel functions are defined as follows:

(3.5)
$$J_{\nu}(z) = (z/2)^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n}(z/2)^{2n}}{n! \Gamma(\nu+n+1)}, \quad \nu \neq -1, -2, -3, \cdots$$

Therefore we have

(3.6)
$$(iz)^{-\nu}J_{\nu}(2iz) = \sum_{n=0}^{\infty} \frac{z^{2n}}{n! \Gamma(\nu+n+1)}, \quad \nu \neq -1, -2, -3, \cdots.$$

Remark the functions

$$(i\sqrt{z})^{-\nu}J_{\nu}(2i\sqrt{z}) = \sum_{n=0}^{\infty} \frac{z^n}{n! \Gamma(\nu+n+1)}, \quad \nu \neq -1, -2, -3, \cdots$$

are entire functions of z.

Using the formulas (3.4), we can sum up as follows:

(3.7)
$$\sum_{n=0}^{\infty} a_{n,n} u^n v^n = a_{0,0} \sum_{n=0}^{\infty} \lambda^{2n} \frac{(uv)^n}{n! \ n!} = a_{0,0} J_0(2i\sqrt{uv}) ,$$

(3.8)
$$\sum_{n=0}^{\infty} a_{n+p,n} u^{n+p} v^{n} = a_{p,0} u^{p} p! \sum_{n=0}^{\infty} \frac{\lambda^{2n} (uv)^{n}}{(n+p)! n!}$$

$$= a_{p,0} u^{p} p! (i\lambda \sqrt{uv})^{-p} J_{p}(2i\lambda \sqrt{uv})$$

and similarly

(3.9)
$$\sum_{n=0}^{\infty} a_{n,n+p} u^n v^{n+p} = a_{0,p} v^p p! (i \lambda \sqrt{uv})^{-p} J_p(2i \lambda \sqrt{uv}).$$

Therefore we have proved the following proposition.

PROPOSITION 3.1. If an entire function $F(u, v) = \sum_{n,m=0}^{\infty} a_{n,m} u^n v^m$ satisfies the differential equation (3.2), it takes the following form:

(3.10)
$$F(u, v) = a_{0,0}J_0(2i\lambda\sqrt{uv}) + \sum_{p=1}^{\infty} (a_{p,0}u^p + a_{0,p}v^p)p!(i\lambda\sqrt{uv})^{-p}J_p(2i\lambda\sqrt{uv}).$$

THEOREM 3.1. If f(z) and g(z) are two entire functions of one complex variable with f(0)=g(0), then there exists a unique function $F(u, v) \in \mathscr{O}_{(\lambda)}(\mathbb{C}^2)$ such that F(u, 0)=f(u) and F(0, v)=g(v).

PROOF. The uniqueness of the function F(u, v) is clear from Proposition 3.1. Put $f(z) = \sum_{p=0}^{\infty} a_{p,0} z^p$, $g(z) = \sum_{q=0}^{\infty} a_{0,q} z^q$. We have only to prove the uniform convergence of the right hand term of (3.10) on every compact set of C^2 . Now we have, by the definition formula (3.5), the following majoration (see Lemma 1 of [2]):

$$|J_{\nu}(z)| \leqslant \frac{|z/2|^{\nu}}{\Gamma(\nu+1)} \exp(|z/2|^2) \ .$$

Therefore

$$\sum_{p=1}^{\infty} (a_{p,0}u^p + a_{0,p}v^p)p!(i\lambda\sqrt{uv})^{-p}J_p(2i\lambda\sqrt{uv})$$
 $\leq \sum_{p=1}^{\infty} (|a_{p,0}||u|^p + |a_{0,p}||v|^p)\exp(|\lambda|^2|uv|)$,

which proves the theorem.

q.e.d.

COROLLARY. To give a function $F \in \mathcal{O}_{(\lambda)}(\mathbb{C}^2)$ is equivalent to give a series $a_{0,0}$, $a_{p,0}$, $a_{0,q}$ p, $q = 1, 2, 3, \cdots$ such that

(3.12)
$$\limsup_{p\to\infty} \sqrt[p]{|a_{p,0}|} = 0 , \quad \limsup_{q\to\infty} \sqrt{|a_{0,q}|} = 0 .$$

$\S 4$. The transformation \mathscr{F}_{λ} of analytic functionals.

DEFINITION 4.1. As the function of z, $\exp(\lambda(uz+v/z))$ is in $\exp(C^*)$ for all $(u, v) \in C^2$, we can put for $T \in \exp(C^*)$,

(4.1)
$$F_{\lambda}(u, v) = \left\langle T_{z}, \exp\left(\lambda \left(uz + \frac{v}{z}\right)\right)\right\rangle$$
,

where λ is a fixed complex number. We write by \mathscr{F}_{λ} the transformation $T \mapsto F_{\lambda}$.

