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Introduction

Recently, much work has been done to investigate for a parametrized
family of continuous mappings on an interval how the structure of orbits
for such maps changes as the parameters vary. These investigations
are motivated by the desire to analyze chaotic phenomena frequently
observed in nature, in studying how the behavior of dynamical systems
(appearing in various models such as Lorentz models, ecological models
or models describing chemical reactions and so on) is influenced by the
change in characteristic parameters and turns into a turbulent state.

For the case of one-dimensional systems, attempts have been made
to characterize how the change in parameter values gives rise to the
existence of unstable non-periodic orbits; such characterization is done
by describing the nature of periodic points that appear; for instance,
by the appearance of periodic points of period 3 [5]. If the mapping in
question possesses an invariant measure, the existence of unstable non-
periodic orbits suggests that the mapping may have ergodic or mixing
properties. Furthermore, it is possible to measure the “size” of the set
of points having non-periodic orbits, in terms of the “size” of the support
of the invariant measure. It seems to be also natural to explain the
appearance of the so-called “window” phenomena, observing that in such
cases the invariant measure is not absolutely continuous with respect to
the Lebesgue measure on the interval.

In this paper, we concentrate ourselves on the study of unimodal
linear transformations on the unit interval [0, 1], which are the simplest
one-dimensional models. Let us define a family {f,} of mappings of the
unit interval [0, 1] in the following way, where the parameter p is
determined by a pair of real numbers (a, b):

fu(x) is linear with the slope a on the sub-interval [0, ¢] for some
c(0<c<1), linear with slope —b on the sub-interval [¢, 1], and is
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continuous at ec.

In this paper, we shall deal only with the case a=b. The case
a#b will be treated in the subsequent paper. The detailed consideration
of the orbit structure for the mapping f., with a#b can be done,
more or less, by extending the methods done for the case a=5b; in this
sense, the case a=b contains most of the essential features. However,
for some pair (a,b) with a=b, in sharp contrast to the case a=b, the
so-called “window” phenomena will take place. Namely, there exists a
unique periodic orbit, and for all the points « in [0, 1], except for a set
of Lebesgue measure 0, {f,;(x)} converges to this periodic orbit. On
the other hand, there exists a periodic point of period 8 for Siany, and
consequently there are uncountably many points (constituting a set of
Lebesgue measure 0, nevertheless) whose orbits under S,y are all non-
periodic and unstable.

The mappings f.,., which we shall consider in this paper are defined
explicitly as follows:

ax for ze [0, l]
2

f(a.a)(x) = 1
—ax+a for xe(—z—, 1] ,

where 0<a=<2. We note that in case a<1, the orbit under Sfi.ay Of
every point z €[0, 1] will converge to the unique fixed point 0, while if
a=1, every point x€[0, 1/2] is a fixed point of f,., and furthermore
Se.l1/2, 1]1=[0, 1/2]. Thus, when a<1, the transformation f,. has a
trivial structure. Consequently, we shall discuss from now on only the
case for 1<a=<2. We see that in each such case, fia,e» has a unique
fixed point other than 0, and this fixed point is unstable. Since a>1,
Ja,a(1/2)=a/2>1/2, and f, ., (a/2)=a(l—a/2)<1/2, it is easy to see that
f(a,a) (a‘/2y 1]=[0’ a(l—a/z)) and that f(a.a) (09 a(l_a’/z))D(O) a(l—a’/z))'
Furthermore, for each xz¢(0, a(l1—a/2)), there exists an integer N
(depending on x) such that f3.(x)€[a(l—a/2), a/2] for all =N and
faa@)<fGo5@) for 0=m<N. We also see that f,.,[a(l—a/2), a/2]=
[a(1—a/2), a/2]. Thus, the set (0, a(l—a/2))U(a/2, 1) is transient for
Se,r» While the set [a(1—a/2), a/2] is absorbing. Consequently, as far
as asymptotic behavior of f, . is concerned, it is enough to consider the
restriction of f,. to the subset [a(1—a/2), a/2]. It is easy to see that
this restriction of fi, . is isomorphic to the map of [0, 1] onto [0, 1] which
we denote from now on by f,, defined as follows:
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ar+2—a for xe\:O, 1———1—>

a
So(@)= 1
—ax+a for xe|:1——, 1] ,
a

where 1<a=<2.

