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Introduction

Let K be a compact set of C. For an analytic functional with
carrier in K, Te ~'(K), we define the Fourier-Borel transformation by

0.1) F (T)(u)={T,, exp(uz)) .

If K is convex, it is classical that the Fourier-Borel transformation
establishes a linear isomorphism of the space <'(K) onto the space of
the entire functions of exponential type in K, Exp(C, K). (Polya’s
representation, see for example Chapter 5 of Boas [1]. For the general
theory of the Fourier-Borel transformation, see Martineau [6].) If K is
not convex, this theorem is false. We shall consider in this paper the
case where K is an annulus with center at the origin. Let A0 be a
fixed complex number. For Te~7'(K), we define the transformation
F1 by

0.2) F(T)(w, v) =<T,, exp(h(uz +%))> :

This simple transformation .#; generalizes the Fourier-Borel trans-
 formation in the case of annulus and we can determine the image of
~'(K) under the transformation .#; (Theorem 4.2). (Kiselman [4] and
Martineau [7] considered another kind of generalizations of the Fourier-
Borel transformation.)

On the other hand, let S** be the n—1 dimensional sphere and
F(S* ) =.7"(8*") the space of hyperfunctions (analytic functionals) on
the sphere. For Te <#(S"!), Hashizume, Kowata, Minemura and Oka-
moto [2] defined the transformation &% by

0.3) F(T)(x) =( T, exp(irz, ®))) .
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They constructed a space <& (S"™) strictly larger than <#(S*™) and
claimed & can be extended to the space <Z(S*Y). They proved the
image of <#(S*") under the transformation Z?, is precisely the space of
all C* functions on R* satisfying the differential equation

(0.4) d+N)f =0,

where 4 is the Laplacian on R*. This result can be understood in the
frame work of the Ehrenpreis-Palamodov fundamental principl. I am
interested in the following questions:

What is the space <Z(S*™") and what is the P-image of <& (S*)?
When n=2, that is, in the case of circle, Helgason [3] gave a meaning to
the space <Z(SY) as the space of “entire functionals”. (We can give a
meaning to <#(S*') for general n. See our forthcoming paper [8].) An
answer to the second question can be given, in the case n=2, by our
knowledge on the transformation .&; (Theorem 7.3(ii)).

The plan of this paper is as follows: §§1 and 2 are preliminary
studies on the spaces of analytic functions and analytic functionals related
to the unit circle S. In §1 we define the space <”(S!) of real analytic
functions on the unit circle S* and its subspaces, especially the space
& (C*) of holomorphic functions on C* and the space Exp(C*) of holo-
morphic functions of exponential type on C*. We characterize these
spaces by the growth conditions on their Laurent coefficients. In §2 we
define the spaces of analytic functionals by the duality. ~2’(SY is the
space of analytic functionals on the circle and Exp’(C*) is the space of
“entire functionals” of Helgason [3]. We characterize also these spaces
by the growth conditions of their Laurent coefficients.

In §3, we study the space <,(C? of the entire functions F(u, v)
satisfying the differential equation (3*/0udv)F=\*F. Our main remark
is that the function F'e &7,(C? is completely defined by its restrictions
F(u, 0) and F(0, v) (Theorem 38.1). In §4 we define the transformation
&, for the analytic functionals by the formula (0.2) and determine the
Zr-images of the spaces of analytic functionals introduced in §2. In§5
we determine the .#;-images of the spaces of analytic functions introduced
in §1. But the description of the .#;-images becomes more complicated
than in §4. In §6, we shall sum up the properties of the function F of
Pa(C?). |

In the final section §7, we apply our preceeding results to the study
of the transformations . We can determine, among others, the 2-
images of Exp'(S)=Exp’(C*), '8 ="(C*) and FSHY=7"(K,,).



THE FOURIER-BOREL TRANSFORMATION 303

This paper was written during my stay in France in the academic
year 1978/1979. The discussions with French mathematicians, especially

C. C. Chou and J. Faraut, were very informative. I am very grateful
to them.

§1. Analytic functions on an annulus.

Let A>0 and B>0 satisfy AB>1(resp. AB>1). Consider the
annulus:

(1.1) K,z={z€C; B™'<|z|<A}, (resp. K3 ;={2€C; B <|?[<4}) .

Let ¢ be a sufficiently small positive number. (K, z(€))(resp. (K, 5(—¢€)))
denotes the space of all continuous functions on K, z(¢)(resp. K, z(—¢))
which are holomorphic in its interior, where

1.2) K,:(e)={zeC; B'(1+e)'<|z|<A(l+¢e)}
(resp. K, z(—e)={2z€C; B*(1—e)'<|z|<AQ1—¢)}) .

It is clear that the space (K, z(€))(resp. &, (K, 5(—¢))), equipped
with the norm
(1.3) | fll.=sup{| f(2)|; z € K4 5(e)}
(resp. || fll-.=sup{| f(2)|; z€ K 5(—¢)}) ,

is a Banach space. We define the DFS space (K, of germs of
holomorphic functions on K, ; as follows:

(1.4) (K, p)=lim gnd (K 4,8(€)) .