Remark that the mapping $z \mapsto 1/z$ is an analytic diffeomorphism of C^* onto itself. For $T_z \in \operatorname{Exp}'(C^*)$, we define $T_{1/z} \in \operatorname{Exp}'(C^*)$ by

$$\langle T_{1/z}, f(z) \rangle = \langle T_z, f(1/z) \rangle.$$

Then we have

$$\mathscr{F}_{\lambda}(T_z)(u, v) = \mathscr{F}_{\lambda}(T_{1/z})(v, u).$$

THEOREM 4.1. Suppose $\lambda \neq 0$. Let $c_k = \langle T_z, z^{-k} \rangle$ be the Laurent coefficients of $T \in \operatorname{Exp}'(C^*)$. Then the function F_λ defined by (4.1) is expressed as follows:

(4.3)
$$F_{\lambda}(u, v) = c_0 J_0(2i\lambda \sqrt{uv}) + \sum_{p=1}^{\infty} (c_{-p}u^p + c_p v^p)(i\sqrt{uv})^{-p} J_p(2i\lambda \sqrt{uv})$$
.

The transformation \mathscr{F}_{λ} maps bijectively $\operatorname{Exp}'(C^*)$ onto $\mathscr{O}_{(\lambda)}(C^2)$:

$$(4.4) \mathscr{F}_{\lambda}. \operatorname{Exp}'(C^*) \xrightarrow{\sim} \mathscr{O}_{(\lambda)}(C^2) .$$

PROOF. Because $f(u, v) = \exp(\lambda(uz + v/z))$ satisfies the differential equation (3.2) and that the functional T commutes with $\partial^2/\partial u\partial v$, the function F belongs to $\mathcal{O}_{(\lambda)}(C^2)$.

From the formula

$$\exp\left(\lambda\left(uz+\frac{v}{z}\right)\right) = \sum_{n=0}^{\infty} \frac{\lambda^{n}u^{n}z^{n}}{n!} \sum_{m=0}^{\infty} \frac{\lambda^{m}v^{m}z^{-m}}{m!} = \sum_{n,m=0}^{\infty} \frac{u^{n}v^{m}}{n!m!} \lambda^{n+m}z^{n-m} ,$$

we get

$$F_{\lambda}(u, v) = \langle T_z, \exp\left(\lambda\left(uz + \frac{v}{z}\right)\right) \rangle = \sum_{n,m=0}^{\infty} \frac{\lambda^{n+m}}{n! m!} c_{m-n} u^n v^m$$

Therefore the Taylor coefficients $a_{n,m}$ of F_{λ} are given by

$$a_{n,m} = \frac{\lambda^{n+m}}{n! \, m!} c_{m-n} .$$

In particular, we have

(4.5)
$$a_{0,0} = c_0, a_{p,0} = \frac{\lambda^p}{p!} c_{-p} \text{ and } a_{0,p} = \frac{\lambda^p}{p!} c_p \text{ for } p = 1, 2, \cdots$$

Replacing $a_{0,0}$, $a_{p,0}$ and $a_{0,p}$ in the formula (3.10) by (4.5), we obtain (4.3).

If $F_{\lambda}=0$, then, the Taylor coefficients of F_{λ} being 0, the Laurent coefficients of T all vanish by (4.5). Therefore T=0, which proves that \mathscr{F}_{λ} is one-to-one. The surjectivity of \mathscr{F}_{λ} results from Corollary to Theorem 3.1 and Proposition 2.3.

COROLLARY.

$$(4.6) \hspace{1cm} \mathscr{F}_{\lambda}\!(z^{k})\!(u,\,v)\!=\! \begin{cases} J_{0}\!(2i\lambda\sqrt{uv}) & \text{for} \quad k\!=\!0 \\ v^{k}\!(i\sqrt{uv})^{-k}\!J_{k}\!(2i\lambda\sqrt{uv}) & \text{for} \quad k\!>\!0 \\ u^{\lfloor k\rfloor}\!(i\sqrt{uv})^{-\lfloor k\rfloor}\!J_{\lfloor k\rfloor}\!(2i\lambda\sqrt{uv}) & \text{for} \quad k\!<\!0 \;. \end{cases}$$

LEMMA 4.1. Suppose $AB \geqslant 1$ (resp. AB > 1). Let $T \in \mathcal{O}'(K_{A,B})$ (resp. $\mathcal{O}'(K_{A,B}^{\circ})$). The function $F_{\lambda}(u, v)$ defined by (4.1) satisfies the following condition:

(4.7) For any $\varepsilon > 0$, there exists $C_{\varepsilon} \ge 0$ such that

$$|F_{\lambda}(u, v)| \leqslant C_{\varepsilon} \exp(|\lambda|(1+\varepsilon)(A|u|+B|v|))$$
 (resp. (4.7'). There exist $\varepsilon > 0$ and $C \geqslant 0$ such that $|F_{\lambda}(u, v)| \leqslant C \exp(|\lambda|(1-\varepsilon)(A|u|+B|v|))$.

PROOF. By the continuity of $T \in \mathcal{O}'(K_{A,B})$, for any $\varepsilon > 0$, we can find $C_{\varepsilon} \geqslant 0$ such that

$$|F_{\lambda}(u, v)| \leqslant C_{\varepsilon} \sup \left\{ \exp \left(\operatorname{Re} \lambda \left(uz + \frac{v}{z} \right) \right); B^{-1} (1+\varepsilon)^{-1} \leqslant |z| \leqslant A(1+\varepsilon) \right\}$$
 $\leqslant C_{\varepsilon} \exp(|\lambda| (1+\varepsilon)(A|u|+B|v|)) .$

The proof of (4.7') is similar.

q.e.d.

