The Riemann-Hilbert Problem in Several Complex Variables II

Michitake KITA
Sophia University

Introduction

In the preceding paper [6], the author proved that, in a two-dimensional connected Stein manifold X satisfying the condition $H^{2}(X, Z)=0$, one can solve the Riemann-Hilbert problem without apparent singularities for an arbitrary divisor D and an arbitrary representation of $\pi_{1}(X-D, *)$ into $G L_{q}(C)$. The purpose of the present paper is to give an example of the Riemann-Hilbert problemwhich cannot be solved without apparent singularities by the same method as in the two-dimensional case. More precisely, let S be a 3 -dimensional polydisc; then, by a result of H . Lindel [7], there exists a special divisor D of S such that we can construct a flat vector bundle V of rank q over $S-D$ satisfying the following conditions:

1) There exists an integrable holomorphic connection ∇ on $\mathcal{O}(V)$ such that $\operatorname{Ker} \nabla=\boldsymbol{C}(V)$ where $\boldsymbol{C}(V)$ is the sheaf of germs of locally constant sections of V.
2) $\mathscr{O}(V)$ is extended to a locally free analytic sheaf \mathscr{H} on $S-\operatorname{Sing}(D)$ on which ∇ is the meromorphic connection with logarithmic poles along $D \cap(S-\operatorname{Sing}(D))$. The eigenvalues $\alpha_{1}, \cdots, \alpha_{q}$ of the residue of ∇ at any point of $D-\operatorname{Sing}(D)$ are rational numbers and satisfy the inequalities $0 \leqq \alpha_{i}<1$ for $i=1, \cdots, q$.
3) $\mathscr{\mathscr { C }}$ is extended uniquely to a coherent analytic sheaf $\tilde{\mathscr{H}}$ on S satisfying $\tilde{\mathscr{C}}^{[1]}=\tilde{\mathscr{H}}$, but $\mathscr{\mathscr { C }}$ cannot be extended to any locally free analytic sheaf on S, where $\tilde{\mathscr{L}}^{[1]}$ is the first absolute gap-sheaf of $\tilde{\mathscr{H}}$ (for the definition of absolute gap-sheaves, see [9]).

It seems to the author that if, in three dimension, one wants to solve the Riemann-Hilbert problem without apparent singularities even in the local sense, one should study in detail the Manin extension (See 1.2.) and the structure of vector bundles which are meromorphic along a divisor (see [3]), and should take deeper consideration on the equation
of L. Schlesinger and Lappo-Danilevski (see the papers of K. Aomoto [1], [2]).
§1. Analytic covers and connections with logarithmic poles.
1.1. Let X be an n-dimensional normal analytic space and let S be an n-dimensional connected complex manifold. Suppose that a finite holomorphic mapping $f: X \rightarrow S$ is given; then there is a divisor D of S such that $f: X^{*} \rightarrow S^{*}$ is an unramified covering of the sheet number q, where we put $X^{*}:=X-f^{-1}(D)$ and $S^{*}:=S-D$. We denote by $C_{X^{*}}$ the constant sheaf on X^{*} with coefficients in C and by $\mathcal{O}_{x^{*}}$ the structural sheaf of the complex manifold X^{*}. Then we can consider two sheaves on S^{*}; one is the direct image $f_{*}\left(C_{X^{*}}\right)=: V$ of $C_{X^{*}}$ which is a locally constant sheaf with coefficients in C^{q} and the other is the direct image $f_{*}\left(\mathcal{O}_{x^{*}}\right)$ of $\mathcal{O}_{x^{*}}$ which is a locally free analytic sheaf of rank q. It is easy to see that $f_{*}\left(\mathcal{O}_{x^{*}}\right)=V \boldsymbol{\otimes}_{c} \mathcal{O}_{s^{*}}$. It follows that there exists a unique integrable holomorphic connection

$$
\nabla: f_{*}\left(\mathcal{O}_{x^{*}}\right) \longrightarrow \Omega_{s^{*}}^{1} \boldsymbol{\otimes}_{o_{S^{*}}} f_{*}\left(\mathcal{O}_{x^{*}}\right)
$$

satisfying the condition $\operatorname{Ker} V=V$. Put $S^{\prime}:=S-\operatorname{Sing}(D)$ where $\operatorname{Sing}(D)$ is the singular locus of the divisor D. We write $X^{\prime}:=f^{-1}\left(S^{\prime}\right)$. Then $f: X^{\prime} \rightarrow S^{\prime}$ is a finite holomorphic mapping and from an elementary fact about analytic covers (see [4]), it follows that X^{\prime} does not have any singular points. For later applications, we recall the following standard results about analytic local C-algebras (for the proof, see [5]).