‘The FS space (K3 ) of holomorphic functions on the domain K3 ,
is defined as follows:

(1.4 & (K5, ») =lim proj Z4(K.s(—e)) -

ProPOSITION 1.1 (Cauchy-Hedamard). Let f(2)=>-—«®:2* be the
Laurent expansion of f e&’(KA,B)(resp. (K3,s)), then we have

(1.5) lim sup Via, <A™, lim sup “la, | <B™,
(resp. (1.5") lizn sup ¥a,|<A™, 1ikm sup '[a, | <B™ .

—$— 00

Conversely, if a sequence a,, k€ Z, satisfies the conditions (1.5) (resp.
(1.5"), then the series 7. .. a,z* converges to a unique function f €
(K, p)(resp. & (KS5)) in the topology of (K, z)(resp. (K3, s))-
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PROOF. Suppose fe”(K, ;). Then there exists >0 such that
fe(K, 5(€). As we have

(1.6) T= 1 .flﬂ:cf(Z)—dz_

2n1 Zk+1

for any ¢ with B*(1+¢)'<e<A(l+¢), we have lay | Zl| fllA 1 +e)7*
for k=0 and |a,|<||f|l.B*(1+¢)* for k<0. Hence we obtain (1.5).
Conversely if we have (1.5), there exists ¢>0 and N>0 such that.

Vlie | <A™ (1+2¢)* for k>N.

Therefore 37, a,2* converges uniformly in the disc {z; [2|<A(Q+e¢)) and
define a holomorphic function there. Similarly, il .. a,z* converges
uniformly in {2; [2|>B(14+¢)™"} for some ¢>0. Therefore 33 .. a,2z* con-
verges uniformly in K, y(¢) for some ¢>0 to a function f € (K, 5(6)).
The proof for the case ~°(K3 ) is similar. q.e.d.

COROLLARY 1. Let A>1(resp. A>1). Then f(2)=Sg. . azte
(K 4;.)(resp. (K3 L)) 18 equivalent to

(1.7) li!:l sup 'va,| <A™ (resp. lill."n sup ia, | <A™ .
—F 00 —400
Now we denote by <7(C*) the Fréchet space of all holomorphic
functions on C*=C\(0). If 4,B,>1, A,<A and B,<B, the inclusions
(1.8) P(K4,8)C (K3 5) (K, 5,)

are defined by the restriction mappings. Taking the projective limit
tending A— ~ and B— -, we have

Z(C*)=lim proj (K, z)=lim proj & (K3.5) .
Therefore we have
COROLLARY 2. f(2)=3\r_.. a:z* € 2(C*) is equivalent to

(1.9) lim sup 'V/[a,|=0 .

k—tco
The holomorphic function f(z) on C* is, by definition, of exponential
type if

(1.10) there exist M>0 and C>0 such that | f(z)|<C exp(M(lz[ +|i_[)) .

Exp(C*) is the space of all such functions. The topology of Exp(C)* is
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the inductive limit topology of the Banach spaces X,, where

L1 Xy= {f e 2(C*); sup | £(2)| exp(— M(|z | +i)>< oo} .
z€C* Izl

PROPOSITION 1.2 (Helgason [8]). Let f(z)=r— ;2" be the Laurent
expansion of f € Exp(C*). Then we have
(1.12) lim sup Wk @] < oo .

—»+ o0

Conversely if a sequence a,, k € Z, satisfies the condition (1.12), then
the series S.r-_. a2* converges to a unique function f € Exp(C*) in the
topology of Exp(C*).

In order to prove Proposition 1.2, we need the following well-known
fact (see for example Boas [1]).

LEMMA 1.1. Let F(0)=>\x_, a,l” be an entire function of one complex
variable { and M>0. Then the following two conditions are equiva-
lent:

(1.18) F s of exponential type<M, i.e., for any €>0 there exists C.,=>0
such that |F({)|<C. exp(M+¢)|C|) for LeC.
(1.14) lim sup ¥Yn! Ja,|<M.
PrROOF OF PROPOSITION 1.2. Suppose f € &(C*) satisfies (1.10). Then
by (1.6) we get |a,|<Cr *exp(M(r+1/r)) for all r with 0<r<e. But
by an elementary calculus, we have

min{'r“" exp(M('r+—717)); 0<r< oo} =<lk| +1311:2{+4M2>|k| exp VE+4M? .

Therefore we get, by Stirling’s formula,
k]! |a,] ~ 2V 7 | k|*1+/2 exp(—| k)| @]

— 1kl —
<2V ”'klmc<|k|+21/Mlﬁ4M2> exp(V EFAIE—|k]) ,

from which we can conclude (1.12).

Conversely if we have (1.12), by Lemma 1.1, 3%, a,2* and >ii_. a2
are of exponential type. Therefore 3.7 _.. a,2* is also of exponential type.
The convergence in the topology of Exp(C*) can be checked easily.