DEFINITION 4.2. we define for $A \geqslant 0$ and $B \geqslant 0$

(4.8) $\operatorname{Exp}(C^2; (A, B)) = \{ F \in \mathcal{O}(C^2); \text{ for any } \varepsilon > 0 \text{ there exists } C_{\varepsilon} \geqslant 0 \text{ such that } |F(u, v)| \leqslant C_{\varepsilon} \exp((A + \varepsilon) |u| + (B + \varepsilon) |v|) \}$.

We define for A>0 and B>0

(4.8') $\operatorname{Exp}(C^2; (A, B)^\circ) = \{ F \in \mathcal{O}(C^2); \text{ there exist } \varepsilon > 0 \text{ and } C \geqslant 0 \text{ such that } |F(u, v)| \leqslant C \exp((A - \varepsilon)|u| + (B - \varepsilon)|v|) \}$.

We put also

(4.9)
$$\operatorname{Exp}(C^{2}) = \lim \operatorname{ind}\{\operatorname{Exp}(C^{2}; (A, B)); A \geqslant 0, B \geqslant 0\}$$

$$= \lim \operatorname{ind}\{\operatorname{Exp}(C^{2}; (A, B)^{\circ}); A \geqslant 0, B \geqslant 0\} .$$

If $F \in \text{Exp}(\mathbb{C}^2)$, we say that F is of exponential type. If $F \in \text{Exp}(\mathbb{C}^2; (A, B))$, we say that F is of exponential type (A, B). We put further

$$(4.10) \qquad \operatorname{Exp}_{(\lambda)}(C^2; (A, B)) = \mathcal{O}_{(\lambda)}(C^2) \cap \operatorname{Exp}(C^2; (A, B)),$$

$$(4.10') \qquad \operatorname{Exp}_{(\lambda)}(C^2; (A, B)^{\circ}) = \mathcal{O}_{(\lambda)}(C^2) \cap \operatorname{Exp}(C^2; (A, B)^{\circ}),$$

$$(4.11) \qquad \operatorname{Exp}_{(\lambda)}(C^2) = \mathcal{O}_{(\lambda)}(C^2) \cap \operatorname{Exp}(C^2) .$$

THEOREM 4.2. Suppose $AB \geqslant 1$ (resp. AB > 1). The transformation \mathscr{F}_{λ} : $T \mapsto F_{\lambda}$, defined by (4.1), establishes a linear isomorphism of $\mathscr{O}'(K_{A,B})$ onto $\operatorname{Exp}_{(\lambda)}(C^2; (|\lambda|A, |\lambda|B))$ (resp. of $\mathscr{O}'(K_{A,B})$ onto $\operatorname{Exp}_{(\lambda)}(C^2; (|\lambda|A, |\lambda|B))$):

$$(4.12) \mathscr{F}_{\lambda}: \mathcal{O}'(K_{A,B}) \xrightarrow{\sim} \operatorname{Exp}_{(\lambda)}(C^2; (|\lambda|A, |\lambda|B)) (AB \geqslant 1).$$

$$(4.12') \qquad \qquad \mathscr{F}_{\lambda}: \mathscr{O}'(K_{A,B}^{\circ}) \xrightarrow{\sim} \operatorname{Exp}_{(\lambda)}(C^{2}; (|\lambda|A, |\lambda|B)^{\circ}) \qquad (AB>1).$$

PROOF. We prove only the surjectivity in the case of $\mathcal{O}'(K_{A,B})$. Suppose $F \in \operatorname{Exp}_{(2)}(C^2; (|\lambda|A, |\lambda|B))$ is given. We put $F(u, v) = \sum_{n,m=0}^{\infty} a_{n,m} u^n v^m$. Because F is of exponential type $(|\lambda|A, |\lambda|B), F(u, 0)$ (resp. F(0, v)) satisfies the condition (1.13) of Lemma 1.1 with $M = |\lambda|A$ (resp. $M = |\lambda|B$). By Lemma 1.1, we have

$$(4.13) \qquad \limsup_{n\to\infty} \sqrt[n]{n! |a_{n,0}|} \leqslant |\lambda| A , \quad \limsup_{n\to\infty} \sqrt[n]{n! |a_{0,n}|} \leqslant |\lambda| B .$$

Therefore, if we define c_p , $p \in \mathbb{Z}$ by (4.5), c_p 's satisfy

$$(4.14) \qquad \qquad \limsup_{p \to -\infty} \sqrt[|p|]{|c_p|} \leqslant B , \quad \limsup_{p \to \infty} \sqrt[p]{|c_{-p}|} \leqslant A .$$

By Proposition 2.2, $T_z = \sum_{p=-\infty}^{\infty} c_p z^p$ belongs to $\mathcal{O}'(K_{A,B})$. It is clear by Theorem 4.1 that $\mathscr{F}_{\lambda}T = F$, which proves the surjectivity of the transformation \mathscr{F}_{λ} .