Lemma 1. Let A and B be n-dimensional analytic local C-algebras. Suppose that A is regular and that a finite homomorphism $\varphi: A \rightarrow B$ is given. Then B is a free A-module of finite rank if and only if B is a Macaulay ring.
X^{\prime} being non-singular, the local ring $\mathscr{O}_{x^{\prime}, x}$ at any point $x \in X^{\prime}$ is regular; hence $\sigma_{x^{\prime}, x}$ is a Macaulay ring. Since $f: X^{\prime} \rightarrow S^{\prime \prime}$ is a finite holomorphic mapping and S^{\prime} is a complex manifold, it follows from Lemma 1 that the direct image $f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ of the structural sheaf $\mathcal{O}_{x^{\prime}}$ of X^{\prime} is a locally free analytic sheaf on S^{\prime} of rank q. In the rest of 1.1. we shall prove the following

Theorem 1. The connection ∇ on $f_{*}\left(\mathcal{O}_{x^{*}}\right)$ is extended to the meromorphic connection \tilde{V} on $f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ with logarithmic poles along $D \cap S^{\prime}$. The eigenvalues $\alpha_{1}, \cdots, \alpha_{q}$ of the residue of $\tilde{\nabla}$ at an arbitrary point of $D \cap S^{\prime \prime}$ are rational numbers and satisfy the inequalities $0 \leqq \alpha_{i}<1$ for $i=1, \cdots, q$.

The problem is local on $D \cap S^{\prime}$. For an arbitrary point x of $D \cap S^{\prime}$, we can take a small polydisc centered at x such that the following conditions are satisfied:

1) $U \subset S$ and $U \cap \operatorname{Sing}(D)=\varnothing$.
2) There exists an open polydisc Δ in $C^{n}\left(z_{1}, \cdots, z_{n}\right)$ centered at the origin and a complex manifold W (not necessarily connected) where $\left(z_{1}, \cdots, z_{n}\right)$ is the coordinate system of C^{n}.
3) There exists a finite holomorphic mapping $\tau: W \rightarrow \Delta$ with the critical locus $A:=\left\{z \in \Delta \mid z_{n}=0\right\}$.
4) The following diagram is commutative and the horizontal arrows are biholomorpic mappings:

where i and j are the inclusion mappings.
We put $W^{*}:=W-\tau^{-1}(A)$ and $\Delta^{*}:=\Delta-A$. By the condition 4), the problem is reduced to showing that the holomorphic connection ∇ on $\tau_{*}\left(\mathcal{O}_{W^{*}}\right)$ with $\operatorname{Ker} \nabla=\tau_{*}\left(C_{W^{*}}\right)$ is extended to the meromorphic connection $\tilde{\nabla}$ on $\tau_{*}\left(\mathscr{O}_{W}\right)$ with logarithmic poles along A. If $W=\bigcup_{i=1}^{k} W_{i}$ is the decomposition of W into connected components, then the direct images $\tau_{*}\left(\boldsymbol{C}_{W^{*}}\right), \tau_{*}\left(\mathscr{O}_{W^{*}}\right)$ and $\tau_{*}\left(\mathscr{O}_{W}\right)$ are decomposed into the direct sums $\tau_{*}\left(\boldsymbol{C}_{W^{*}}\right)=$ $\oplus_{i=1}^{k} \tau_{*}\left(\boldsymbol{C}_{W_{i}^{*}}\right), \tau_{*}\left(\mathscr{O}_{W^{*}}\right)=\oplus_{i=1}^{k} \tau_{*}\left(\mathscr{O}_{W_{i}^{*}}\right)$ and $\tau_{*}\left(\mathcal{O}_{W}\right)=\oplus_{i=1}^{k} \tau_{*}\left(\mathscr{O}_{W_{i}}\right)$ where $W_{i}^{*}=$ $W_{i}-\tau^{-1}(A) \cap W_{i}$. So we have reduced proving Theorem 1 to the case where W is connected. When W is connected, we can regard the analytic cover $\tau: W \rightarrow \Delta$ as follows, by a well-known fact about analytic covers (see [4]); let Y be an n-dimensional non-singular affine algebraic variety in $C^{n+1}\left(z_{1}, \cdots, z_{n}, w\right)$ defined by the equation $w^{q}-z_{n}=0$ and let $p: C^{n+1} \rightarrow C^{n}(z)$ be the natural projection. Put $W:=p^{-1}(\Delta) \cap Y$ and let $\tau: W \rightarrow \Delta$ be the holomorphic map induced by the projection p. It is obvious that τ is a finite holomorphic mapping with the critical locus $A=\left\{z \in \Delta \mid z_{n}=0\right\}$; this is our model of the analytic cover $\tau: W \rightarrow \Delta$. Hence it is sufficient to prove Theorem 1 in the above situation.