: q.e.d.

k
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At last, let us denote by P(C*) the space of all polynomials of z and
27!, i.e., finite Laurent series:

(1.15) P(C*= {kﬁNakz"; a.€C,N=0,1,2, -- } .
The topology of P(C*) is defined as the inductive limit of the finite
dimensional vector space P,(C*)={3Y__y a,z*; a,cC}.

PROPOSITION 1.3. Suppose A,B,>1, A,<A and B,<B. Then the
Jollowing chain of inclusion relations is wvalid:

(1.16) P(C*)CExp(CH)CP(C*)C O (K4) S (8,8) (K, 5)P(K,,y)
the last inclusion taking place only if A,>1and B,>1. The space P(C*)

18 demse in any of other spaces.

The proof is almost trivial.

§2. Analytic functionals with carrier in an annulus.

We shall denote by (K, s)(resp. 2'(K3,5), Z'(K,), Z'(C), Exp'(C*),
P'(C*)) the dual space of (K, z)(resp. (K3, 5), O (K,), &(C*), Exp(C*),
P(C*)). By Proposition 1.3, we have the following inclusion relations:

2.1) P(CH)DExp(C*)DT(C*) D (K4i,5) D (KL 5) D' (Kay5) D 7' (K,)

where A,B,>1, A,<A and B,<B and the last inclusion takes place only
if A,>1 and B,>1. We shall call an element 7T of <~’(C*) an analytic
functional on C* and an element T of Exp’(C*) an entire functional on
C*(see Helgason [3]). If T is in ~'(K, ), T is said to have a carrier
in K, . Remark that

2'(C*) =lim ind{Z"(K,.5); A>0, B>0, AB>1)
=lim ind{”"(K3,5); A>0, B>0, AB>1} .

We shall denote by (,) the canonical inner product of duality.
The Laurent coefficients ¢, of T € P'(C*) are defined as follows:

2.2) ¢.={(T,, z7* for keZ.
We have clearly ‘

2.3) (T, £ =k=zli‘,Nc_,,a,, for f2)= ﬁNa,,z"eP(C*) .

The formal Laurent series >7._.c,2* is called the (formal) Laurent
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expansion of T € P'(C*).

LEMMA 2.1. Let Te (K, ) (resp. &'(K3S 5), &'(C*), Exp'(C*) and
¢.={T,, z7*>, keZ. Then we have

(24) (T, f>= 3 c..a

=—00

Sfor any f(2)=37_.a.2* e (K, p)(resp. (K3, 5), &(C*), Exp(C*)).

PrROOF. By Propositions 1.1 and 1.2, fy(2)=X2Y _» a,2* converges to
f as N— oo in the topology of (K, ) (resp. (K3 5), &(C*), Exp(C*)).
Therefore, by (2.3), <T, f>=limy..(T, fy>=limy_. ¥V _,c_,a.. q.e.d.

Suppose K, 5 N K, s+ O (resp. K3, 5,NK,z#* D). Wedefine, for g(z)=
D biz* € (K, 5) (resp. (K3,5)) and f(z)=>_. a,2* e P (K, 5)
(2.5) 0, H==-0  g@re) 2

271 J lzi=c z

where max (B!, B™)<c<min(4,, A)(resp. max (B!, B™)<e<min(4,, A)).
Then, by Cauchy’s integral theorem, (2.5) is defined independently of ¢ and
(9, ) is a bilinear form on O (K4y,5) X (K 4,5)(resp. (K3, 5) X (K z)).
The mapping T,: f— (g, f) is a continuous linear functional on ~(K 4.B)-
By an elementary calculus, we have

(2.6) @, N=( 5 b, 3 a2)= 3. ba, .

=—o00

Especially the Laurent coefficients of the functional T, are equal to those
of the function g. Identifying the function g with the functional T, we
can consider

2.7 O (Ka,,5,) C"(K 4 p)(resp. 7(KS,5)C " (Ka,p) -

Therefore we can graft the chain of inclusions (2.1) on (1.16). We
get especially the following proposition:

PROPOSITION 2.1. Let A>1 and put K,=K,,. Then we have the
Jollowing inclusion relations:

(2.8) P(C*)cExp(C*HcoCHc oK) oK) o(K,)
co'(K)co'(Kg)co'(K,) o' (C*)cExp’(C*)c P'(C*) .
If feP(C*), then, for any formal Laurent series g(z)=\r _. b.2",

we can define (g, f) by (2.6). And it is clear the space P’(C*) coincides
with the space of all formal Laurent series.
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PROPOSITION 2.2. Let ¢, be the Laurent coefficients of T e ' (K, )
(resp. Z'(KS,5)). Then we have

(2.9) T,= > o

wn the weak topology of &' (K, s)(resp. &' (K3 ). We have also
(2.10) lim sup ¥e.|<B, litkn sup Ve, <A

(resp. (2.10) limsup ¥[e,[<B, limsup"Via]<4).