By the results of Lasota and Yorke [4], and Li and Yorke [6], we
know that there exists a unique ergodic invariant measure for each such
f., which is absolutely continuous with respect to the Lebesgue measure,
and that the density function of the invariant measure is equal almost
everywhere to some function of bounded variation. Furthermore, if
a>1"2, then Theorems 1 and 2 of Bowen [1] imply that f, is a weak
Bernoulli transformation.

This paper contains two main theorems. In the first theorem, the
density of the invariant measure mentioned above is determined explicitly.
In the second, a representation of f, by means of a symbolic dynamical
system is obtained.

In a subsequent paper, explicit determination of the density of the
invariant measure will be made for the transformations fi,,; with a #= b,
and a detailed analysis of the “window” and “islands” phenomena will
be presented. Furthermore comparison with the case for a=b will be
made carefully by utilizing the representation of f.,, by a symbolic dy-
namical system.

In concluding these introductory remarks, we would like to thank
Professors Masaya Yamaguchi, Yuji Ito, Yoichiro Takahashi and Toshio
Niwa for their interest on the problem and their valuable advices.

§1. Some definitions and notations.

In part I, we consider the transformation f, on [0,1] for 1 <a =2
defined by

ar+2—a for xe[O, 1—i]
a

(1) Sa(@)= .
—ax+a  for we[l—-—l—, 1] .
a

Let us say f. to be of Markov type if for some natural number =
(2) fX0) =0 and f¥0)#0 for 1=<k=n—1,

that is, 0 is a periodic point of f, with period n. We say a Markov
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type transformation f, to be of even type (resp. odd type) if the number
s defined by

(3) s=# (b 1sk=n—3, fa"(0)>l—%}

is even (resp. odd).

To represent f, by a symbolic dynamical system, it is convenient
to define the generator (the fundamental partition) of f, separately
as follows: In the case of odd Markov type, define the partition
{I,, I} of the interval [0, 1] by

(4) I0=[0,1——%] and I1=(1———i-, 1],

and call it the fundamental partition of f,; in the case of even Markov
type or of non-Markov type, define {I,, I,} by

(5) L,:[o, 1-—%) and Il=( —%, 1].

We will show in §3 that these partitions give the generator for the
respective cases.

Denote by 2 the cartesian product {0, 1}**, where N* means the set
of non-negative integers. We consider theproduct topology defined from
the discrete topology on the coordinate space {0, 1}. For an element o
of 2, w(n) means the n-th coordinate of w. If we write

0 for zel,
(6) s(2)= 1 for zelI,,
and
(7) wa(n)=¢,(fe(x)) ,

we have an element w: of Q2 for every x€[0, 1]. Denote by =, the
mapping from [0, 1] to 2 which maps « to ®w3. Then it is easy to show
that the following commutative relation holds:

(8) o, (@) = T,ofu(x) for every wzel0,1],

where o is the shift operator on 2.
Define S(k, ), for a non-negative integer & and we 2, by
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(9) S0, w)=1
k—
1 if le(j) is even
Sk, w)= -
—1 if S w() is odd, for k=1,
5=1

and write simply Sk, x) for Sk, w3). If we write
10) a@)=1—a '(1+(—1)==),
then it follows from (1) that

(11) r=a@®)+a (=1 f(x) .

By using (11) successively, we obtain

(12) 2= 3 a™*S(k, D fH@) +a "S(n, 2)fH()

=3, a*S(k, D)) ,
and therefore, in view of the following relations
(13) a(fi@)=1—a"(L+(=1)%*),
(14) Sk, x)(—1)*® =S(k+1, x) ,
we have the following identity:
(15) r=1— g; a~* Sk, x) .

We call (15) the f,-expansion of x. This relation also shows that the
fundamental partition {I,, I,} is the generator of f..

§2. The invariant measure and the periodic orbits.