COROLLARY 1.

$$(4.15) \mathscr{F}_{\lambda}: \mathscr{O}'(K_{A,A}) \xrightarrow{\sim} \operatorname{Exp}_{(\lambda)}(C^2; (|\lambda|A, |\lambda|A)) if A \geqslant 1,$$

$$(4.15') \qquad \mathscr{F}_{\lambda}: \mathscr{O}'(K_{A,A}^{\circ}) \xrightarrow{\sim} \operatorname{Exp}_{(\lambda)}(C^{2}; (|\lambda|A, |\lambda|A)^{\circ}) \qquad if \quad A > 1.$$

COROLLARY 2.

$$\mathscr{F}_{\lambda}: \mathscr{O}'(C^*) \xrightarrow{} \operatorname{Exp}_{(\lambda)}(C^2) .$$

§ 5. The transformation \mathcal{F}_{λ} of analytic functions.

Now we consider the transformation \mathscr{F}_{λ} for an analytic function $f \in \mathscr{O}(K_{A,B}^{\circ})$, AB > 1. λ denotes always a fixed nonzero complex number. By the definition

$$(5.1) F_{\lambda}(u, v) = \mathscr{F}_{\lambda}(f)(u, v) = \frac{1}{2\pi i} \oint_{|z|=c} f(z) \exp\left(\lambda \left(uz + \frac{v}{z}\right)\right) \frac{dz}{z}$$

for any c with $B^{-1} < c < A$. Therefore for any sufficiently small $\varepsilon > 0$, we have

$$|F_{\lambda}(u, v)| \leq ||f||_{-\epsilon} \exp\left(|\lambda|\left(c|u| + \frac{|v|}{c}\right)\right)$$

for any c with $B^{-1}(1-\varepsilon)^{-1} \le c \le A(1-\varepsilon)$. Now the function of c, $0 < c < \infty$, c|u|+|v|/c takes its minimum value $2\sqrt{|uv|}$ at $c=\sqrt{(|v|/|u|)}$, provided $|uv| \ne 0$.

Therefore if we put $C_{\varepsilon} = ||f||_{-\varepsilon}$, the function $F(u, v) = F_{\lambda}(u, v)$ satisfies the majoration:

$$(5.2) \begin{cases} |F(u,v)| \leqslant C_{\varepsilon} \exp\left(|\lambda| \left(\frac{|u|}{B(1-\varepsilon)} + B(1-\varepsilon)|v|\right)\right) & \text{if } \sqrt{|v|} \leqslant \frac{\sqrt{|u|}}{B(1-\varepsilon)} \\ |F(u,v)| \leqslant C_{\varepsilon} \exp\left(|\lambda| 2\sqrt{|uv|}\right) & \text{if } \frac{\sqrt{|u|}}{B(1-\varepsilon)} \leqslant \sqrt{|v|} \leqslant A(1-\varepsilon)\sqrt{|u|} \\ |F(u,v)| \leqslant C_{\varepsilon} \exp\left(|\lambda| \left(A(1-\varepsilon)|u| + \frac{|v|}{A(1-\varepsilon)}\right)\right) & \text{if } A(1-\varepsilon)\sqrt{|u|} \leqslant \sqrt{|v|} \ . \end{cases}$$

DEFINITION 5.1. If AB>1, we denote by $\exp_{(\lambda)}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1}))$ the space of all $F \in \mathcal{O}_{(\lambda)}(C^2)$ for which, for any $\varepsilon>0$ there exists $C_{\varepsilon} \geqslant 0$ such that the majoration (5.2) is valid. Remark that

(5.3)
$$\operatorname{Exp}_{(\lambda)}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1})) \subset \widetilde{\operatorname{Exp}_{(\lambda)}}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1}))$$
,

because we have $A^{-1}(1-\varepsilon)^{-1} < B(1-\varepsilon)$ and $B^{-1}(1-\varepsilon)^{-1} < A(1-\varepsilon)$ for sufficiently small $\varepsilon > 0$.

If $AB \geqslant 1$, we denote by $\exp_{(\lambda)}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1})^{\circ})$ the space of all $F \in \mathcal{O}_{(\lambda)}(C^2)$ for which, for some $\varepsilon > 0$ and $C \geqslant 0$ the majoration (5.2') is

valid:

$$(5.2') \begin{cases} |F(u,v)| \leqslant C \exp\left(|\lambda| \left(\frac{|u|}{B(1+\varepsilon)} + B(1+\varepsilon)|v|\right)\right) & \text{if} \quad \sqrt{|v|} \leqslant \frac{\sqrt{|u|}}{B(1+\varepsilon)} \\ |F(u,v)| \leqslant C \exp(|\lambda| 2\sqrt{|uv|}) & \text{if} \quad \frac{\sqrt{|u|}}{B(1+\varepsilon)} \leqslant \sqrt{|v|} \leqslant A(1+\varepsilon)\sqrt{|u|} \\ |F(u,v)| \leqslant C \exp\left(|\lambda| \left(A(1+\varepsilon)|u| + \frac{|v|}{A(1+\varepsilon)}\right)\right) & \text{if} \quad A(1+\varepsilon)\sqrt{|u|} \leqslant \sqrt{|v|} \end{cases}$$
 In this case we have

In this case we have

(5.3')
$$\operatorname{Exp}_{(2)}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1})^{\circ}) \subset \widetilde{\operatorname{Exp}}_{(2)}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1})^{\circ}),$$

because we have $A^{-1}(1+\varepsilon)^{-1} \leqslant B(1+\varepsilon)$ and $B^{-1}(1+\varepsilon)^{-1} \leqslant A(1+\varepsilon)$ for any $\varepsilon > 0$.