Conversely, if a formal Laurent series satisfies the condition (2.10) (resp.
(2.10"), then it converges to a functional T e o'(K, z)(resp. &'(K3z) in
the weak topology of ' (K, z)(resp. &'(K3 5)).

PrROOF. Suppose T'e &' (K, 5), ¢,={T, z7*), ke Z. Consider the (formal)
Laurent expansion of T: 32 _.c,2*. Then by Lemma 2.1, the sequence
¥ _vei2* is convergent to T, e ~'(K,,5) in the weak topology, i.e., we
have (2.9). Now by the continuity of T, for al]l ¢>0, there exists C,>0
such that

(2.11) KT, SHOI<C.ISfll. for fe(Kyse) -

In particular, we have
le,| <C.sup{|z|™* B'(1+e)'<|2z|<AQ+e)} .

Therefore we have |c,|<C.B*(1+¢)* for k>0 and |¢.|<C.A*'(1+¢)* for
k<0. Hence we get (2.10).

Conversely, if (2.10) is valid, > _. c_.a, converges for any f(z)=
Si—w2* e (K, 5) because of (1.5). By the proof of Proposition 1.1,
it is clear that fi— >3 _. c_.a, is continuous on every (K, z(¢)). The
proof for ~'(K3 ;) is similar and is omitted. q.e.d.

COROLLARY 1. Let A>1(resp. A>1)- T.=32 . cz*e 7'(K,, ,)(resp.
O'(KS. 1)) 18 equivalent to

(2.12) lim sup /e, <A (resp. lim sup "V/[c.[<A) .

k—xoco k—x
COROLLARY 2. T,=3% _.ci2*e 2 (C*) is equivalent to

(2.13) lim sup s < oo .

— 400

ProOPOSITION 2.3 (Helgason [3]). Let ¢,=<T,, 27*) be the Laurent
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coefficients of an entire functional T e Exp'(C*). Then we have

(2.14) lim sup Ve, TETT =0 .
-+t 00

Conversely, if we have (2.14), the series D.r-_. ;2" converges in the weak
topology to an entire functional T € Exp’(C*) for which we have (T,, z7*) =
¢, for ke Z.

Proof is similar to that of Proposition 2.2 and is omitted.

REMARK. Let Te (K, 5 and ¢,=(T, 2z *),keZ. By (2.10), ,(2)=
=, ¢,2* is holomorphic in {z; |2| <B™*} and @,(2) =} _.. ¢,2* is holomorphic
in {z; |z|>A}). Let f(&)=>7¢ _.az*e (K, . Then we have

——1 I
= o) f(2)%2
27m1J 1z1=B71a+e) "1 p

1 dz
1 R OHOSS

with a sufficiently small ¢>0. If we put

()_{ P (2) for |z|<B™
PE= o) for |z|>A4,

then ¢ € 27(C\K,,5) and
—1

27{'@- K 4.,ple

(2.16) (T, fy= )¢(z)f(z)—d-zﬁ :

This is nothing but Kothe’s duality [5].
§3. Entire functions which satisfy (0*/0udv)F(u, v)=NF(u, v).

Suppose that
3.1) F(u, v)= :‘: A U V™
7n,m=0

is an entire function of two complex variables (u, v) € C* and that F(u, v)
satisfies the differential equation

a2

3.2
(3.2) ouov

F(u, v)=\F(u, v) ,
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where A0 is a constant complex number. Let us denote by P n(C?
the space of all such functions. For example, if AB=)\2, then exp(Au+ Bv) €
Za(C?. As we have

. 2 oo
TZé;F(u’ V)= i %onma“,mu”‘lv”“

= 3, A1)+ D)2y s 0

n, 0

the condition (3.2) is equivalent to the condition (3.3) on the Taylor
coefficients of F"

3.3) Ny mw=m+1)(m+1)0, 1 mi, for n,m=0,1,2 ---.
Hence we have

7\‘21;

= 'ao,o for n=0,1,2, .-.
nl'n
b £ - 2 ...
(3.4) Apontp= wl ()l a,,, or n, p=0,1, 2
2n
a’n+p,n=(n—z_)}_!p7\'7:’;ap.0 for n, p:O’ 1, 29 e

On the other hand, the Bessel functions are defined as follows:

(3.5) J.(2) = (2/2)" g nf r%) J(rz/zr"l) vt —1, —2 —8, .-,

Therefore we have -

oo z2n
. v Y= *=-—1, -2, -3, ---
(3.6) (22)7vJ,(212) 20', T D’ Y

Remark the functions

WJ(20V 7 2 —1, —2, —8, .-
GVz2) ™, 21V 2)= n'F(v+n+1) y#=—1, —2, —8

are entire functions of z.
Using the formulas (8.4), we can sum up as follows:

3.7) 3, @m0 =00 S0 g, g (001 i)

n=0 n=0 ’n! n
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o o N?'ﬂ(u/v>”
) n+Pogn — Pm! —_—
(3.8) ,,Z‘oa”“””u V=l p'ngé (m+p)! n!