In this section, we derive the density function of the invariant
measure for f,, and then determine the support of this density function
and the type of the periodic orbits of f,.

Define a function k,(x) on [0, 1] by

(16) ho(@) =3, a7*S(n, O)lesz0.()

where 1, is the indicator function of A. It can be shown that &, is a
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function of bounded variations. Note that 4.(x) can be written as

17) ho(x)= 3, la_”]-[f:(om](m)"" S, a "l () .

n:S(n,0)= 7n:S(n,0)=-—1

THEOREM 2.1. (i) h.(x) is the demsity function of the invariant
measure for f, for 1 <a < 2.

(ii) If V'2<a, then h.(x) is positive for every € [0, 1].

PrOOF. To show (i), it is enough to show
(18) h,,(x)=a~1h.,(lx—2—"‘-‘l 1[2_a,,](x)+a‘1ha(—im+1) ae.zelo,1],
a a a

19) h(x) 2 0.

First we consider the case x €[0, 2—a). The right hand side of (18) is
20) a~th( —Za+1) =35 ¢S, Olyge(—2o+1)
a 2=0 a

= 3, a S (nm, 0)1[f:(o) ,1]( — %x + 1)

n:wg (n)=0

+ S aemsm, 0)1[,:(0,,1](—%“1).

n:0l (=1

If wi(n)=0, then f}(0)<1—1/a<—(1/a)x+1, so the first term of the right
hand side of (20) is equal to Dinilm=o @ **1S(n, 0). The second term is
equal to

(21) 2, a~"™8(n, 0)— 3 a*+vS(m, O)l[f:+1(0),1](x)

n:wg(a)-—:l n:m?l(n)=1

8o, the left hand side of (20) equals

(22) S a8, 0+ 3 a "+ S(n+1, 0) 1 m+10,11(%)
n=0

ﬂ:m%(ﬂ):l

=3 a8, 0+ 3, a"S(m, )30, ,

7n=0

here the last equality follows from the fact that w)(n)=0 implies £**!(0)>
2—a>z. So, from (15), we get

(23) a“ha(—%+1)=1+ ;:‘,1 a=*S(n, )11/, (%)
=he(x) .
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In the case x €[2—a, 1], we have analogously

24) a,“ha<——lx+l)=1+ S @ S(n+1, 01y, u®) ,
a

.o -
n:0, (n)=1

and also we have

a a 7n=0 a a

Note that if wi(n)=1 then f*(0)>2—a>1/a)r—(2—a)/a. Then we get

a“lha(—i—x-— 2 ; a ) = 3, a "*§(n, 0)1[f’;<o>,1]<%w ~2 ; ¢ )

el (z) =
n.ma(m)-—o

= 3, a *S(n+1, O)l[f:+1(0),1](x)’

c0? =
niw, (1) =0

and so we have

(26) a;lha<%x — 2; a ) + a"lh,,(— %x + 1)

=31 a7S(, O)Lyyz0.0(@) =ho(@) -

From (15) and the formula >3, a *=a/(a—1), it follows that

n__ 2a—a?
2 = ’
( 7) n;s(n,0)=—1a 2((1:—1)

so, if a>V'2, we get
(28) h(x)=1— >, a*>0 for every xz€|0, 1] .

%n:S(n,0)=—1
The relation %,(x) = 0 in the case of 1<a<V 2 will be given in Theorem
2.3.
Let a, be the maximal root of the equation ¢*+'—2¢*'—1=0. Then
it is easy to show that 2>a,>a,., and lim,_, a,=V" 2.

THEOREM 2.2. (1) f. has a periodic point with period 2k+1 if and
only if a=a,.

(2) f. has a periodic point with period 2™(2k+1) if and only if
a=ai*". .

ProoF. (1) If a=a,, then 0 is a periodic point with period 2k+1,



228 SHUNJI ITO, SHIGERU TANAKA AND HITOSHI NAKADA

that is, @¢=011---1. If a>a,, then w3 <011---1, and so there exists some

x € [0, 1] such that wz=011-.-1, if we use the assertion of Theorem 3.1.
On the other hand, if a<a, then the periodic orbit which lies in the
interval [(a*—2)/a(1+a), 1] has only even periods, so, if f, has a periodic
point with period 2k+1, it lies in (0, (a*—2)/a(1+a)). However it con-
tradicts to the fact that any z e (0, (a®>—2)/a(1+a)) satisfies f2**+ig> a?+1.
The second part of the theorem will follow from Theorem 2.3.

