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Solutions of $x^{\prime\prime}=t^{\alpha\lambda-2}x^{1+\alpha}$ with Movable Singularity
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Introduction

As in the previous paper [1], we consider here a second order non-
linear differential equation

(1) $x^{\prime\prime}=t^{\alpha\lambda-2}x^{1+\alpha}$ , $’=d/dt$ , $\alpha>0$ , $\alpha\lambda>1$ ,

in a domain
$G$ : $ 0<t<\infty$ , $ 0\leqq x<\infty$ .

As we restrict ourselves entirely within the real domain, any real power

of a nonnegative-valued variable should be regarded as representing its
nonnegative-valued branch. So, for example,

$t^{\alpha\lambda-2}>0$ , $x^{1+\alpha}\geqq 0$

in $G$ .
The solutions of (1) to be considered here are those which satisfy

the “initial condition”

$\lim_{t\rightarrow 0}x=a$ , $\lim_{t\rightarrow 0}x^{\prime}=b$ , $ 0<a<\infty$ , $|b|<\infty$

Such solutions will be denoted by $\phi(t, a, b)$ . The object of this paper is
to show that each $\phi(t, a, b)$ has, in general, a movable singularity and
to obtain the explicit expression of $\phi(t, a, b)$ valid in the vicinity of its
movable singularity.

To do this, we have to make use of some of the results obtained
in [1]. This section is devoted to the brief description of them.

The equation (1) has a solution
$x=\psi(t)=[\lambda(\lambda+1)]^{1/\alpha}t^{-\lambda}$ .

For any solution $x(t)$ of (1), let us define a function $y(t)$ by
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$x(t)=\psi(t)[y(t)]^{1/\alpha}$ .
Then a function $z(y)$ defined by

$y=y(t)$ , $z=ty^{\prime}(t)$ , $y>0$ ,

satisfies a following differential equation:

(2) $\frac{dz}{dy}=_{\ovalbox{\tt\small REJECT},\alpha yz}^{-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{\epsilon}}$ .
Conversely let $z(y)$ be a solution of (2) and $y(t)$ be any solution of

$ty’=z(y)$ , $y>0$ .
Then $x=\psi(t)[y(t)]^{1/\alpha}$ is a solution of (1). Therefore every solution of (1)
will bring forth a solution of (2) and, since $y(t)$ contains an arbitrary
constant, every solution of (2) will bring forth a one-parameter family
of solutions of (1).

If we notice that

(3) $y=[\lambda(\lambda+1)]^{-1}t^{\alpha\lambda}x^{\alpha}$ , $ty^{\prime}=[\lambda(x+1)]^{-1}(\alpha\lambda t^{\alpha\lambda}x^{\alpha}+\alpha t^{\alpha\lambda+1}x^{\alpha-1}x^{\prime}]$ ,
and hence

(4) $z/y=ty^{\prime}/y=\alpha tx’/x+\alpha x$ ,

it is obvious that a solution $x=\phi(t, a, b)$ of (1) will give rise to a solu-
tion $z=z(y)$ of (2) such that

$li^{mz(y)=0}$ , $\lim_{y\rightarrow 0}z(y)/y=\alpha\lambda$ .
As was proved in [1], such a solution can be expressed explicitly by a
following double power series in $y$ and $y^{1/a\lambda}$ absolutely convergent in the
neighbourhood of $y=0$ :

(5)
$z=z(y, C)=\alpha xy+y\sum_{n+n>0}v_{n},y^{n}(Cy^{1/\alpha\lambda})^{n}$ , $v_{01}=1$ .

Here the value of a constant $C$ is determined by the initial values $a$

and $b$ .
To make clear the dependence of $C$ on $a$ and $b$ , we notice that, since

$\alpha\lambda>1,$ $Cy^{1/\alpha\lambda}$ is the term of the lowest degree in the double power series
$\sum_{\prime*+\cdot>0}v_{n}.,.y^{n}(Cy^{1/\alpha\lambda})$ , $v_{01}=1$ .

Consequently
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$C=\lim_{y\rightarrow 0}y^{-1/\alpha\lambda}(\frac{z}{y}-\alpha\lambda)=\lim_{y\rightarrow 0}y^{-1/\alpha\lambda}(\frac{ty}{y}-\alpha\lambda)$ .

Then from (3) and (4) we get

$C=\lim_{t\rightarrow 0}[x(\lambda+1)]^{1/\alpha\lambda}\frac{\alpha\phi^{\prime}(t,a,b)}{[\phi(t,a,b)]^{1+1/\lambda}}=[x(\lambda+1)]^{1/\alpha\lambda}\frac{\alpha b}{a^{1+1/\lambda}}$ .

Let us consider a following dynamical system

$\frac{dy}{ds}=\alpha yz$ ,

(6)
$\frac{dz}{ds}=-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{3}$ ,

associated with the equation (2). A solution curve of (2) in $(y, z)$-plane
represents an orbit (or union of several orbits) of (6).

As one can observe easily, $y=z=0$ and $y=1,$ $z=0$ are the critical
points of (6), and the solution $z=z(y, C)$ of (2) corresponding to a solu-
tion $\phi(t, a, b)$ of (1) represents an orbit of (6) which tends to $y=z=0$ as
$ s\rightarrow-\infty$ having a straight line $z=aNy$ as its tangent at $y=z=0$ . As
this is true for every $a$ and $b$ , there exist infinitely many such orbits,

and as was proved in [1], one of them tends to $y=1,$ $z=0$ as $ s\rightarrow\infty$ .
Since the critical point $y=1,$ $z=0$ is a saddle point, the phase portrait
near this orbit will look like Figure 1.

Let $\hat{C}$ be the value of $C$ which corresponds to this particular orbit.
Then, as was proved in [1], every solution $y=\hat{y}(t)$ of

$ty^{\prime}=z(y,\hat{C})$

FIGURE 1
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will bring forth a bounded solution of (1). Exactly to say,
$x=\psi(t)[\hat{y}(t)]^{1/a}$

is a solution of (1) which is defined and bounded for $ 0<t<\infty$ togethe]
with its derivative.

In other words, if we define $ b(a)\wedge$ by

$\hat{C}=[\lambda(\lambda+1)]^{1/\alpha\lambda}\frac{\alpha b(a)\wedge}{a^{1+1’\lambda}}$ ,

then $ x=\phi(t, a, b(a))\wedge$ is a bounded solution of (1) for every $a$ . Hence such
particular solution $\phi(t, a, b(a))\wedge$ does not have any singularity within
$ 0<t<\infty$ . In what follows we shall show that, if $b\neq b(a),$$\phi(t, a, b)\wedge$ will
generally have a movable singularity somewhere in $ 0<t<\infty$ .
\S 1. The explicit expression of $\phi(t, a, b)$ at $t=0$ .