Finally we denote by $\widetilde{\mathrm{Exp}}_{(\lambda)}(C^2;(0,0))$ the space of all $F\in \mathcal{O}_{(\lambda)}(C^2)$ for which, for any $\varepsilon > 0$ there exists $C_{\varepsilon} \ge 0$ such that the majoration (5.4) is valid:

$$(5.4) \begin{cases} |F(u,v)| \leqslant C_{\varepsilon} \exp(\varepsilon |u| + \varepsilon^{-1} |v|) & \text{if } \sqrt{|v|} \leqslant \varepsilon \sqrt{|u|}, \\ |F(u,v)| \leqslant C_{\varepsilon} \exp(2\sqrt{|uv|}) & \text{if } \varepsilon \sqrt{|u|} < \sqrt{|v|} < \varepsilon^{-1} \sqrt{|u|}, \\ |F(u,v)| \leqslant C_{\varepsilon} \exp(\varepsilon^{-1} |u| + \varepsilon |v|) & \text{if } \varepsilon^{-1} \sqrt{|u|} \leqslant \sqrt{|v|}. \end{cases}$$

In this case we have

(5.5)
$$\operatorname{Exp}_{(2)}(C^2; (0, 0)) \subset \widetilde{\operatorname{Exp}}_{(2)}(C^2; (0, 0))$$
.

THEOREM 5.1. Suppose AB > 1 (resp. $AB \ge 1$). The transformation F1 establishes a linear isomorphism:

$$(5.6) \qquad \mathscr{F}_{\lambda}: \mathscr{O}(K_{A,B}^{\circ}) \xrightarrow{\sim} \widetilde{\operatorname{Exp}}_{(\lambda)}(C^{2}; (|\lambda|B^{-1}, |\lambda|A^{-1}))$$

$$(\operatorname{resp.} (5.6') \mathscr{F}_{\lambda}: \mathscr{O}(K_{A,B}) \xrightarrow{\sim} \widetilde{\operatorname{Exp}}_{(\lambda)}(C^{2}; (|\lambda|B^{-1}, |\lambda|A^{-1})^{\circ})) .$$

PROOF. We have only to prove the surjectivity. If

$$F \in \widetilde{\operatorname{Exp}}_{(2)}(C^2; (|\lambda|B^{-1}, |\lambda|A^{-1}))$$
,

then F(u, 0)(resp. F(0, v)) is of exponential type $\leq |\lambda| B^{-1}(\text{resp. } \leq |\lambda| A^{-1})$ (see Lemma 1.1). Therefore we can argue as in the proof of Theorem 4.2 using Proposition 1.1. q.e.d.

COROLLARY 1.

$$(5.7) \mathscr{F}_{\lambda}: \mathscr{O}(K_{A,A}^{\circ}) \xrightarrow{\sim} \widetilde{\operatorname{Exp}}_{(\lambda)}(C^{2}; (|\lambda|A^{-1}, |\lambda|A^{-1})) if A>1.$$

$$(5.7') \mathscr{F}_{\lambda}: \mathscr{O}(K_{A,A}) \xrightarrow{\sim} \widetilde{\operatorname{Exp}}_{(\lambda)}(C^{2}; (|\lambda|A^{-1}, |\lambda|A^{-1})^{\circ}) if A \geqslant 1.$$

COROLLARY 2.

$$\mathscr{F}_{\lambda}: \mathscr{O}(C^*) \xrightarrow{} \widetilde{\operatorname{Exp}}_{(\lambda)}(C^2; (0, 0)) .$$

Now we are going to determine the \mathcal{F}_{λ} -image of $\text{Exp}(C^*)$. Suppose $F \in \text{Exp}(C^*)$ satisfies (1.10). Then by (5.1), we have

$$|F_{\lambda}(u, v)| = |\mathscr{F}_{\lambda}(f)(u, v)|$$
 $\leq C \exp\left(M\left(c + \frac{1}{c}\right)\right) \exp\left(|\lambda|\left(c|u| + \frac{|v|}{c}\right)\right)$
 $= C \exp\left((M + |\lambda| |u|)c + (M + |\lambda| |v|)\frac{1}{c}\right)$

for every c with $0 < c < \infty$. Therefore the function $F(u, v) = F_{\lambda}(u, v)$ satisfies the following estimate:

$$|F(u,v)| \leqslant C \exp(2\sqrt{|M+|\lambda||u|)(M+|\lambda||v|)}).$$

DEFINITION 5.2. Let us denote by $\widetilde{\operatorname{Exp}}_{(\lambda)}(C^2; 1/2)$ the subspace of $\mathcal{O}_{(\lambda)}(C^2)$ whose elements satisfy (5.9) with some M>0 and $C\geqslant 0$.