Let 2*""'<a<2"*" and define the intervals AP for 0<k<2"—1 by

2m 1k k i —
29) Ar— [fa (1)',.fa(1)] Tf Sk, D=1
[F2U, f275 0] if Sk, D=~1.

THEOREM 2.3. Let 2" <a<2'*". Then we have

(i) f. maps AT onto Ap., homeomorphically for 0<k<2"—2, and
Alu_, onto AP.

(ii) fi"|Ar is isomorphic to f,™ for every 0<Ek<2"—1, where
™| Ay 18 the restriction of fi™ to Ap.

(iii) UL Ar is the support of the demsity function h,(x).

To prove this theorem, we prepare several lemmas.

LEMMA 2.1. If asV'2, then 0<1—(l/a)<fi)<a/(a+1)<fil)<1.
If we write A,=[fi(1), 1] and A,=[0, fi(1)], then it follows that f,A,= A,
and f,A,=A,.

LEMMA 2.2. (A4, f2|A)) is isomorphic to ([0, 1], f.e).
PROOF. Define a map @ of A, onto [0, 1] by

)~z
(30) P(x) O

then it is easy to check that @oflop™i=f,..
LEMMA 2.3. S,(2n, x)=S.:(n, P(x)) for every xc A,.
Proor. It follows from Lemmas 2.1 and 2.2 that

w3(2k) =1—wf" (k)

31
1) w;2k+1)=1,
so we can calculate S,(2n, ) by

i%—-1

S.@n, 2)=(—1)F="s"
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nf‘:lwg(zk)
=(-Dr -

@?8%) (k)

=(— l)zn( 1)k 202
—Saz(’ny q’(ﬂ;)) .

LEMMA 2.4. If a<V 2, then

| S a”"ha(p(®))  of we A
(32) ho(2) = 0. of fa)<z<fil)
| a”ha(y(x))  if xE A,

where @ 18 the ome given by (30) and + is a map of A, onto [0, 1] defined
by

—x—fild)
(33) v(@) =7 D

PrOOF. It follows from Lemma 2.1 that f2"(0) € A4, and f2**'(0) € A,.
So, for fi()<x<fi(1), we get

*

h.(x)

l

a**S,(2n, 0)

(34) ( 7" S.2(n, 1)

i
> ﬁMS gM*

|

And for xc A4,, we get

 ha@) =3, a7 8.(2m, 0Ly (@)
(35)
—Z a*S,(2n, 0)— Z a~*S.(2n, 0)1;,, 2n) () -

n=0

The first term is equal to 0 as in (34). From Lemma 2.2 it follows

(36) Pofe"(0)=fep(0)=/37(0) ,

so, if we notice that @ is monotone decreasing, then the second term of
(35) is equal to

@37 Z a 2"S.,Lz('n, 1, 0)1; /75 10,1(P()

n=0
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=a—z§o (@)™"Sax(n, 0)Lism, 0, 13(P())

=a"h.:(P(2)) .
For z e A,, from (18) it follows

(38) ho(x) =ah.(f.(x))
=0 o (@of.(®))
—a R (@) -

PROOF OF THEOREM 2.3. To prove Theorem 2.3, it is sufficient to
apply Lemma 2.4 repeatedly.

§3. Representation of f, to subshift.

In this section we consider the representation of f, by a symbolic
dynamical system more precisely (cf. [2]). Let us define an ordered
relation in the space 2. For w, w' €2, we write w<w' if there exists
a natural number »n such that

(39) ok)=w'(k) for O0<k=n—1
and
(40) w(n) <w'(n) if Sn, w)=1

‘ w(n)>w'(n) if Stn, w)=-1.
Define a function p on 2 by
(41) o(@)=1—3 S(n, @)=+ .