Before discussing about the movable singularity, we shall give here
the explicit analytical expression of $\phi(t, a, b)$ valid in the neighbourhood
of a fixed singularity $t=0$ . Although this has already been done in [1],
we shall study it again in more detail and make clear how $\phi(t, a, b)$ de-
pends on its initial values $a$ and $b$ .

The solution $y(t)$ of

$ty’=z(y, C)$

is given implicitly by

$\int\frac{dy}{z(y,C)}=\int\frac{dt}{t}=\log t+const$ .
Since $z(y, C)$ is given by (5):

$z(y, C)=\alpha\lambda y+y\sum_{n+n>0}v_{mn}y^{m}(Cy^{1/\alpha\lambda})$ ,

termwise integration after taking its inverse will yield

$\int\frac{dy}{z(y,C)}=\frac{1}{\alpha\lambda}(\log y+\sum_{m+\#>0}\hat{v}_{m*}y^{m}(Cy^{1/\alpha\lambda})f\cdot)=\log t+const$ .

Multiplying $ a\lambda$ and taking the exponentials of both sides, we have

$(Bt)^{\alpha\lambda}=y(1+\sum_{*+>0}c_{n\prime}y^{n*}(Cy^{1/\alpha\lambda})^{\iota})$

where $B$ is an arbitrary positive constant. To obtain the explicit ex-
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pression of $y(t)$ from this implicit one, we need the following lemma.

LEMMA 1. Let $\eta$ be a function of $\zeta$ defined implicitly by

(7) $\zeta=\eta$ ( $1+\sum_{m+n>0}\gamma_{mn}\eta^{m}$ ( $\eta^{\mu}[h$ log $\eta+C]$ ) ), $\mu>0$ ,

where $h$ and $C$ are arbitrary constants and $h=0$ whenever $\mu$ is not an
integer, and the power series in $\eta$ and $\eta^{\mu}$[ $h$ log $\eta+C$ ] in the right-hand
member is absolutely convergent in the neighbourhood of $\eta=0$ ,
$\eta^{\mu}$[ $h$ log $\eta+C$ ] $=0$ . Then we have

$\eta=\zeta$( $1+\sum_{m+n>0}\hat{\gamma}_{mn}\zeta^{m}$ ( $\zeta^{\mu}[h$ log $\zeta+C]$ ) ).

Here the double power series in the right-hand member is absolutely
convergent in the neighbourhood of $\zeta=0,$ $\zeta^{\mu}$ [ $h$ log $\zeta+C$ ] $=0$ .

PROOF. This lemma is due to R. A. Smith [2]. We shall sketch his
proof here.

From the given relation (7), we get

$\zeta^{\mu}=\eta^{\mu}(1+A_{1})$ ,
$h$ log $\zeta+C=h$ log $\eta+C+A_{2}$ ,

where $A_{k}(k=1,2)$ is a double power series in $\eta$ and $\eta^{\mu}$ [ $h$ log $\eta+C$ ] lacking
constant term. Thus we have

$\zeta^{\mu}$ [$h$ log $\zeta+C$ ] $=\eta^{\mu}$ [ $h$ log $\eta+C$ ] $(1+A_{1})+\eta^{\mu}(A_{2}+A_{1}A_{2})$ .
If we notice that $h=0$ when $\mu$ is not an integer, the right-hand side of
the above equality is a double power series in $\eta$ and $\eta^{\mu}$ [$h$ log $\eta+C$ ] even
when $\mu$ is not an integer and the only first-degree term is $\eta^{\mu}$[$h$ log $\eta+C$ ].
Therefore if we put

$\eta^{\mu}$ [$h$ log $\eta+C$ ] $=\xi$ , $\zeta^{\mu}$ [ $h$ log $\zeta+C$ ] $=\sigma$ ,
we have

$\zeta=\eta(1+\sum_{m+’>0}\gamma_{mn}\eta^{m}\xi^{n})$ , $\sigma=\xi+\sum_{m+n>1}\delta_{mn}\eta^{m}\xi^{n}$

Since the right-hand sides are holomorphic functions of $\eta$ and $\xi$ in the
neighbourhood of $\eta=\xi=0$ , and

$\frac{\partial(\zeta,\sigma)}{\partial(\eta,\xi)}=1$

at $\eta=\xi=0,$ $\eta$ and $\xi$ are holomorphic functions of $\zeta$ and $\sigma$ in the neigh-



266 TOSIYA SAITO

bourhood of $\zeta=\sigma=0$ . Also $\zeta=0$ implies $\eta=0$ . Hence we have

$\eta=\zeta(1+\sum_{n+\cdot>0}\hat{\gamma}_{m}.\zeta^{n}\sigma^{n})$

in the neighbourhood of $\zeta=\sigma=0$ . This proves Lemma 1.
In order to apply Lemma 1 to our problem, we have only to put

$\eta=y,$ $\zeta=(Bt)^{\alpha\lambda},$ $\mu=1/\alpha\lambda,$ $h=0,$ $\gamma_{m},$ $=c_{n}$,

in (7). Then we immediately get

$y=(Bt)^{\alpha\lambda}(1+\sum_{n+n>0}c_{m}\wedge,(Bt)^{\alpha\lambda m}(CBt)^{n})$ .

Hence $y^{1/\alpha}$ can be expressed as

$y^{1/\alpha}=B^{\lambda}t^{\lambda}(1+\sum_{*+\cdot>0}\gamma_{m},(Bt)^{\alpha\lambda}f*(CBt)$“).

Inserting it into

$\phi(t, a, b)=[\lambda(\lambda+1)]^{1/a}t^{-\lambda}y^{1/\alpha}$

we obtain

(8) $\phi(t, a, b)=[\lambda(\lambda+1)]^{1/\alpha}B^{\lambda}(1+\sum_{n*+’>0}\gamma_{n}.,(Bt)^{\alpha\lambda n}(CBt))$ .
The initial condition

$\lim_{t\rightarrow 0}\phi(t, a, b)=a$

implies

$[\lambda(\lambda+1)]^{1/\alpha}B^{\lambda}=a$ or $B=a^{1/\lambda}[\lambda(\lambda+1)]^{-1/\alpha\lambda}$ .
Also we already know that

$C=[x(x+1)]^{1/\alpha\lambda}\frac{\alpha b}{a^{1+1/\lambda}}$ .

Inserting these values of $B$ and $C$ into (8), we finally get

(9) $\phi(t, a, b)=a(1+\sum_{n\cdot+\cdot>0}\gamma_{n},(\frac{a^{\alpha}}{\lambda(\lambda+1)}t^{\alpha\lambda})^{n}(\frac{\alpha b}{a}t))$ .