Let $a \in A$ and take a small polydisc N centered at a in Δ. Let s be
a section of $\tau_{*}\left(\mathscr{O}_{W}\right)$ on N; then by the definition of direct image, there is a holomorphic function g on $\tau^{-1}(N)$ which corresponds to s under the isomorphism $\Gamma\left(\tau^{-1}(N), \mathcal{O}_{W}\right) \underset{\rightarrow}{\sim} \Gamma\left(N, \tau_{*}\left(\mathcal{O}_{W}\right)\right)$. Since $\tau^{-1}(N)$ is a closed complex submanifold of $p^{-1}(N)=N \times C$ and since $N \times C$ is a Stein manifold, there exists, by Theorem B on Stein manifolds, a holomorphic function $G(z, w)$ on $N \times C$ such that the restriction $G \mid \tau^{-1}(N)$ of G to $\tau^{-1}(N)$ coincides with g. For an abitrary $z \in N$, we see that the number of the roots of the equation $w^{q}-z_{n}=0$ is always equal to q (properly counted with multiplicities). Hence by the division theorem of Oka (see [8], p. 109), G can be written in a unique manner in the form

$$
\begin{equation*}
G(z, w)=\left(w^{q}-z_{n}\right) Q(z, w)+H(z, w) \tag{1}
\end{equation*}
$$

where Q is holomorphic in $N \times C$ and H has the following form:

$$
H(z, w)=a_{0}(z)+a_{1}(z) w+\cdots+a_{q-1}(z) w^{q-1}
$$

with each $a_{i}(z)$ holomorphic on N. It is obvious that $G\left|\tau^{-1}(N)=H\right| \tau^{-1}(N)$; hence, putting $w^{k} \mid \tau^{-1}(N)=s_{k} \quad(k=0, \cdots, q-1)$, we have that

$$
g=a_{0}(z) s_{0}+a_{1}(z) s_{1}+\cdots+a_{q-1}(z) s_{q-1}
$$

Since $s_{k}(k=0, \cdots, q-1)$ can be regarded as a section of $\tau_{*}\left(\mathcal{O}_{W}\right)$ over N, we obtain the following:

$$
s=a_{0}(z) s_{0}+\cdots+a_{q-1}(z) s_{q-1}
$$

here we are identifying g with the section $s \in \Gamma\left(N, \tau_{*}\left(\mathcal{O}_{w}\right)\right)$. The uniqueness of the expression (1) shows that the sections s_{0}, \cdots, s_{q-1} are linearly independent over $\Gamma\left(N, \mathscr{O}_{N}\right)$. Since N is an arbitrary small polydise centered at a, it follows that, putting $e_{k}=w^{k} \mid W(k=0, \cdots, q-1)$, the set $\left(e_{0}, \cdots, e_{q-1}\right)$ is a basis of the locally free analytic sheaf $\tau_{*}\left(\mathcal{O}_{W}\right)$ over 4 .