It is easy to see that p is continuous, and from (15) it follows 0T (x) =
z. By using the relation

(42) S(n, @)Sk, o*"@w)=S(n+k, w),
we get
(43) S(n, w)o(o"w)=S(n, ®)— é 0~ +S(n+k, @) .

Denote by Y, the set =,[0, 1] and let X, be the closure of ¥,. Then
it is clear that o maps Y, onto [0, 1], and X, onto [0, 1].

LEMMA 38.1. (i) For any =, 2’ €[0, 1], x<x’ implies 7,(x)<7.(z').
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(ii) For any w, '€ Y,, <@’ implies o(w)<p(@’).
(iii) For any o, »' € X,, <@’ implies o(w)=p(@").

PROOF. These follow easily from the definition of the ordered relation
and the continuity of p.

LEMMA 38.2. For any 1<a=2,

(44) lim 7, (@)=w? and lim7,(®)=w;,
ztl

20
and so, for any w e X,, it follows that

o@)=0 if and only if w=w,

45
(45) plw)=1 if and only if @w=w, .

PRoOF. The existence of limits follows from Lemma 3.1. In order
to prove lim,, 7. (x)=w?, we consider the following several cases:

Case (i): The case of non-Markov type.
In this case, we have
(46) f0) = 1-——(]-; for every n.

So, for any natural number N, ther exists a 6>0 such that for every
x € (0, ) and every n=N,

(47) |f2(0) —fa (@) | <

£O-(1-1)

’

which means that wz(n)=wi(n). So we have lim, ,7,.(x)=®;.

Case (ii): The case of even Markov type (with period n).
In this case we have

(48) f;‘(O);tl——i- for every k=n—3,

(49) £2-%(0) =1——% and S(n—2, 0)=1.

From (48), there exists a 6>0 such that for every x e (0,) and every
kE<n-—3,

(50) | fa(0) —fa(2) | <

rro-(1-<)| »

which means wi(k)=w?(k). But, from (49) it follows
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(51) f:‘*(w)>1-—% ,

which means wl(n—2)=wi(n—2), by the definition of the generator {I,, I,}.
In the same manner, we can show that, for any natural number m, there
exists a 6’>0 such that wi(k)=w'%) for every x€(0,0") and every k <
mn—2, so we have lim,,, 7, (x) =w!.

Case (iii): The case of odd Markov type.
We can prove that lim,,,7,(x)=w? in the same manner as in the Case
(ii).

If we notice that ow:=w?, we also get lim,,, 7,.(x) =w..

LEmMMA 3.3. (i) If W, =8UP, <, T, (Y) # w02, then there exists a natural
number n such that

(52) o (k)=wik)  for 0<k=n—1,
(53) ;" (n) + wi(n)

and

(54) oW =0""wi=w, .

(ii) The similar assertion holds Jor wit=inf, ., w,(y).

PROOF. We only prove the assertion (i), since the assertion (ii) can
be shown in the same manner. To simplify the notations, we write @™
for w;~ and @ for w?. Suppose (52) and .(63) are satisfied; then from
(15) we get

(55) =z=p(w")
1— ki_‘, a8k, @) —a" P8 +1, @) — S a ¢S, @) ,

=nt2

I

(56)  z=p(w)
=1-3 4 ¢+95(k, ©) —a=*S(n+1, @) — 3 "+ 08(k, o) .
=0 =n+2

From (43) and (52) it follows that

(57 S(n+1, o) —S(n+1, w)
=—8S(n+2, ®")1—p(@" 0 ) +S(n+2, w)(1L— o(o*w)) .

From (53), the left hand side of (57) is equal to 2 or —2, so we get
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(58) o~ (n+D)=w®r+1)=1 and p(c"?*w)=p(0""*w)=0,
which implies (54), by virtue of Lemma 3.2.

ProrosITION 3.1. (i) As a map from X, to [0, 1], o is ome-to-one
except for a countably many points of X,.
(ii) For any xze€l0, 1], o7 (x) contains at most two points.