THEOREM 5.2. The transformation \mathscr{F}_{λ} establishes a linear isomorphism of the space $\operatorname{Exp}(C^*)$ onto the space $\operatorname{Exp}_{(\lambda)}(C^2; 1/2)$:

(5.10)
$$\mathscr{F}_{\lambda}: \operatorname{Exp}(C^*) \xrightarrow{\sim} \widetilde{\operatorname{Exp}}_{(\lambda)}(C^2; 1/2)$$
.

PROOF. We have only to prove the surjectivity. Suppose $F_{\lambda}(u, v)$ satisfies (5.9). Then, in particular,

$$|F_{\lambda}(u,0)| \leqslant C \exp(2\sqrt{M(M+|\lambda||u|)}) \leqslant Ce^{2M} \exp(2\sqrt{M|\lambda||u|})$$
.

If we write $F_{\lambda}(u, v) = \sum_{n,m=0}^{\infty} a_{n,m} u^n v^m$, then

$$|a_{n,0}| \leqslant Ce^{2M}r^{-n} \exp(2\sqrt{M|\lambda|r})$$

for every r>0. Therefore, putting $r=n^2/M|\lambda|$, we get

$$|a_{n,0}| \le Ce^{2M} \left(\frac{n^2}{|M|\lambda|}\right)^{-n} \exp(2n)$$
.

Similarly we have

$$|a_{\scriptscriptstyle 0,m}| \leqslant Ce^{\scriptscriptstyle 2M} \left(\frac{m^{\scriptscriptstyle 2}}{M |\lambda|}\right)^{\scriptscriptstyle -m} \exp(2m)$$
.

We put $c_{-p}=(p!/\lambda^p)a_{p,0}$ and $c_p=(p!/\lambda^p)a_{0,p}$ by (4.5). Now we have

$$\begin{split} & \limsup_{p \to \infty} \sqrt[p]{p! \, |c_{-p}|} = |\lambda|^{-1} \limsup_{p \to \infty} \sqrt[p]{(p!)^2 |a_{p,0}|} \\ & \leqslant |\lambda|^{-1} \limsup_{p \to \infty} \left\{ \left(2 \sqrt{\pi} p^{p+1/2} e^{-p} \right)^2 \! C e^{2M} \! \left(\frac{p^2}{M |\lambda|} \right)^{-p} \! \exp(2p) \right\}^{1/p} \\ & = |\lambda|^{-1} \limsup_{p \to \infty} (2 \sqrt{\pi})^{2/p} p^{1/p} (C e^{2M})^{1/p} \! \left(\frac{1}{M |\lambda|} \right)^{-1} \! \leqslant \! |\lambda|^{-1} \! M |\lambda| \! = \! M \; , \end{split}$$

where we used Stirling's formula. Therefore by Lemma 1.1,

$$\left|\sum_{p=1}^{\infty} c_{-p} z^{-p}\right| \leqslant C_1 \exp(2M|z|^{-1}) \quad \text{for} \quad z \neq 0 \ .$$

Similarly we have

$$\left|\sum_{p=0}^{\infty} c_p z^p\right| \leqslant C_2 \exp(2M|z|).$$

Therefore we have

$$\left| \sum_{p=-\infty}^{\infty} c_p z^p \right| \leqslant C_1 \exp(2M|z|^{-1}) + C_2 \exp(2M|z|)$$

$$\leqslant C \exp(2M(|z|^{-1} + |z|))$$

with some constants C_1 , C_2 and $C \ge 0$, which proves the holomorphic function on C^* , $\sum_{p=-\infty}^{\infty} c_p z^p$, is of exponential type. It is clear by (4.5) that the \mathscr{F}_{λ} -image of the function $\sum_{p=-\infty}^{\infty} c_p z^p$ is equal to F_{λ} . q.e.d.

§ 6. The properties of the functions in $\mathcal{O}_{(\lambda)}(\mathbb{C}^2)$.

Looking at the results of §§4 and 5, we can give some precisions to Theorem 3.1.

THEOREM 6.1. Suppose $F(u, v) \in \mathcal{O}_{(\lambda)}(\mathbb{C}^2)$.

- (i) If F(u, 0) and F(0, v) are of exponential type, F(u, v) is of exponential type.
- (ii) Suppose $AB \geqslant 1$. If F(u, 0) is of exponential type $\leqslant |\lambda| A$ and F(0, v) is of exponential type $\leqslant |\lambda| B$, F(u, v) is of exponential type $(|\lambda| A, |\lambda| B)$.
- (iii) Suppose AB < 1. If F(u, 0) is of exponential type $\leq |\lambda|A$ and F(0, v) is of exponential type $\leq |\lambda|B$, F(u, v) is in the space

$$\widetilde{\operatorname{Exp}}_{(\lambda)}(C^2; (|\lambda|A, |\lambda|B))$$
,

(which is seemingly strictly larger than the space $\text{Exp}_{(\lambda)}(C^2; (|\lambda|A, |\lambda|B))$).