Here one will easily observe that

$\gamma_{01}=1/\alpha$
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since $\alpha\lambda>1$ and $\phi^{\prime}(t, a, b)\rightarrow b$ as $t\rightarrow 0$ . Moreover it is not difficult to show
that

$\gamma_{0n}=0,$ $n=2,3,$ $\cdots$

\S 2. The solution $\phi(t, a, b)$ with $ b>b(a)\wedge$ .
To study the solutions $\phi(t, a, b)$ other than $\phi(t, a, b(a))\wedge$ , we begin

with the case $ b>b(a)\wedge$ .
Let $z=z(y, C)$ be a solution of (2) brought forth by $\phi(t, a, b)$ with

$ b>b(a)\wedge$ . As $ b>b(a)\wedge$ implies $C>\hat{C}$ , the expression (5) will give us
$z(y, C)>z(y,\hat{C})$

if $y$ is sufficiently small. Due to the uniqueness of the solution of (2),
this inequality holds good as long as both solutions are defined and
holomorphic.

LEMMA 2. The solution $z(y, C)(C>\hat{C})$ of (2) is defined for $ 0<y<\infty$

and
1) $\lim_{y\rightarrow\infty}z(y, C)=\infty$ , 2) $\lim_{y\rightarrow\infty}y^{-1}z(y, C)=\infty$

PROOF. As one will observe from Figure 1, $z(y, C)$ cannot tend to $0$

as $y\rightarrow 1$ if $C>\hat{C}$ . Consequently, to show that $z(y, C)$ is defined for
$ 0<y<\infty$ , it is sufficient to show that $z(y, C)$ does not tend to $\infty$ as $y$

tends to a finite value.
Avsume that

$\lim_{y\rightarrow\eta}z(y, C)=\infty$ , $ 0<\eta<\infty$ ,

to derive a contradiction. By putting $1/z=\zeta,$ (2) will become

(10) $\frac{d\zeta}{dy}=\lambda(\lambda+1)\alpha y\zeta^{3}-(2\lambda+1)\zeta^{2}+\frac{1-a}{a}\frac{\zeta}{y}-\lambda(\lambda+1)\alpha y^{2}\zeta^{3}$ ,

and $\zeta=1/z(y, C)$ is a solution of (10) such that $\zeta=0$ for $ y=\eta$ . Since the
right-hand side of (10) is holomorphic at $y=\eta,$ $\zeta=0$ , such a solution
must be unique. However, as $\zeta=0$ is also such a solution, this is ob-
viously a contradiction.

Thus $z(y, C)$ is defined and positive for $ 0<y<\infty$ . Therefore the
orbit of (6) represented by $z=z(y, C)$ crosses the line $y=1$ for some
positive value of $s$ . This means that, at some $\tau>0$ , we have

$\phi(\tau, a, b)=\psi(\tau)$ .
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Then, as was proved in [1], the following inequality holds for $ t>\tau$ :

$\phi(t, a, b)>\psi(t)+(\phi(\tau, a, b)-\psi^{\prime}(\tau))(t-\tau)$ ,
$\phi^{\prime}(\tau, a, b)>\psi(\tau)$ .

(In [1], the above inequality was proved for the bounded solutio
$\phi(t, a, b(a))\wedge$ . However, as one can easily see, the proof is valid $l1$

$\phi(t, a, b)<\psi(t)$ for $ t<\tau$ and $\phi(\tau, a, b)=\psi(\tau).)$

This inequality implies that there exists an $\omega(0<\omega\leqq\infty)$ such that

(11) $\lim_{t\rightarrow\omega}\phi(t, a, b)=\infty$

Since
$\phi^{\prime\prime}=t^{\alpha\lambda-2}\phi^{1+\alpha}>0$ ,

$\phi^{\prime}$ is a nondecreasing function. So it follows from (11) that

(12) $\phi(t, a, b)>0$

if $t$ is sufficiently close to $\omega$ . Then, from (3), (4), (11) and (12), it fo
lows that

$\lim_{t\rightarrow\omega}y(t)=\infty$ , $\lim_{y\rightarrow\infty}z(y, C)=\lim_{t\rightarrow\omega}ty^{\prime}(t)=\infty$ .

Thus we have proved 1).
To prove 2), we put $y^{-1}z=u$ . Then $u$ satisfies a differential equatio

(13) $\frac{du}{dy}=\frac{-\lambda(\lambda+1)a^{2}+(2\lambda+1)au-u^{2}+\lambda(\lambda+1)\alpha^{2}y}{\alpha yu}$

and $u=y^{-1}z(y, C)$ is a solution of (13) defined for $ 0<y<\infty$ . Also $ul$

positive for $ 0<y<\infty$ . Suppose that there exists $k>0$ snch that $ 0\leqq u\leqq$

for $ 0<y<\infty$ . Then if $K>0$ is chosen sufficiently large

$-\lambda(\lambda+1)\alpha^{2}+(2\lambda+1)au-u^{2}>-K$

and the inequality

$\frac{du}{dy}>\frac{-K+\lambda(\lambda+1)a^{2}y}{\alpha yu}$

holds for $ 0<y<\infty$ . However the solution of

$\frac{dU}{dy}=\frac{-K+\lambda(\lambda+1)\alpha^{2}y}{\alpha yU}$
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is given by
$U^{2}/2=-(K/a)\log y+\lambda(\lambda+1)ay+const$

and hence $ U\rightarrow\infty$ as $ y\rightarrow\infty$ . Therefore $u\rightarrow y$ as $ y\rightarrow\infty$ in contradiction
with our assumption $0\leqq u\leqq k$ .

Therefore $u$ is not bounded as $ y\rightarrow\infty$ and we have

$\lim_{y\rightarrow}\sup_{\infty}u=\lim_{y\rightarrow}\sup_{\infty}y^{-1}z(y, C)=\infty$ .
Consequently we can find a sequence $\{y,\}$ such that

$y_{1}<y_{2}<\cdots<y,$ $<\cdots$ , $\lim y_{n}=\infty$ ,
$ u(y_{1})<u(y_{2})<\cdots<u(y_{n})<\cdots$ , $\lim u(y, )=\infty$ ,

$\frac{du}{dy}|_{y=y_{n}}>0$ , $n=1,2,$ $\cdots$

Let us denote by $f(y, u)$ the right-hand side of (13) and consider a
function

$f(y, u(y_{n}))=\frac{1-\lambda(\lambda+1)a^{2}+(2\lambda+1)au(y_{n})-u(y_{n})^{2}}{\alpha yu(y_{n})}+\frac{\lambda(\lambda+1)a}{u(y_{n})}$ .

Since

$\lim_{u\rightarrow\infty}\frac{-\lambda(\lambda+1)a^{2}+(2\lambda+1)au-u^{2}}{u}=-\infty$

and $ u(y.)\rightarrow\infty$ as $ n\rightarrow\infty$ , we have

$\frac{-\lambda(\lambda+1)a^{2}+(2\lambda+1)au(y_{\iota})-u(y,)^{2}}{u(y.)}<0$

if $n$ is sufficiently large. Hence $f(y, u(y.))$ is an increasing function of
$y$ for large $n$ . Therefore if $y>y_{n}$ ,

$f(y, u(y_{n}))>f(y_{n}, u(y, ))=\frac{du}{dy}|_{y=y_{n}}>0$ .