Proor. If we notice that
(59) o i(x)={we X,; 0 =w=wi'},

then it is easy to prove the assertions, by using Lemma 3.3.

Let W* be the space {0, 1}*», when N,={0, 1, 2, - - -, »—1}, and consider
the ordered relation on W" by restricting the order < on 2. The shift
operator o can be considered as a mapping from W* into W*™* for each k.
For w e 2, denote by w[0, n) the natural projection of @ on W*. Namely,

(60) [0, n)=(®(0), @), -+, ®(n—1)) .
LEMMA 3.4. Let Y» be the subset of W" defined by
(61) Yr={ue W*; u=wi0, n) for some x<[0, 1]},
then we have
(62), Yr={uec W" cfu=w’[0, n—k) for every 0=k<n}.

PROOF. Let us prove the assertion by induction on n. In the case
of n=1, we have Y:={0, 1} and (62), is evident. Assume that (62), holds.
. Let u e Wt satisfy

(63) oc*fuzw’[0, n+1—k) for every 0=k<n+1;

then oue Y. If u(0)=1 and cu=+wi[0, n), then cu=wi[0, n) for some
xe[0,1). It then follows that u=w2[0, n+1) for &’'=—1/a)e+1. If w(0)=
1 and ocu=w}[0, n), then, by using Lemma 3.2, we get cu=w;[0, n) for
some z &[0, 1), and thus we reach the same conclusion. If u(0)=0, then
ou=0wl[0, n), which means that cu=w?0, n) for some xe€[2—a,1). It
follows that u=w?[0, n+1) for #'=1/a)x—(2—a)/a. Thus we get

(64) Yo {ue W o'u=wl[0, n+1—k) for every 0=k<n+1}.
The converse inclusion is evident, and we have (62),+,.

THEOREM 3.1 (cf. [2]). Omne can characterize X, as follows:
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(65) X.,={we2; cfo=w for every k=0}.

PROOF. It is easy to see that every w e X, satisfies the condition
in the right-hand side of (65). And the converse inclusion follows from
Lemma 3.4.

In the remainder of this section, we derive a decomposition of Y2
for the sake of the next section. Let W and W be defined by

Wr={ueY;ueY; and a>u},

66
(66) Wr={ueY* wueY? and ua<u},

where we denote by # the element of W* obtained from u by changing
the last coordinate to l(resp. 0) if it is O(resp. 1). We denote the con-
nection of the words w and v by u-v. Namely, w-v=_(u;, -, U, Vs, ***, Vp)
where w=(u,, -+, #,) and v=(v, --+, v,) (the number m may be infinite).

LEMMA 38.5. If ue WgU W, then u-w.e X,.

PrOOF. Let us prove by induction on n. It is evident for n=1.
Assume that the lemma holds for ». Let we W2t U Wt'. Then oue
W U W and so ou-w.€X,. From Theorem 3.1, it is enough to prove
that u-w,=w;. In the case when u>w![0, n+1), it is clear. If u=
5[0, n+1), we have S(n, u-w:)=1 by the assumption we W+ U W,
and so o"w)<w! implies u-w.=w’.

PROPOSITION 3.2. We can decompose Y as follows:

Y= UWr-ol0, k)
(67), =
: =kL:'OW1”_k'w}1[O, k) ) {0)2[0, n)} ’

where we denote
(68) Wt wi0, k) ={u-wi[0, k); w € Wp*} .

PrROOF. We prove only the first decomposition by induction on =.
Noting that W;={0} and W!={1}, it is evident for »=1. Assume that

(67), holds. Let ue Y7 satisfy w¢ Wt By the induction hypothesis,
we get, for some k£ and some %' € W ¥,

(69) #[0, n)=u"-wl[0, k) ,

then we can show in the following way that w=u'-wi[0, k+1) holds: By
using Lemma 3.5, we get ' -wi[0, k+1) e Y. So, if u=u'-wi[0, k+1),
then we have u<u’-wi[0, k+1), since an element of W has even number
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of 1’s among its coodinates. But this contradicts the assumption u ¢
We+t. One can show the other decomposition in the same manner.

§4. Topological entropy.