We will express explicitly the locally constant sheaf $\tau_{*}\left(C_{W^{*}}\right)$ over Δ^{*} by means of the basis (e_{0}, \cdots, e_{q-1}). Let b be an arbitrary point of Δ^{*} and let $N(b)$ be a small polydise centered at b in 4^{*}. Let $\tau^{-1}(N(b))=$ $\bigcup_{i=1}^{q} N_{i}$ be the decomposition of $\tau^{-1}(N(b))$ into connected components and we fix over $N(b)$ a branch $\left(z_{n}\right)^{1 / q}$ of the many-valued holomorphic function defined by the equation $w^{q}-z_{n}=0$. Then by changing the indices of N_{i}, if necessary, we can identify the restriction $w \mid N_{i}$ of w to N_{i} with $\zeta^{i-1}\left(z_{n}\right)^{1 / q}(i=1, \cdots, q)$, where $\zeta=\exp (2 \pi i / q)$. Since $\left(e_{0}, \cdots, e_{q-1}\right)$ is a basis of $\tau_{*}\left(\mathcal{O}_{W}\right)$ over $N(b)$, it follows that, for any section v of $\tau_{*}\left(C_{W^{*}}\right)$ over $N(b)$, there exist holomorphic functions $b_{0}(z), \cdots, b_{q-1}(z)$ on $N(b)$ such that

$$
v=b_{0}(z) e_{0}+\cdots+b_{q-1}(z) e_{q-1}
$$

Observing that $\tau^{1}(N(b))=\bigcup_{i=1}^{q} N_{i}$, we have

$$
\begin{gathered}
v \mid N_{i}=b_{0}(z)\left(e_{0} \mid N_{i}\right)+\cdots+b_{q-1}(z)\left(e_{q-1} \mid N_{i}\right) \\
\text { for } \quad i=1, \cdots, q
\end{gathered}
$$

Since we have identified $e_{1} \mid N_{i}$ with $\zeta^{i-1}\left(z_{n}\right)^{1 / q}$ for $i=1, \cdots, q$, we obtain the following relations, putting $v \mid N_{i}=v_{i-1} \in C$:

$$
\begin{align*}
v_{i}= & b_{0}(z)+b_{1}(z) \zeta^{i-1}\left(z_{n}\right)^{1 / q}+\cdots \tag{2}\\
& +b_{q-1}(z) \zeta^{(q-1)(i-1)}\left(z_{n}\right)^{(q-1) / q} \quad(i=1, \cdots, q)
\end{align*}
$$

If we put $\hat{b}_{i}(z)=b_{i}(z)\left(z_{n}\right)^{i / q}(i=0, \cdots, q-1)$, we can rewrite (2) in matrix notations in the following form:

$$
A\left(\begin{array}{c}
\hat{b}_{0} \\
\hat{b}_{1} \\
\vdots \\
\hat{b}_{q-1}
\end{array}\right)=\left(\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{q-1}
\end{array}\right),
$$

where

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{3}\\
1 & \zeta & \cdots & \zeta^{(q-1)} \\
& & \cdots & \\
1 & \zeta^{q-1} & \cdots & \zeta^{(q-1)(q-1)}
\end{array}\right)
$$

The determinant of the matrix A is non-zero by a result of van der Monde; hence we see that, in order for the section v of $\tau_{*}\left(\mathcal{O}_{W^{*}}\right)$ to be constant on $N(b)$, it is necessary and sufficient that the function $\left(\hat{b}_{0}(z), \cdots, \hat{b}_{q-1}(z)\right)$ is constant on $N(b)$. This means that, when we use the basis $\left(e_{0}, \cdots, e_{q-1}\right)$ of $\tau_{*}\left(\mathcal{O}_{W}\right)$ over $N(b)$, any section v of $\tau_{*}\left(C_{W^{*}}\right)$ over $N(b)$ can be written in the following form:

$$
v=c_{0} e_{0}+c_{1} z_{n}^{-1 / q} e_{1}+\cdots+c_{q-1} z_{n}^{-(q-1) / q} e_{q-1}
$$

where c_{0}, \cdots, c_{q-1} are arbitrary constants: $c_{i} \in C . \quad v$ is a horizontal section of ∇. So, writing $\nabla e_{i}=\sum_{i=0}^{q-1} \omega_{j i} e_{j}$, we have