From this we easily get

$u(y)>u(y.)$

if $y>y.$ . Indeed, if not, there exists $y>y$. such that

$u(y)>u(y_{n})$ , $\hat{y}>y>y_{n}$ ,
$u(\hat{y})=u(y, )$
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since $du/dy>0$ at $y=y.$ . This implies

$\frac{du}{dy}|_{\nu=\theta}=f(\hat{y}, u(\hat{y}))=f(\hat{y}, u(y,.))<0$

in contradiction with the above inequality.
This being valid for every large $n$ , we get

$\lim_{y\rightarrow\infty}u(y)=\infty$ .
Thus we have proved 2).

As an immediate consequence of Lemma 2, we get

LEMMA 3. Let $\phi(t, a, b)$ be a solution of (1) with $ b>b(a)\wedge$ . Then

$\lim_{t\rightarrow\omega}\frac{t\phi^{\prime}(t,a,b)}{\phi(t,a,b)}=\infty$ , $\lim_{t\rightarrow\omega}\phi(t, a, b)=\infty$ ,

where $\omega$ is a positive number or $\infty$ which appears in (11).

PROOF. Let $z(y, C)$ be a solution of (2) corresponding to $\phi(t, a, b)$

Then from 2) of Lemma 2, we have

$\lim_{y\rightarrow\infty}z(y, C)/y=\lim_{t\rightarrow\omega}ty’/y=\infty$ .
So, from (4), we get

$\lim_{t\rightarrow\omega}\frac{t\phi^{\prime}(t,a,b)}{\phi(t,a,b)}=\infty$ ,

which is the first assertion to be proved.
As $\phi(t, a, b)\rightarrow\infty$ as $ t\rightarrow\omega$ , the second assertion is obvious if $\omega<\infty$

So suppose that $\omega=\infty$ . Then, for any given $T>0$ , there exists $M>($

such that

$\phi(t, a, b)>M$ for $t\geqq T$ .
Therefore

$\phi(t, a, b)=t^{\alpha\lambda-2}[\phi(t, a, b)]^{1+\alpha}>M^{1+\alpha}t^{\alpha\lambda-2}$ , $t\geqq T$ .
Integrating both sides of this inequality from $T$ to $t>T$, we get

$\phi(t, a, b)-\phi(T, a, b)>\frac{M^{1+\alpha}}{\alpha\lambda-1}(t^{\alpha\lambda-1}-T^{\alpha\lambda-1})$ .

As $\alpha\lambda>1$ , the right-hand member tends to $\infty$ as $ t\rightarrow\omega=\infty$ . Thus wt
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get the second relation

$\lim_{t\rightarrow\omega}\phi^{\prime}(t, a, b)=\infty$ .

LEMMA 4. Let $\phi(t, a, b)$ be a solution of (1) with $ b>b(a)\wedge$ and $z(y, C)$

be a corresponding solution of (2). Then

$\lim_{y\rightarrow\infty}y^{-3/2}z(y, C)=\alpha\sqrt{\frac{2\lambda(\lambda+1)}{\alpha+2}}$ .

PROOF. Since the relation (3) will give

(14) $y^{-a/2}z(y, C)=[\lambda(\lambda+1)]^{1/2}\{\alpha\lambda t^{-\alpha\lambda/2}[\phi(t, a, b)]^{-\alpha/2}$

$+at^{1-\alpha\lambda/2}[\phi(t, a, b)]^{-1-\alpha/2}\phi^{\prime}(t, a, b)\}$ ,

and we already know that

$\lim_{t\rightarrow\omega}y=\infty$ ,

what we have to show is that the right-hand side of (14) tends to
a $\sqrt{2\lambda(\lambda+1)}/(\alpha+2)$ as $ t\rightarrow\omega$ . However, as

$\lim_{t\rightarrow\omega}t^{-a\lambda/2}[\phi(t, a, b)]^{-\alpha/2}=0$

by (11), all we need is to show that

$\lim_{t\rightarrow\omega}t^{1-\alpha\lambda/2}\phi^{-1-\alpha/2}\phi^{\prime}=\sqrt{2/(\alpha+2)}$ ,

or, what is the same thing, that

$\lim_{t\rightarrow\omega}t^{2-\alpha\lambda}\phi^{-\alpha-2}\phi^{\prime^{2}}=2/(a+2)$ .

(i) The case when $a\lambda\geqq 2$ .
In this case

$t^{-\alpha\lambda+2}\phi^{-\alpha-2}\phi^{\prime^{2}}=\phi^{\prime^{2}}/(t^{\alpha\lambda-2}\phi^{\alpha+2})$

takes the form $\infty/\infty$ as $ t\rightarrow\omega$ from Lemmas 2 and 3. So, to apply
l’Hospital’s theorem, we consider

$\lim_{t\rightarrow\omega}[^{\frac{d}{dt}(\phi^{\prime^{2}})/\frac{d}{dt}(t^{\alpha\lambda-2}\phi^{\alpha+2})]}$ .
Then since
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$\frac{d}{dt}(\phi^{2})=2\phi\phi=2t^{\alpha\lambda-2}\phi^{1+\alpha}\phi^{\prime}$ ,

$\frac{d}{dt}(t^{\alpha\lambda-2}\phi^{\alpha+2})=(\alpha\lambda-2)t^{\alpha\lambda-\theta}\phi^{\alpha+2}+(a+2)t^{\alpha\lambda-2}\phi^{\alpha+1}\phi^{\prime}$ ,

we have

$\lim_{t\rightarrow\omega}[\frac{d}{dt}(\phi^{\prime^{2}})/\frac{d}{dt}(t^{\alpha\lambda-2}\phi^{\alpha+2})]$

$=\lim_{t\rightarrow\omega}[1/(\frac{\alpha\lambda-2\phi}{2t\phi}+\frac{\alpha+2}{2})]$ .

As $\phi/t\phi\rightarrow 0$ as $ t\rightarrow\omega$ by Lemma 3, we obtain the required result.
ii) The case when $\alpha\lambda<2$ .

In this case we write
$t^{-\alpha\lambda+2}\phi^{-\alpha-2}\phi^{r^{z}}=(t^{2-\alpha\lambda}\phi^{2})/\phi^{\alpha+2}$ .