=a, P! (I Uuv) P, (2INV Uv)

and similarly

Ms

(3.9) Qo+, UV =@y 0P D) ANV ) 2T (290 U) .

0

S
I

Therefore we have proved the following proposition.

PROPOSITION 3.1. If an entire fumction F(u, v)=Dmm=o Cp U 0™
satisfies the differential equation (3.2), it takes the following form:

(3.10) F(u, 9)= o, (2i\V %0)
+ 3 (@ 0P+ 00 87D (INV WD) 2T 20NV UD) -

THEOREM 3.1. If f(z) and g(z) are two entire fumnctions of one
complex variable with f(0)=g(0), then there exists a wunique function
F(u, v) e Zu»(C?» such that F(u, 0)=f(u) and F(0, v)=g(»).

PrROOF. The uniqueness of the function F(u, v) is clear from Pro-
position 3.1. Put f(z)=>5-,a,:2% 9(&)=Di, 2. We have only to
prove the uniform convergence of the right hand term of (3.10) on every
compact set of {C°. Now we have, by the definition formula (3.5), the
following majoration (see Lemma 1 of [2]):

_lz/2] 2
(38.11) |J.(2) | < TorD exp(|2/2]%) .
Therefore
% (@, o + o, ,0°) 0! (INV %0) 2T 20NV %D)
<3, (10l U]+l | |9]7) exp( M| uv])

=1

which proves the theorem. q.e.d.

CoROLLARY. To give a function F e °,(C? s equivalent to give
a series Qg A, Ao, P, 9=1, 2,3, --- such that

(38.12) lim sup ¥|a,,|=0, limsupVa,,|=0.

Do q-—00
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§4. The transformation .#; of analytic functionals.

DEFINITION 4.1. As the function of z, exp(M(uz+v/2)) is in Exp(C*)
for all (u, v) € C?, we can put for T e Exp’(C*),
(4.1) Fi(u, 'v)=<T,, exp(h(uz +—:->)> ,

where )\ is a fixed complex number. We write by .#; the transformation
T— F,.

Remark that the mapping z+—1/z is an analytic diffeomorphism of
C* onto itself. For T, e€Exp’(C*), we define T,, € Exp’(C*) by

(4°2) <T1/zy f(z)>= <Tz, f(l/z)> .
Then we have
(4'3) %(Tz)(u: Iv)—_—%(Tﬂz)(’v’ u) .

THEOREM 4.1. Suppose N#0. Let ¢, =<T, z* be the Laurent
coefficients of T eExp'(C*). Then the function F;, defined by (4.1) is

expressed as follows:
4.3)  Fiu, v)=cJo2iM/U0) + 3 (c_,u” +¢,v°) (31 uw) 2,20\ Uv)
=1

The transformation #; maps bijectively Exp’(C*) onto 7, (C?):
(4.4) F1. BExp'(C*) ===, &»(C?) .

PrROOF. Because f(u, v)=exp(M(uz+v/z)) satisfies the differential
equation (3.2) and that the functional 7' commutes with 4*/0udv, the
function F' belongs to 27°;(C?.

From the formula

o 2)) S 8
z n=0 m=0 m)

n! nm=0 nlm!
we get
Fy(u, v)=<T, exp()x.(uz+1>)> = i‘: ATTE Com—nUV™ .
4 nm=0 n!lm

Therefore the Taylor coefficients a, . of F, are given by

A+
aﬂym.: c -n °

nim!
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In particular, we have

AP AP
(4.5) Ao, 0=Co, a,,o=Fc_,, and ao,,=—2.70p for p=1,2,---.

Replacing a,,, @,, and a,, in the formula (3.10) by (4.5), we obtain
4.3).

If F,=0, then, the Taylor coefficients of F, being 0, the Laurent
coefficients of T all vanish by (4.5). Therefore T'=0, which proves that
F#, is one-to-one. The surjectivity of .#; results from Corollary to

Theorem 3.1 and Proposition 2.3. q.e.d.
COROLLARY.
Jo( 20V u) for k=0
(4.6) F(28)(u, v) = {v* GV Uv) (200 uv) for k>0

WGV u) T 2V uw)  for k<O .

LeEMMA 4.1. Suppose AB>1(resp. AB>1). Let Te 2'(K, z)(resp.
'(K3,5). The function F(u, v) defined by (4.1) satisfies the following
condition:

(4.7 For any €>0, there exists C.=>0 such that

| Fy(u, v)|<C. exp(|n|(1+e)(A|u|+B|v])
(resp. (4.7"). There exist €>0 and C>0 such that
| Fy(u, v)| <Cexp(In|(1—e)(A|u|+B|v])) .

PROOF. By the continuity of T e (K, ), for any ¢>0, we can find
C.>0 such that

| Fy(u, v)| <C. sup {exp(Re ?\,(uz +3’_)); B(1+e)'<|z| <A(1+s)}
z
<C, exp(In|(A+e)Alu|+B|v))) .
The proof of (4.7") is similar. qg.e.d.
DEFINITION 4.2. we define for A>0 and B>0

(4.8) Exp(C% (A, B)={F e (C?»; for any ¢>0 there exists C.>0 such
that | F(u, v)|<C. exp((A+¢)|u|+(B+e)|v))} .