$$
0=\nabla v=\sum_{i=0}^{q-1} c_{i} z_{n}^{-i / q} \nabla e_{i}+\sum_{i=0}^{q-1} c_{i}\left(-\frac{i}{q} \frac{d z_{n}}{z_{n}}\right) z_{n}^{-i / q} e_{i}
$$

hence by an elementary computation, we conclude that the connection
matrix $\Gamma=\left(\omega_{i j}\right)$ is written in the following form:

$$
\Gamma=\left(\begin{array}{cccc}
0 & & & 0 \\
& 1 / q & & 0 \\
& & \ddots & \\
& & & (q-1) / q
\end{array}\right) \frac{d z_{n}}{z_{n}} .
$$

This formula shows that ∇ is the meromorphic connection on $\tau_{*}\left(\mathcal{O}_{w}\right)$ with logarithmic poles along A and the eigenvalues of the residue of ∇ are $0,1 / q, \cdots,(q-1) / q$. This completes the proof of Theorem 1.
Q.E.D.
1.2. Let M be an arbitrary connected complex manifold and let D be a normal crossing divisor. Suppose that a flat vector bundle V of rank q on $M-D$ is given; then there is a unique holomorphic integrable connection V on $O(V)$ such that $\operatorname{Ker} V=C(V)$. As is well-known, Deligne-Manin [3] proved that the vector bundle V is extended uniquely to a holomorphic vector bundle \tilde{V} on which ∇ is the meromorphic connection with logarithmic poles along D. Moreover the eigenvalues $\alpha_{1}, \cdots, \alpha_{q}$ of the residue of ∇ at any point of D satisfy the inequalities $0 \leqq \operatorname{Re} \alpha_{i}<1$. We shall call such an extension of the flat vector bundle V the Manin extension of V. Turning to our situation, let the notations be the same as those in Theorem 1. From Theorem 1, it follows that the locally free analytic sheaf $f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ is the Manin extension of the flat vector bundle $f_{*}\left(\mathcal{O}_{x^{*}}\right)$. Hence we have the following:

Corollary 1 to Theorem 1. $f_{*}\left(\mathcal{O}_{X^{\prime}}\right)$ is the Manin extension of the flat vector bundle $f_{*}\left(\mathcal{O}_{x^{*}}\right)$.

Let X be a normal complex space and S be an n-dimensional connected complex manifold. Let $f: X \rightarrow S$ be a finite holomorphic mapping with the critical locus D. We suppose that D is normal crossing. Since $f_{*}\left(\mathcal{O}_{x^{*}}\right)=: V$ is a flat vector bundle on $S-D$ with the integrable holomorphic connection ∇ such that $\operatorname{Ker} \nabla=C(V)$, it follows from the result of Deligne-Manin quoted above that there exists the Manin extension \widetilde{V} of V which is locally free on S. By the definition of the ($n-2$)-th absolute gap-sheaf and the continuation theorem of Hartogs, we have $\widetilde{V}^{[n-2]}=\widetilde{V}$ where $\widetilde{V}^{[n-2]}$ is the ($n-2$)-th absolute gap-sheaf of \tilde{V}. On the other hand, from the Corollary 1 to Theorem 1, it follows that $f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ is the Manin extension of V on $S^{\prime \prime}$. Since Manin extension is unique, we have $\tilde{V} \mid S^{\prime}=f_{*}\left(\mathcal{O}_{x^{\prime}}\right) . \quad X$ is normal and $f: X \rightarrow S$ is a finite holomorphic mapping; hence by Hartogs' continuation theorem, we see
that $\left(f_{*}\left(\mathcal{O}_{x}\right)\right)^{[n-2]}=f_{*}\left(\mathcal{O}_{x}\right)$. Sing (D) being of codimension at least two and $f_{*}\left(\mathscr{O}_{x}\right)$ coherent on S, we conclude, by a result of Y.-T. Siu ([9], p. 202), that two coherent extensions \tilde{V} and $f_{*}\left(\mathcal{O}_{x}\right)$ of $\tilde{V} \mid S^{\prime}=f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ on S are isomorphic; therefore it follows that $f_{*}\left(\mathscr{O}_{x}\right)$ is locally free on S. Hence we obtain the following:

Corollary 2 to Theorem 1. Let $f: X \rightarrow S$ be as above. We suppose that the critical locus D of $f: X \rightarrow S$ is normal crossing; then the direct image $f_{*}\left(\mathcal{O}_{x}\right)$ is a locally free analytic sheaf on S.