- (iv) If F(u, 0) and F(0, v) are of minimal exponential type, then F(u, v) belongs to $\widetilde{\operatorname{Exp}}_{(1)}(C^2; (0, 0))$.
- (v) If F(u, 0) and F(0, v) are of order 1/2, then F(u, v) belongs to the space $\exp_{(\lambda)}(C^2; 1/2)$.
 - (vi) If F(u, 0) = F(0, v) = a(constant), then

(6.1)
$$F(u, v) = aJ_0(2i\lambda\sqrt{uv}).$$

§ 7. The transformation \mathscr{P}_{λ} .

Now we consider the unit circle $S^1 = \{(x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 = 1\}$. We shall denote by $\mathscr{A}(S^1)$ the space of all real-analytic functions on S^1 . Putting $z = x_1 + ix_2$, we have

(7.1)
$$S^1 = \{(x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 = 1\} = \{z \in \mathbb{C}; |z| = 1\} = K_{1,1}$$

The spaces $\mathscr{M}(S^1)$ and $\mathscr{O}(K_{1,1})$ are equal. We shall denote by $\mathscr{M}(S^1)$ the space of all hyperfunctions on S^1 , that is, by definition, $\mathscr{M}(S^1) = \mathscr{M}'(S^1) = \mathscr{O}'(K_{1,1})$. If we fix $(\zeta_1, \zeta_2) \in C^2$, the function $\exp(i\lambda(\zeta_1x_1 + \zeta_2x_2))$ is real-analytic on S^1 . We shall define, for $T \in \mathscr{M}(S^1)$,

(7.2)
$$G_{\lambda}(\zeta_1, \zeta_2) = \langle T_{x_1, x_2}, \exp(i\lambda(\zeta_1 x_1 + \zeta_2 x_2)) \rangle$$
.

The transformation $T \mapsto G_{\lambda}$ will be denoted by \mathscr{S}_{λ} . As we have $z\overline{z} = 1$ on $K_{1,1}$,

(7.3)
$$x_1 = \frac{z + z^{-1}}{2}, \quad x_2 = \frac{z - z^{-1}}{2i} \quad \text{on} \quad S^1.$$

Therefore we have

(7.4)
$$G_{\lambda}(\zeta_1, \zeta_2) = \langle T_z, \exp\left(i\lambda\left(\zeta_1\frac{z+z^{-1}}{2} + \zeta_2\frac{z-z^{-1}}{2i}\right)\right)$$
$$= \mathscr{F}_{\lambda}(T)(i(\zeta_1 - i\zeta_2)/2, i(\zeta_1 + i\zeta_2)/2).$$

By this formula the transformation \mathscr{S}_{λ} can be extended to $\operatorname{Exp}'(C^*)$, consequently to any of its subspaces.

Let us denote by $\widetilde{S}^{_1}$ the complexified circle, that is,

$$\widetilde{S}^{1} = \{(z_{1}, z_{2}) \in C^{2}; z_{1}^{2} + z_{2}^{2} = 1\}.$$

It is clear that $\widetilde{S}^{\scriptscriptstyle 1}$ and C^* are complex-analytically diffeomorphic by

 $z_1+iz_2=z$. Therefore the spaces $\mathcal{O}(C^*)$, $\operatorname{Exp}(C^*)$ and others can be considered to be the spaces of functions on the complexified circle \widetilde{S}^1 . We may note $\mathcal{O}(\widetilde{S}^1)=\mathcal{O}(C^*)$, $\operatorname{Exp}(\widetilde{S}^1)=\operatorname{Exp}(C^*)$ etc.

THEOREM 7.1. Suppose $c_k = \langle T_z, z^{-k} \rangle$, $k \in \mathbb{Z}$, are the Laurent coefficients of $T \in \operatorname{Exp}'(\widetilde{S}^1)$. Then the function $G_{\lambda}(\zeta_1, \zeta_2)$ defined by (7.2) or (7.4) can be expressed as follows:

$$(7.6) G_{\lambda}(\zeta_{1}, \zeta_{2}) = c_{0}J_{0}(\lambda\sqrt{\zeta_{1}^{2} + \zeta_{2}^{2}})$$

$$+ \sum_{p=1}^{\infty} i^{p}(c_{-p}(\zeta_{1} - i\zeta_{2})^{p} + c_{p}(\zeta_{1} + i\zeta_{2})^{p})(\zeta_{1}^{2} + \zeta_{2}^{2})^{-p/2}J_{p}(\lambda\sqrt{\zeta_{1}^{2} + \zeta_{2}^{2}}) .$$

PROOF. Let us consider the following change of variables:

$$u=i(\zeta_{\scriptscriptstyle 1}-i\zeta_{\scriptscriptstyle 2})/2$$
 , $v=i(\zeta_{\scriptscriptstyle 1}+i\zeta_{\scriptscriptstyle 2})/2$,

$$\zeta_1 = -i(u+v) , \quad \zeta_2 = u-v .$$

Then we have

$$(7.9) -2i\sqrt{uv} = \sqrt{\zeta_1^2 + \zeta_2^2} .$$

Therefore the formula (7.6) is derived from (4.5) of Theorem 4.1, if we take into account the formula (7.4).