Then the limit of the right-hand side as $ t\rightarrow\omega$ is again of the $form\infty/\infty$ .
Differentiating the numerator and the denominator and passing to the
limit, we get

$\lim_{\rightarrow\omega}[\frac{d}{dt}(t^{2-\alpha\lambda}\phi^{8})/\frac{d}{dt}(\phi^{\alpha+2})]$

$=\lim_{t\rightarrow\omega}[((2-a\lambda)t^{1-\alpha\lambda}\phi^{\prime^{2}}+2t^{2-\alpha\lambda}\phi^{\prime}\phi)/(a+2)\phi^{\alpha+1}\phi^{\prime}]$

$=\lim_{t\rightarrow\omega}[((2-\alpha\lambda)t^{1-\alpha\lambda}\phi^{2}+2\phi^{1+\alpha}\phi^{\prime})/(\alpha+2)\phi^{\alpha+1}\phi^{\prime}]$

$=\lim_{t\rightarrow\omega}\frac{2-a\lambda}{\alpha+2}\frac{\phi}{t^{\alpha\lambda-1}\phi^{\alpha+1}}+\frac{2}{a+2}$ .

Since $a\lambda>1$ , the first term is of the form $\infty/\infty$ . So, to apply 1’Ho.
spital’s theorem again, we consider the limit

$\lim_{t\rightarrow\omega}[\phi^{\prime}/\frac{d}{dt}(t^{\alpha\lambda-1}\phi^{\alpha+1})]$

$=\lim_{t\rightarrow\omega}[t^{\alpha\lambda-2}\phi^{1+\alpha}/((a\lambda-1)t^{\alpha\lambda-2}\phi^{\alpha+1}+(a+1)t^{\alpha\lambda-1}\phi^{\alpha}\phi^{\prime})]$

$=\lim_{t\rightarrow\omega}[1/((\alpha\lambda-1)+(a+1)t\phi^{\prime}/\phi)]$ .

As $ t\phi^{\prime}/\phi\rightarrow\infty$ by Lemma 3, this limit is equal to zero. Thus we have
obtained

$\lim_{t\rightarrow\omega}[t^{2-\alpha\lambda}\phi^{\prime^{2}}/\phi^{\alpha+}2]=2/(a+2)$ .
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\S 3. Explicit construction of the solution $\phi(t, a, b)$ with $ b>b(a)\wedge$ .
From Lemma 4 just proved, we now know that $z(y, C)$ correspond-

ing to $\phi(t, a, b)(b>b(a))\wedge$ is a solution of (2) such that

$\lim_{y\rightarrow\infty}y^{-3/2}z=\alpha\sqrt{\frac{2\lambda(\lambda+1)}{\alpha+2}}$ .

In view of this fact, we put

$ y^{-1/2}=\eta$ , $z^{-1}=\eta^{3}(\frac{1}{\alpha}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}}+u)$

and transform the equation (2) into the following one:

(15) $\eta\frac{du}{d\eta}=\frac{(2\lambda+1)(\alpha+2)}{\lambda(\lambda+1)\alpha^{2}}\eta+(2+\frac{4}{\alpha})u+\cdots$

where the unwritten part is a polynomial of $\eta$ and $u$ starting with the
terms of the second degree. What we need is the solution of (15) which
tends to zero as $\eta\rightarrow 0$ . Since $\eta=0$ is a singularity of Briot-Bouquet type
and $2+4/\alpha>0$ , such solution can be expressed as

$u=\sum_{m+n>0}u_{mn}\eta^{m}(A\eta^{24/\alpha}+)^{n}$

if $ 2+4/\alpha$ is not an integer, and as

$u=\sum_{m+n>0}u_{mn}\eta^{m}[\eta^{2+4/\alpha}$( $c_{1}$ log $\eta+A$) $]^{n}$

if $2+4/a$ is an integer. Here $A$ is an arbitrary constant and $c_{1}$ is a
constant (which might be zero). Thus we get

(16) $(z(y, C))^{-1}=\overline{y}3/2(\frac{1}{\alpha}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}}+\sum_{m+n>0}u_{mn}y^{-m/2}(Ay^{-1-2/\alpha}))$

if $ 4/\alpha$ is not an integer, and

(16’) $(z(y, C))^{-1}=y^{-s/2}(\frac{1}{\alpha}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}}+\sum_{+mn>0}u_{mn}y^{-m/2}[y^{-1-2/\alpha}(c$ log $y+A)]^{n})$

otherwise $(c=-c_{1}/2)$ .
The solution $y(t)$ of

$ty’=z(y, C)$

is then obtained from
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$\int_{\nu_{0}}^{y}\frac{dy}{z(y,C)}=\int_{t_{0}}^{t}\frac{dt}{t}=\log\frac{t}{t_{0}}$ , $y_{0}=y(t_{0})$ .

To carry out the integration on the left-hand side explicitly, we return
to the variable $\eta$ and replace the expression (16) or (16‘) by

$z(y, C)^{-1}=\eta^{3}F(\eta)$ ,

(17) $F(\eta)=\frac{1}{\alpha}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}}+\sum_{n+n>0}u_{mn}\eta^{m}(A\eta^{2+4/\alpha})^{\prime\prime}$

or

(17) $F(\eta)=\frac{1}{a}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}}+\sum_{m+n>0}u_{mn}\eta^{m}$ [$\eta^{2+4/\alpha}(c_{1}$ log $\eta+A)$]“.

Then we get

$\int_{\nu_{0}}^{\nu}z(y, C)^{-1}dy=-2\int_{\eta_{0}}^{\eta}F(\eta)d\eta$ , $\eta=y^{-1/2}$ , $\eta_{0}=y_{0}^{-1/2}$

Since $ y\rightarrow\infty$ as $ t\rightarrow\omega$ , we have the equality

$\lim_{\eta\rightarrow 0}\int_{\eta_{0}}^{\eta}F(\eta)d\eta=-\frac{1}{2}\lim_{t\rightarrow\omega}\log\frac{t}{t_{0}}$ .

Since $F(\eta)$ is bounded as $\eta\rightarrow 0$ , the left-hand side of the above equality
has a finite (negative) value. This implies the finiteness of $\omega$ . In othe]

words, there exists a finite positive number $\omega$ such that

$\lim_{\rightarrow\omega}\phi(t, a, b)=\infty$ .

Hence $\phi(t, a, b)(b>b(a))\wedge$ has a movable singularity at $ t=\omega$ .
$\omega$ being finite, $y(t)$ is given by

$\int_{0}^{v^{-1/2}}F(\eta)d\eta=-\frac{1}{2}\log\frac{t}{\omega}$ .

Now let us put

$\frac{1}{a}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}}=\gamma$ , $ 2+\frac{4}{a}=\mu$ .

Then termwise integration of (17) will give

(18) $\int_{0}^{\eta}F(\eta)d\eta=\gamma\eta[1+\sum_{n\cdot+’>0}\gamma_{n}.\eta^{n}(A\eta^{\mu})^{*}]=-\frac{1}{2}\log\frac{t}{\omega}$ .
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Also, if $F(\eta)$ is of the form (17’), we get

(18) $\int_{0}^{\eta}F(\eta)d\eta=\gamma\eta[1+\sum_{m+n>0}\gamma_{mn}\eta^{m}(\eta^{\mu}[c_{1}\log\eta+A])^{n}]=-\frac{1}{2}\log\frac{t}{\omega}$ .