We define for A>0 and B>0



314 MITSUO MORIMOTO
(4.8") Exp(C% (A, B)°)={F € &(C?; there exist e>0 and C>0 such that
| F(u, v)| <Cexp((A—e)|u|+(B—¢)|v|)} .
We put also
(4.9) Exp(C*) =lim ind{Exp(C*; (A, B)); A>0, B>0}
=lim ind{Exp(C? (4, B)°); A>0, B>0} .

If FeExp(C*, we say that F is of exponential type. If Fe
Exp(C* (4, B)), we say that F is of exponential type (4, B). We put
further

(4.10) Expu(C* (4, B))=x(C") N Exp(C*; (4, B)),
(4.10) Expw(C* (4, B)*)=(C*) NExp(C% (4, B)°),
(4.11) Expu(C*)=Zx(C*) N Exp(C?) .

THEOREM 4.2. Suppose AB>1(resp. AB>1). The transformation
Fi: T— F,, defined by (4.1), establishes a linear isomorphism of (K4, 5)
onto Expa(C? (IM| A, [N|B))(resp. of &'(KLs) onto Expy,(C?% (I A, |N]B)°)):

(4.12) F 1 O'(K,,5) == Expo(C% (M| 4, M| B) (AB>1),
(4.12) F 12 7'(K§ ) ==, Expu(C% (I 4, [N]B)°) (AB>1) .

PrRoOOF. We prove only the surjectivity in the case of 7' (K, p)-
Suppose F' € Exp,(C*; (IM|A, IN|B)) is given. We put F(u, v)=
Diwm=0 Gn,nu"v™. Because F is of exponential type (|n|A4, |n|B), F(u, 0)
(resp. F(0, v)) satisfies the condition (1.13) of Lemma 1.1 with M=|\|A
(resp. M=|An|B). By Lemma 1.1, we have
(4.13) lim sup ¥nlia,,.|<|MA, lim sup ¥Ynlla, . <|n|B.

n—rc0

vTherefore, if we define c,, p€ Z by (4.5), ¢,’s satisfy

(4.14) lim sup V[e,|<B, limsup ¥c_,|<A .

P—>—-00 P—roo

By Proposition 2.2, T,=35__. ¢,2? belongs to &'(K, ;). It is clear by
Theorem 4.1 that &#;T=F, which proves the surjectivity of the trans-
formation .&;. q.e.d.

COROLLARY 1.

(4.15) F: O'(Kya) == Expa(C? (IM] 4, [N A)) of A>1,
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(4.15") Fa: O'(K3,4) == Exp(C% (IN[ A, [N A)°) of A>1.
COROLLARY 2. | ' |
(4.16) F . O'(C*) ==, Exp,(C? .

§5. The transformation .#; of analytic functions.

Now we consider the transformation .#; for an analytic function
feo(Ks,z), AB>1. A denotes always a fixed nonzero complex number.
By the definition

a

5.1)  Fiu, )=, ”>='é,1?7: 2

- f®) exp()\.(uz-i-—':—))
for any ¢ with B'<¢<A. Therefore for any sufficiently small 6>0, we
have

| Fi(w, )| <II £l exp(lkl(cluﬁl—?))

for any ¢ with B (1—e¢)'<ec<A(l—e¢). Now the function of ¢, 0<c<
oo, clu|+|v|/c takes its minimum value 2V Tuv]| at e=v"(Jv|/[u]), provided
uv|+#0.

Therefore if we put C.=|| f||_., the function F(u, v)=F(u, v) satisfies
the majoration:

™ B . —_ Vul
| F'(u, v)|<Cse#D(|>“1<'§(f:s—>+B(l e)lvl)) if l/IQ)KB(l—s)
52 JFvI<CexpirizvimD it L <vTi<aa—evTu]
_ |v]
]F(u,'v)|<Ceexp<]7\:|<A(1 6>Iu|+7(1-_—5)>>

if Al—eTa|<Vo].

DEFINITION 5.1. If AB>1, we denote by Expu(C% (IM[B™, [A] A7)
the space of all F'e 7,(C? for which, for any ¢>0 there exists C.>0
such that the majoration (5.2) is valid. Remark that

(5.3) Expa(C% (1M B, [N A™) € EXpa(Ch (M B, M A7),

because wehave A7'(1—¢)*<B(1—¢)and B (1—e)*< A(1—e¢) for sufficiently
small ¢>0.

If AB>1, we denote by Exp.(C? (|An|B7, |[AM|A™Y)°) the space of all
Fe 7,(C? for which, for some ¢>0 and C>0 the majoration (5.2") is
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valid:
(17w, 0)|<Cexp(M( g+ Batolv))) it ‘/m<§1(/l_l_%)_
sy JF@wI<CepirzTaD it KL </ TT<aa+ovTal
IF(u,v)l<0exp(lx|(A(1+e)|u[+ﬁi_5))

if AQ+enTu|<V o]
In this case we have '
(6.8")  Expw(C% (INB7Y, [N AT)°) C Expw(C%: (M B M A7TY)°),

because we have A7'(1+¢)*<B(1+¢) and B™Y(1+¢&) <A1 +¢) for any ¢>0.