§2. An example to the Riemann-Hilbert problem.

H. Lindel [7] gave the following example; let X be an analytic space defined by the following equations in $C^{6}\left(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right), x_{i} y_{j}-x_{j} y_{i}=0$ $(i, j \neq 0,1,2, i \neq j), \quad \sum_{i=0}^{2} x_{i}^{3}=0, \quad \sum_{i=0}^{2} x_{i}^{2} y_{i}=0, \quad \sum_{i=0}^{2} x_{i} y_{i}^{2}=0, \quad \sum_{i=0}^{2} y_{i}^{3}=0 . \quad X$ is a 3-dimensional analytic space with the only isolated singular point $x_{0}=(0, \cdots, 0)$. Then X is normal, but the local ring $\mathcal{O}_{X, x_{0}}$ of X at x_{0} is not a Macaulay ring. By a well-known local theory of analytic spaces, there exists a finite holomorphic mapping $f: X \rightarrow S=C^{3}$. From Lemma 1, it follows that the direct image $f_{*}\left(\mathcal{O}_{x}\right)$ is not a locally free analytic sheaf on S. Let D be a critical locus of $f: X \rightarrow S$ and put $S^{\prime}:=S-\operatorname{Sing}(D)$. We write $X^{\prime}:=f^{-1}\left(S^{\prime}\right)$. By Corollary 1 to Theorem 1, we see that the direct image $f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ is the Manin extension of the flat vector bundle $f_{*}\left(\mathcal{O}_{x^{*}}\right)$. If the locally free analytic sheaf $f_{*}\left(\mathscr{O}_{x^{\prime}}\right)$ could be extended to a locally free analytic sheaf \mathscr{C} on S, then by the same reason as in the proof of Corollary 2 to Theorem 1, we would have $f_{*}\left(\mathscr{O}_{x}\right)=\mathscr{L}$. Since $f_{*}\left(\mathscr{O}_{x}\right)$ is not locally free, this is contradiction. Thus $f_{*}\left(\mathcal{O}_{x^{\prime}}\right)$ cannot be extended to a locally free analytic sheaf on S. Hence we have the following:

Theorem 2. There exists a special divisor D of C^{3} and a certain flat vector bundle V on $C^{3}-D$ such that the Manin extension of V on $C^{3}-\operatorname{Sing}(D)$ cannot be extended to a locally free analytic sheaf on C^{3}.

References

[1] K. Аомото, Une remarque sur la solution des équations de L. Schlesinger et LappoDanilevski, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 17 (1970), 341-354.
[2] K. Аомото, Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 25 (1978), 149-156.
[3] P. Deligne, Equations différentielles à points singulieres réguliers, Lecture Notes in Math., 163, Springer, 1970.
[4] H. Grauert und R. Remmert, Komplexe Räume, Math. Ann., 136 (1958), 245-318.
[5] H. Grauert und R. Remmert, Analytische Stellenalgebren, Springer, 1970.
[6] M. Kita, The Riemann-Hilbert problem and its application to analytic functions of several complex variables, Tokyo J. Math., vol. 2, No. 1 (1979), 1-27.
[7] H. Lindel, Normale, nicht-perfekte Räume, Schr. Math. Inst. Univ. Münster, 37 (1967).
[8] K. Oka, Sur les fonctions analytiques de plusieurs variables: VII Sur quelques notions arithmetiques, 92-126, Iwanami Shoten, Tokyo, 1961.
[9] Y.-T. Siu, An Osgood type extension theorem for coherent analytic sheaves, Several Complex Variables II, Maryland 1970, Lecture Notes in Math., 185, Springer, 1971, 189-241.

Present Address:
Department of Mathematics
Sophia University
Kioi-cho, Chiyoda-ku, Toryo 102