This can be done by termwise integration and rearrangement of the
integrated series noticing that, in this case, $\mu$ is a positive integer.
Such rearrangement is justified by the absolute convergence of the
series (cf. [2], p. 309).

To obtain the explicit expression of $y(t)$ , we have to solve (18) or
(18) with respect to $\eta$ and then put $\eta=y^{-1/2}$ . This can be done with
the aid of Lemma 1. In fact, (18) and (18’) can be written as

$\eta[1+\sum_{m+n>0}\gamma_{mn}\eta^{m}(\eta^{\mu}[c_{1}\log\eta+A])^{n}]=\tau$ , $\tau=-\frac{1}{2\gamma}\log\frac{t}{\omega}$ ,

where $c_{1}=0$ if $\mu$ is not an integer. Thus Lemma 1 can be applied
directly and we get

$\eta=y^{-1/2}=\tau$ [ $1+\sum_{m+n>0}\hat{\gamma}_{mn}\tau^{m}$ ( $\tau^{\mu}[c_{1}$ log $\tau+A]$ ) ].

First let us suppose that $\mu=2+4/\alpha$ is not an integer. Then since
$c_{1}=0$ in this case, we have

$y^{-1/2}=\tau[1+\sum_{m+n>0}\hat{\gamma}_{mn}\tau^{m}(A\tau^{\mu})^{n}]$ .

Hence $y^{-1/2}$ is a holomorphic function of $\tau$ and $\tau^{\mu}$ in the neighbourhood
of $\tau=0$ . On the other hand,

$\tau=-\frac{1}{2\gamma}\log\frac{t}{\omega}$

is a holomorphic function of $t$ in the neighbourhood of $ t=\omega$ and admits
a Taylor expansion

$\tau=\frac{1}{2\gamma\omega}(\omega-t)(1+\frac{1}{2\omega}(\omega-t)+\cdots)$ .

Therefore $y^{-1/2}$ is a holomorphic function of $\omega-t$ and $(\omega-t)^{\mu}$ in the
neighbourhood of $ t=\omega$ . Hence it can be expressed as a double power
series in $\omega-t$ and $(\omega-t)^{\mu}$ in the following way:

$y^{-1/2}=\frac{1}{2\gamma\omega}(\omega-t)[1+\sum_{m+>0}a_{mn}(\omega-t)^{m}(\omega-t)^{\mu n}]$ .
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From this we obtain

$y^{1/\alpha}=(2\gamma\omega)^{2/\alpha}(\omega-t)^{-2/\alpha}(1+\sum_{n+>0}\hat{a}_{9n},(\omega-t)^{m}(\omega-t)^{\mu n})$

$=(\frac{2(a+2)\omega^{2}}{a^{2}\lambda(\lambda+1)})^{1/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{f\hslash+’>0}\hat{a}_{\alpha},(\omega-t)^{n}((\omega-t)^{2+4/\alpha})‘‘]$ .

Next suppose that $\mu=2+4/\alpha$ is an integer. In this case, $c_{1}\neq 0$ an
$ y^{-1/2}=\tau$ [ $1+\sum_{m+>0}\hat{\gamma}_{mn}\tau^{m}$ ( $\tau^{\mu}[c_{1}$ log $\tau+A]$)].

This expression shows that $y^{-1/2}$ is a holomorphic function of $\tau$ an
$\tau^{\mu}$[$c_{1}$ log $\tau+A$] in the neighborhood of $\tau=0,$ $\tau^{\mu}$[ $c_{1}$ log $\tau+A$] $=0$ . Since

$\tau=\frac{1}{2\gamma\omega}(\omega-t)(1+\frac{1}{2\omega}(\omega-t)+\cdots)$ ,

we have

$\tau^{\mu}$($c_{1}$ log $\tau+A$) $=(\frac{1}{2\gamma\omega})^{\mu}(\omega-t)^{\mu}(1+\cdots)$

$\times$ [$c_{1}\log(\omega-t)-c_{1}$ log $2\gamma\omega+A+\sum_{t=1}^{\infty}c_{r}(\omega-t)^{r}$]

$=(\omega-t)^{\mu}\log(\omega-t)B_{1}(t)+B_{2}(t)$

where $B_{1}(t)$ and $B_{2}(t)$ are power series of $\omega-t$ absolutely convergent $i$

the neighbourhood of $ t=\omega$ . Therefore $y^{-1/2}$ can be expressed as

$y^{-1/2}=\frac{1}{2\gamma\omega}(\omega-t)[1+\sum_{m+n>0}\tilde{\gamma}_{mn}(\omega-t)^{m}((\omega-t)^{\mu}\log(\omega-t))^{n}]$ .

From this we obtain

$y^{1/\alpha}=(2\gamma\omega)^{2/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{n+n>0}\delta_{m},(\omega-t)^{m}((\omega-t)^{\mu}\log(\omega-t))]$ .

Since $\mu$ is a positive integer, we can rearrange the above expressio]
into a form

$y^{1/\alpha}=(2\gamma\omega)^{2/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{k>0}^{\infty}S_{k}(t)]$ ,

$S_{k}(t)=\sum_{n*+\mu=k}\delta_{n},(\omega-t)^{m}((\omega-t)^{\mu}\log(\omega-t))^{n}$

$=(\omega-t)^{k}\sum_{n+\sim\mu=k}\delta_{mn}(\log(\omega-t))^{n}$

Since $m+n\mu=k$ implies $n=(k-m)/\mu,$ $\sum_{m+n(\iota=k}\delta_{mn}(\log(\omega-t))$“ is a poly
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nomial of $\log(\omega-t)$ whose degree is at most $[k/\mu]$ where $[]$ is the Gauss’
symbol. Hence we can write

$y^{1/\alpha}=(2\gamma\omega)^{2/\alpha}(w-t)^{-2/\alpha}[1+\sum_{m>0}(\omega-t)^{m}q_{m}(\log(\omega-t))]$

$=(\frac{2(\alpha+2)\omega^{2}}{\alpha^{2}\lambda(\lambda+1)})^{1/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{m>0}(\omega-t)^{m}q_{m}(\log(\omega-t))]$

where $q_{m}(\xi)$ is a polynomial of $\xi$ whose degree is at most $[m/\mu]$ .
Inserting these expressions of $y^{1/\alpha}$ into

$\phi(t, a, b)=[\lambda(\lambda+1)]^{1/\alpha}t^{-\lambda}y^{1/\alpha}$

and noticing that

$t^{-\lambda}=\omega^{-\lambda}(1+\frac{\lambda}{\omega}(\omega-t)+\cdots)$ ,

in the neighbourhood of $ t=\omega$ , we obtain the following expression of
$\phi(t, a, b)$ which is valid in the neighbourhood of its movable singularity
$ t=\omega$ :

$\phi(t, a, b)=(\frac{2(\alpha+2)}{a^{2}\omega^{\alpha\lambda-2}})^{1/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{m+n>0}c_{mn}(\omega-t)^{m}((\omega-t)^{2+4/\alpha})^{n}]$ ,

if $4/\alpha\neq integer$ ,

$\phi(t, a, b)=(\frac{2(a+2)}{a^{2}\omega^{\alpha\lambda-2}})^{1/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{m>0}(\omega-t)^{m}p_{m}(\log(\omega-t))]$ ,

if $4/\alpha=integer$ ,

where $p_{n}(\xi)$ is a polynomial of $\xi$ whose degree is at most $[m/\mu]=$

$[m\alpha/(2\alpha+4)]$ .