Finally we denote by ﬁ;:im,(cz; (0, 0)) the space of all F'e ~,(C? for
which, for any >0 there exists C,>0 such that the majoration (5.4) is
valid:

| F(u, v)|<C. exp(e|u|+e|v]) if Vv|<evTul,
(5.4) {|F(u, v)|<C.exp@VTuv]) if eV ul<Vv|<eVTul,
| F(u, v)|<C. exp(e™|u|+e|v)) if eVTu[<V]v].

In this case we have
(5.5) Exp(C? (0, 0)) c Exp(C? (0, 0)) .

THEOREM 5.1. Suppose AB>1(resp. AB>1). The transformation
F; establishes a linear isomorphism:

(5.6) Fz: P(KS,n) 22 BXDw(C% (M| B, [N ] A7)
(vesp. (5.6") F7: P(Ku5) = EXDw(Ch (1M B, [N A79°) .
PrOOF. We have only to prove the surjectivity. If
F e Expa(C% (M| B, [N A7),

then F'(u, O)(resp. F(0, v)) is of exponential type <|\|B7'(resp. <|\|A™Y)
(see Lemma 1.1). Therefore we can argue as in the proof of Theorem
4.2 using Proposition 1.1. q.e.d.

COROLLARY 1.
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(5.7) F7: O(K3) 2 Bxpa(Ch (IMA™ [MA™Y)  if A>L.
5.7) Fr O(Ka)) 2= Expa(Ch (MAT M A™°)  if A>1.

COROLLARY 2.
(5.8) G o(C*) ==, Expu(C% (0, 0)) .

Now we are going to determine the .&#;-image of Exp(C*). Suppose
F ¢ Exp(C*) satisfies (1.10). Then by (5.1), we have

| Fi(u, v)|=|.F3(f)(u, v)]
<Cexp(M<c+ 1 )) exp (le(alul +—|%|->>

¢
:Cexp((MHNl luDe+(M+ x| IM)%)

for every ¢ with 0<ec<oco. Therefore the function F(u, v)=F(u, v)
satisfies the following estimate:

(5.9) | F(u, v)|<C exp@V/ (M~+|N| [u)(M+[x][2]) -

DEFINITION 5.2. Let us denote by 15;&)(2,(02; 1/2) the subspace of
Z(C? whose elements satisfy (5.9) with some M>0 and C>0.

THEOREM 5.2. The transformation 5, establishes a linear isomor-
phism of the space Exp(C*) onto the space Expx(C?*; 1/2):
(5.10) 73 Bxp(C*) ==, Bxpw(C* 1/2) .

PROOF. We have only to prove the surjectivity. Suppose F(u, v)
satisfies (5.9). Then, in particular,

| Fy(w, 0)|<C exp@V MM+ n][u])) <Ce™ exp2V MIN[|u]) .
If we write Fi(u, v)= > mm=0 @, #"v™, then
| @, 0| <Ce?r~ exp(2V M[N\|7)

for every r>0. Therefore, putting »r=n’/M|\|, we get

lan,ol<Ce2”< M’"I’;I )w exp(@n) .

Similarly we have
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2 —m
|y, m | < Ce*¥ (_m__ exp(2m) .

)
We put c_,=(p!/A?)a,, and ¢,=(p!/\")a,, by (4.5). Now we have

lim sup ¥plTec_, =In7lim sup ¥(p!)]a,,]

< M| lim sup {(21/7@’“/2 ) Ce™ ( /4 )—pexp(Zp)}w
p—.oo

M|

1 -
A 11 2 2/Pn1/D C 2M\1/p < A 1 A= ,
= M7 Tim sup /@7 (o) () <IN MIN =1

where we used Stirling’s formula. Therefore by Lemma 1.1,

g‘,lc_,,z"’ <C,exp(2M|z|™) for z+0.
Similarly we have
2, C,R7
Therefore we have
3, 7| <C,exp(2M|2|™)+C, exp(2M|z)

<CexpM(|z|™+|z])

with some constants C, C, and C>0, which proves the holomorphic
function on C*, 333 . c¢,2?, is of exponential type. It is clear by (4.5)
that the .#;-image of the function 3= . ¢,2” is equal to F,. q.e.d.

§6. The properties of the functions in ,,(C?).

Looking at the results of §§4 and 5, we can give some precisions
to Theorem 3.1.

THEOREM 6.1. Suppose F(u, v) € &Z(C?.

(1) If F(u,0) and F(0,v) are of exponential type, F(u, v) is of
exponential type.

(ii) Suppose AB=1. If F(u,0) is of exponential type <|N] A and
F(0, v) is of exponential type<|N\|B, F(u, v) is of expomential type
(IN A4, [N B).