COROLLARY. (Hashizume-Kowata-Minemura-Okamoto [2]). Let $G_{\lambda}(\xi_1, \xi_2)$ denote the restriction of the function $G_{\lambda}(\zeta_1, \zeta_2)$ on \mathbb{R}^2 . If we put $\xi_1 + i\xi_2 = re^{i\varphi}$, $r \geqslant 0$, $\varphi \in \mathbb{R}$, we have

(7.10)
$$G_{\lambda}(re^{i\varphi}) = c_0 J_0(\lambda r) + \sum_{p=1}^{\infty} i^p (c_{-p}e^{-ip\varphi} + c_p e^{ip\varphi}) J_p(\lambda r)$$
.

(cf. Lemma 2 of [2], where the formulas (7.6) and (7.10) are given even in the higher dimensional case. See also [8].)

THEOREM 7.2 (Helgason [3]). The transformation \mathscr{S}_{λ} is a linear isomorphism of $\operatorname{Exp}'(\tilde{S}^1)$ onto the space $\mathscr{O}_{\lambda}(C^2)$ of the entire functions G on C^2 which satisfy the differential equation

$$\left(\frac{\partial^2}{\partial \zeta_1^2} + \frac{\partial^2}{\partial \zeta_2^2} + \lambda^2\right) G(\zeta_1, \zeta_2) = 0.$$

PROOF. Under the change of variables (7.7) and (7.8), we have

$$\frac{\partial^2}{\partial \zeta_1^2} + \frac{\partial^2}{\partial \zeta_2^2} = -\frac{\partial^2}{\partial u \partial v} .$$

Therefore the theorem is a reformulation of Theorem 4.1. q.e.d.

REMARK. Let us denote by $C_{\lambda}^{\infty}(\mathbf{R}^2)$ the space of C^{∞} functions g on \mathbf{R}^2 satisfying the differential equation

$$\left(rac{\partial^2}{\partial \xi_1^2}\!+\!rac{\partial^2}{\partial \xi_2^2}\!+\!\lambda^2
ight)\!g(\xi_1,\,\xi_2)\!=\!0$$
 .

Now the Laplacian is an elliptic differential operator with constant coefficients, the restriction $\mathcal{O}_{\lambda}(C^2) \to C_{\lambda}^{\infty}(R^2)$ is bijective. Therefore we can say the transformation \mathscr{O}_{λ} establishes a linear isomorphism of $\operatorname{Exp}'(\tilde{S}^1)$ onto $C_{\lambda}^{\infty}(R^2)$. The space $\widetilde{\mathscr{O}}(\tilde{S}^1)$ defined by [2] is nothing but the space $\operatorname{Exp}'(\tilde{S}^1)$ of entire functionals (Helagason [3]).

The \mathscr{T}_{λ} -images of subspaces of $\operatorname{Exp}'(\widetilde{S}^1)$ can be described by the simple transcription of the results on the transformation \mathscr{F}_{λ} . For example, we have

THEOREM 7.3. (i) The function $G \in \mathcal{O}_{\lambda}(C^2)$ is in the \mathscr{S}_{λ} -image of $\mathscr{O}'(\widetilde{S}^1)$ if and only if the function G is of exponential type.

(ii) The function $G \in \mathcal{O}_{\lambda}(C^2)$ is in the \mathscr{P}_{λ} -image of the space of hyperfunctions $\mathscr{B}(S^1)$, if and only if, for any $\varepsilon > 0$ there exists $C_{\varepsilon} \geqslant 0$ such that

$$|G(\xi_1,\,\xi_2)|\!\leqslant\! C_{arepsilon}\exp\left(\lambda(1\!+\!arepsilon)\!\left(rac{|\zeta_1\!-\!i\zeta_2|}{2}\!+\!rac{|\zeta_1\!+\!i\zeta_2|}{2}
ight)
ight)\,.$$

References

- [1] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
- [2] M. HASHIZUME, A. KOWATA, K. MINEMURA and K. OKAMOTO, An integral representation of an eigenfunction of the Laplacian on the Euclidean space, Hiroshima Math. J., 2 (1972), 535-545.
- [3] S. Helgason, Eigenspaces of the Laplacian; Integral Representations and Irreducibility, J. Functional Analysis, 17 (1974), 328-353.
- [4] C. O. KISELMAN, On entire functions of exponential type and indicators of analytic functionals, Acta Math., 117 (1967), 1-35.
- [5] G. KÖTHE, Dualität in der Funktionentheorie, J. Reine Angew. Math., 191 (1953), 30-49.
- [6] A. MARTINEAU, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., 11 (1963), 1-164.
- [7] A. MARTINEAU, Les supports des founctionnelles analytiques, in Seminaire P. Lelong (analyse) 9° année 1968-69, Lecture Notes in Math., 116 Springer, 175-195.
- [8] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, to appear in the Banach Center Publication.

MITSUO MORIMOTO

Present Address:
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
Kioi-cho, Chiyoda-ku, Tokyo 102