\S 4. The solution curve of $z(y, C)$ with $C<\hat{C}$ .
To study the behaviour of $\phi(t, a, b)$ with $ b<b(a)\wedge$ , we must examine

the corresponding orbit of the system (6) in detail.
As we already know, the system has $(0,0)$ and $(1, 0)$ as critical

points and $(1, 0)$ is a saddle point. There exist infinitely many orbits
tending to $(0,0)$ as $ s\rightarrow-\infty$ with the common tangent $z=aNy$ at $(0,0)$ .
Among them, one and only one orbit tends to $(1, 0)$ as $ s\rightarrow\infty$ which is
represented by a curve $z=z(y,\hat{C})$ .

Also, as we can easily observe from (6), z-axis is an invariant set
of the system. If $\alpha=1$ , it consists entirely of critical points. Other-
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FIGURE 2

wise it consists of three orbits one of which is a critical point $(0,0)$ .
Let us consider an orbit corresponding to $\phi(t, a, b)$ with $ b<b(a)\wedge$ . 1

is represented by a curve $z=z(y, C)$ with $C<\hat{C}$ . Hence it is locate
below the curve $z=z(y,\hat{C})$ . As one can observe from Figure 2, this orbi
crosses y-axis somewhere between $0$ and 1 and goes into the region

$D$ : $0<y<1$ , $z<0$ .
Since $dy/ds=\alpha yz<0$ in $D$, the point $(y(s), z(s))$ on the orbit moves lefl
wards as $s$ increases as long as it stays in $D$.

Now on the segment $0<y<1$ on y-axis, we have

$\frac{dz}{ds}=\lambda(\lambda+1)a^{2}(y^{3}-y^{2})<0$ .

Consequently $(y(s), z(s))$ can never leave $D$ and it keeps on moving $t$

the left as $s\rightarrow\infty$ . Thus we have the following alternative.
(i) $(y(s), z(s))$ tends to $(y_{\infty}, -\infty)$ as $ s\rightarrow\infty$ where $0\leqq y_{\infty}<1$ .
(ii) $(y(s), z(s))$ tends to a critical point other than $(1, 0)$ as $ s\rightarrow\infty$

In the case (i), we have to have

$\lim_{\rightarrow\infty}\frac{dy}{ds}=\lim_{\nu\rightarrow y_{\infty}}\alpha yz(y, C)=0$ .

Since $ z\rightarrow-\infty$ as $ s\rightarrow\infty$ , this is possible only when $y_{\infty}=0$ . Hence, in th
case (i),

$\lim_{\rightarrow\infty}y(s)=0$ .
In the case (ii), we also have

$\lim_{\rightarrow\infty}y(s)=0$
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because every critical point other than $(1, 0)$ lies on z-axis. (Detailed

investigation shows that when $a<1$ , the case (i) takes place and when
$a\geqq 1$ , the case (ii) takes place.)

As $y=0$ implies $\phi(t, a, b)=0,$ $\phi(t, a, b)$ tends to zero as $t\rightarrow\omega(0<\omega\leqq\infty)$ .
If $\omega=\infty$ , then $\phi(t, a, b)$ is a bounded solution of (1). This is however
absurd because the boundedness of the solution implies $ b=b(a)\wedge$ . Hence
$\omega$ must be finite.

Since $\phi(t, a, b)>0$ for $ 0<t<\omega$ and $\phi(\omega, a, b)=0$ ,

$\phi^{\prime}(\omega, a, b)\leqq 0$ .

As $\phi(\omega, a, b)=\phi(\omega, a, b)=0$ implies $\phi(t, a, b)\equiv 0$ because of the uniqueness

of the solution, we must have

$\phi^{\prime}(\omega, a, b)<0$ .

Thus it follows that

$\lim_{t\rightarrow\omega}\frac{t\phi’}{\phi}=-\infty$

From this and (4):

$ z/y=ty^{\prime}/y=\alpha tx’/x+\alpha\lambda$ ,

we get

$\lim_{\rightarrow\infty}\frac{z(s)}{y(s)}=\lim_{y\rightarrow 0}\frac{z(y,C)}{y}=-\infty$

\S S. The solution $\phi(t, a, b)$ with $ b<b(a)\wedge$ .

The transformation
$z\rightarrow w=yz^{-1}$

will change (2) into

(19) $y\frac{dw}{dy}=\frac{1}{\alpha}w-(2\lambda+1)w^{2}+\lambda(\lambda+1)\alpha w^{3}-\lambda(\lambda+1)\alpha yw^{3}$ .

Then from what we have shown in the preceding section,

$w=y(z(y, C))^{-1}$ , $C<\hat{C}$

is a solution of (19) such that
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$\lim_{l\rightarrow 0}w=0$ .
As $y=0$ is a Briot-Bouquet type singularity and $1/\alpha>0$ and also the

right-hand side of (19) is divisible by $w$ , such solutions are given by
(20)

$w=\sum_{m+n>0}w_{m},y^{m}(By^{1/\alpha})$ , $w_{01}=1$ ,

even if $ 1/\alpha$ is an integer. Here $B$ is an arbitrary constant.
If $1/a$ is not an integer, it is known that (19) has one and only one

holomorphic solution which tends to $0$ as $y\rightarrow 0$ . This solution is obtained
by putting $B=0$ in (20). Hence it is given by

$w=\sum_{n=1}^{\infty}w_{m0}y^{m}$

However $w\equiv 0$ is also such a solution. Therefore
$w_{m0}=0$ , $m=1,2,$ $\cdots$

Consequently $By^{1/\alpha}$ is the term of the lowest degree in the expression
(20).

If $1/a$ is an integer, say $N(>0)$ , then the double power series in (20)
can be rearranged into a single power series

$\sum_{k=1}^{\infty}\alpha_{k}y^{k}$

As the right-hand member of (19) is divisible by $w$ , it can easily be
proved that

$\alpha_{k}=0$ , $k<N$

and $a_{N}$ is arbitrary. So $a_{N}y^{N}=a_{N}y^{1/\alpha}$ is again the term of the lowest
degree.