(iii) Suppose AB<1. If F(u,0) is of exponential type <|\|A and
F(0, v) is of exponential type <|N|B, F(u, v) i3 in the space
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Expa(C% (M4, N|B)),
(which is seemingly strictly larger than the space Exp ) (C%; (N] A4, [N B))).
(iv) If F(u,0) and F(0, v) are of minimal exponential type, then
F(u, v) belongs to Expu(C% (0, 0)).
(v) If F(u,0) and F(0, v) are of order 1/2, then F(u, v) belongs to
the space Ei';&)u,(C?; 1/2).
(vi) If F(u, 0)=F(0, v)=a(constant), then

(6.1) F(u, v)=aJ,(2ixVuv) .
§7. The transformation .

Now we consider the unit circle S*={(x,, «,) € R* x+2i=1}. We shall
denote by .97 (S*) the space of all real—analytlc functions on S*. Putting
z2=ux,+12,, we have

(7.1 St={(x, x,) € R*; xi+xi=1}={2€C; |z|=1}=K,, .

The spaces .o (S') and (K., are equal. We shall denote by <& (S
the space of all hyperfunctions on S!, that is, by definition, <& (S") =
'(SHY=7"(K,,). If we fix ({, {) e C? the function exp(in({x,+C.2,)) is
real-analytic on S'. We shall define, for T e <#(S"),

(7.2) GA(&yy L) =< T, 0,y €XPOEMEX, +Eoa))) -

The transformation T'+—G; will be denoted by ..
As we have zz=1 on K, ,,

(7.8) x1=z+z_1, wzzz_z,—l on St.
2 21

Therefore we have

-1

(7.4) Gi(&, L)=<T,, exp(ih(clz +2z + sz"zi’l ))

By this formula the transformation &7 can be extended to Exp’(C*),
consequently to any of its subspaces.

Let us denote by S' the complexified circle, that is,
(7.5) St={(z, 2,) € C% 22 +22=1} .
It is clear that S' and C* are complex-analytically diffeomorphic by
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2,+12,=2. Therefore the spaces ~(C*), Exp(C*) and others can be con-
sidered to be the spaces of functions on the complexified circle S. we
may note Z(S')=(C*), Exp(S')=Exp(C*) ete.

THEORELZ 7.1. Suppose ¢,=(T,, 27*), ke Z, are the Laurent coefficients
of TeExp'(S"). Then the function Gy (&, &) defined by (7.2) or (7.4) can
be expressed as follows:

(7.6) Gy L) =c WV +E)
+ g.l 17(c_p(C1—180)" + ¢, (L, +18)")E + 83) AT,V G+ 0 .

PROOF. Let us consider the following change of variables:
(7.7) u=1§,—18)/2, v=i({+()/2,
(7.8) Ci=—ilut+v), C=u—v.

Then we have

(7.9) — 20V uv=v3+_.
Therefore the formula (7.6) is derived from (4.5) of Theorem 4.1, if we
take into account the formula (7.4). q.e.d.

COROLLARY. (Hashizume-Kowata-Minemura-Okamoto [2]). Let Gi(&,,
&) denote the restriction of the function G, L) on R:. If we put
& +1&=re*, r>0, pe R, we have

(7.10) Gi(re*?)=c,J,(Ar)+ il 17(c_pe7 " +c,e' ) J (A7) .
=

(cf. Lemma 2 of [2], where the formulas (7.6) and (7.10) are given even
in the higher dimensional case. See also [8].)

THEOREM 7.2 (Helgason [8]). The tramsformation <, i8 a linear
1somorphism of Exp’(S') onto the space 7 (C? of the entire functions G
on C* which satisfy the differential equation

0° 0’ 2 —
(7.11) (F+3 )6 t=0.

Proor. Under the change of variables (7.7) and (7.8), we have

i e
ac:  a: oudv
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Therefore the theorem is a reformulation of Theorem 4.1. q.e.d.

REMARK.. Let us denote by Cy(R? the space of C= functions g on
R? satisfying the differential equation

(Zo+2 43 )ate, £)=0
P v

Now the Laplacian is an elliptic differential operator with constant
coefficients, the restriction <%(C? — C7(R?) is bijective. Therefore we can
say the transformation .27 establishes a linear isomorphism of Exp’(S!)
onto C7(R?. The space <#(S') defined by [2] is nothing but the space
Exp’(SY) of entire functionals (Helagason [3]).

The #-images of subspaces of Exp’(S!) can be described by the
simple transcription of the results on the transformation .&#;. For
example, we have

THEOREM 7.3. (i) The function G e T (C? 13 in the Fr-image of
2'(8Y if and only if the function G is of exponential type.

(ii) The function G e 7(C? s in the F-image of the space of
hyperfunctions <& (SY), if and only if, for any €>0 there exists C.=>0
such that

|G(&, &) <C. exp <7\.(1+e)<lC1—2iC2‘ + lCﬂ;’Cs‘)) ,
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