Thus, in both cases, we can write

$w=y(z(y, C))^{-1}$

$=By^{1/a}[1+\sum_{n+>0}w_{m},y^{m}(By^{1/\alpha})^{n}]$ .
Hence we get

$(z(y, C))^{-1}=By^{1/\alpha-1}[1+\sum_{m+’>0}w_{mn}y^{m}(By^{1/\alpha})‘‘]$ .
$z(y, C)$ being negative for sufficiently small $y,$ $B$ must be negative. So
we shall put $B=-1/\Gamma(\Gamma>0)$ hereafter.
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The solution $y(t)$ of $ty’=z(y, C)$ such that

$\lim_{t\rightarrow\omega}y(t)=0$

is then obtained from

$\int_{0}^{y}(z(y, C))^{-1}dy=\int_{\omega}^{t}\frac{dt}{t}=\log\frac{t}{\omega}$

Carrying out the termwise integration of the left-hand side and dividing
both sides by $-\alpha$ , we obtain

$\Gamma^{-1}y^{1/\alpha}[1+\sum_{m+n>0}\beta_{mn}y^{m}(\Gamma^{-1}y^{1/\alpha})^{n}]=-\frac{1}{\alpha}\log\frac{t}{\omega}$ .

If we put $\Gamma^{-1}y^{1/\alpha}=\zeta,$ $y=(\Gamma\zeta)^{\alpha}$ in the above equality and then apply
Lemma 1, we immediately have

$y^{1/\alpha}=-\frac{\Gamma}{\alpha}\log\frac{t}{\omega}[1+\sum_{m+n>0}\hat{\beta}_{mn}(-\frac{1}{a}\log\frac{t}{\omega})^{m}(-\frac{\Gamma}{\alpha}\log\frac{t}{\omega})^{a}]$

which shows that $y^{1/\alpha}$ is a holomorphic function of $-\log(t/\omega)$ and
$(-\log(t/\omega))^{\alpha}$ when $t$ is sufficiently close to $\omega$ . Applying the same argu-
ment as was used at the end of \S 3, $y^{1/\alpha}$ can be expressed as a double
power series in $\omega-t$ and $(\omega-t)^{\alpha}$ in the following form:

$y^{1/\alpha}=\frac{\Gamma}{\alpha\omega}(\omega-t)[1+\sum_{m+n>0}\tilde{\beta}_{mn}(\omega-t)^{m}(\omega-t)^{\alpha n}]$ .

Substituting it into

$\phi(t, a, b)=[\lambda(\lambda+1)]^{1/\alpha}t^{-\lambda}y^{1/\alpha}$

and noticing that

$t^{-1}=\omega^{-\lambda}(1+\frac{\lambda}{\omega}(\omega-t)+\cdots)$

in the neighbourhood of $ t=\omega$ , we get the following expression of
$\phi(t, a, b)$ valid in the neighbourhood of $ t=\omega$ :

$\phi(t, a, b)=A(\omega-t)[1+\sum_{m+n>0}b_{mn}(\omega-t)^{m}(\omega-t)^{\alpha}]$ ,

$A=\frac{\Gamma(\lambda(\lambda+1))^{1/\alpha}}{\alpha\omega^{\lambda+1}}$ .

This expression shows that $ t=\omega$ is a movable branch point of the solu-
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tion if $a$ is not an integer.

\S 6. Summary of the results obtained.

Summarizing the results obtained so far, together with those men
tioned in [1], we get the following theorem.

THEOREM. Let $x=\phi(t, a, b)$ be a solution of the diferential equatiot

$x^{\prime\prime}=t^{\alpha\lambda-2}x^{1+\alpha}$ , $\alpha>0$ , $\alpha\lambda>1$ ,

such that

$\lim_{t\rightarrow 0}x=a$ , $\lim_{t\rightarrow 0}x^{\prime}=b$ , $ 0<a<\infty$ , $|b|<\infty$

Such a solution actually exists and has following properties.
1) $\phi(t, a, b)$ admits following double power series expression in $th_{(}$

neighbourhood of $t=0$ :

$\phi(t, a, b)=a(1+\sum_{n+\cdot>0}\gamma_{n},(\frac{a^{\alpha}}{\lambda(\lambda+1)}t^{\alpha\lambda})^{m}(\frac{ab}{a}t)^{n})$ .

2) For each a $(0<a<\infty)$ , there exists one and only one value $ b(a)0_{d}\wedge$

$b$ such that $ x=\phi(t, a, b(a))\wedge$ is defined and bounded for $ 0<t<\infty$ togethez
with its derivative. In the neighbourhood of $t=\infty,$ $\phi(t, a, b(a))\wedge$ can $b_{(}$

expressed in the following form:
$\phi(t, a, b(a))=[\lambda(\lambda+1)]^{1/a}t^{-\lambda}(1+\wedge\sum_{>0}c_{n}t’\mu/\alpha)$ ,

where $\mu$ is a negative eigenvalue of a matrix

$\left(\begin{array}{ll}0 & \alpha\\\lambda(\lambda+1)a^{2} & (2\lambda+1)\alpha\end{array}\right)$ .

3) If $b>b(a),$$\phi(t, a, b)\wedge$ has a movable singularity at $ t=\omega(0<\omega<\infty$

and

$\lim_{\rightarrow\omega}\phi(t, a, b)=\infty$ .
In the neighbourhood of $t=\omega,$ $\phi(t, a, b)$ can be expressed as

$\phi(t, a, b)=(\frac{2(a+2)}{\alpha^{2}\omega^{\alpha\lambda-2}})^{1/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{n+n>0}c_{mn}(\omega-t)^{n}((\omega-t)^{2+4/\alpha})]$ ,

if $4/a$ is not an integer, and as
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$\phi(t, a, b)=(\frac{2(\alpha+2)}{a^{2}\omega^{\alpha\lambda-2}})^{1/\alpha}(\omega-t)^{-2/\alpha}[1+\sum_{m>0}(\omega-t)^{n}p_{m}(\log(\omega-t))]$ ,

$p_{m}(\xi)$ : a polynomial of $\xi$ whose degree is at most $[ma/(2a+4)]$ ,

if $ 4/\alpha$ is an integer. Here $\omega$ naturally depends on $a$ and $b$ .
4) If $ b<b(a)\wedge$ , then

$\lim_{t\rightarrow\omega}\phi(t, a, b)=0$

for some finite positive $\omega$ , and in the neighbourhood of $t=\omega,$ $\phi(t, a, b)$

is expressed in the following form:
$\phi(t, a, b)=A(\omega-t)[1+\sum_{m+’\iota>0}b_{mn}(\omega-t)^{m}(\omega-t)^{\alpha n}]$ .

Here $A$ and $\omega$ depend on $a$ and $b$ , and $ t=\omega$ is a movable branch point

of the solution unless $\alpha$ is an integer.
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