The measure theoretic entropy of f, with respect to the invariant
measure given in §2 is clearly loga. In this section we show that the
topological entropy of f, is also loga (cf. [3] and [T7]).

If we denote by N the number of elements in Y7, then the topolo-
gical entropy h*(f.) can be given by

(70) B*(f.)=lim % log N* .

We denote by [u] for w € W the sub-interval of {0, 1] determined by u.
Namely,

(T1) [u]={x € [0, 1]; i[O, n)=u} .

If we denote by m the Lebesgue measure defined on [0, 1], then we can
show easily that m([u]) <a™. It follows that N;=a", which implies
h*(f.)=loga. In the remainder of this section, we show the opposite
inequality h*(f,)<log a.

LEMMA 4.1. (i) If ue Y? is represented as
(72) u="u,-0:[0, k) for some Oskgn and some u,€ We*
and |
(13)  u=wu, wi[0, j1 for some 0=<j<n—1 and some w,€ W™,

then we get

(74) m([u]) =a"*{Sk, 1)f:Q)+ S, 1)fi(1)} .
(ii) If we Y? is represented as (712) and, instead of (73),

(75) u=wl[0, n) ,
then we get |
(76) m([u]) =a"{S(k, 1)fi1)+S(n+1, I} .
PROOF. Let us show that, from (72) and (73) it follows that

(77) r(u]) ={w € X.; U, 0L S0 =%+ 03} .
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If we X, satisfies u,-w:<w=u,-®,, then w[0, n) =u, from which it follows
that w ez([u]). On the other hand, if w ex([u]), then w=wu-w’ for some
o' € X,. By using Theorem 3.1, it follows that

(78) " *w<w, and o w=zw!.

Noting that u,(u,) has even (odd, respectively) number of 1’s among its
coordinates, we obtain that

(79) U Wy SOSUY WL,

which completes the proof of (77).
From (77) we have

(80) m([u]) =p(u, @.) — p(u,-wy) ,
=p(u-0*wl)—p(u-oiwt) .

And by the definition of p and (43), we have

(81) ou-o*wl)=1— g a8, u-0*w}) +a"*S(n, u-o*wt)(o(c*wt)—1)
and

(82) o(u-diwt) = 1-"’);: a~*S(i, u-oiwi) +a"S(n, u-c'wt)(p(di@t) —1) .

From (72) and (73) it follows that

(83) S, w-0*@}) =801, u-d‘wl) for 0=<izn,
(84) S(n, u-c*wy)=S(n—k, u-c*w:)Sk, wt) =Sk, )
and

(85) S(n, w-0'w})=S(n—j, u-0'w.)S(j, wi)=—S(j, o) .

So, from (80) we get
(86) m([u]) =a™(Sk, wi)p(o*®})+ S, wi)p(ciwt)) ,

which completes the proof of (74). A similar argument shows (76).
Denote by N:,(N2,) the number of elements in W»(W?, respectively).
We can easily show that

(87) N2y=N},

and



UNIMODAL LINEAR TRANSFORMATIONS I 237
88) Nr= ,,Z NE, .
=0
LEMMA 4.2. If a>V"2, then, for some constant C, we get

(89) Nr=Ca™ for every n=0.

PrOOF. From the relation 3, .y»m([u])=1, we obtain

90 1=a7(23; Sth, DAHONZ*+S(n, DAXD+Sm+1, D)

using (74), (76) and (87). In order to show (89), we consider the following
two cases:

Case (i): (V'5+1)/2<a=x2.
In this case we have S(0, 1)=1 and f,(1)=0, so from (90) we have

(1) 1za *(2N2—2 3, N&at)
k=2
from which it foll_ows that
1 n—2
(92) N, ==—a"+>, Nz, .
2 k=0

So, if we pick a constant C satisfying

1
2@‘7(7}_3)

we can show inductively that N;,=<Ca" holds for each n. Here we use
the inequality 1l/a(a—1)<1, which follows from o>V 5+1)/2. More
precisely, if NX,<Ca* for every k<m, then it follows that

(93) C

1\%

1 an-—l
94 ns—a"+C
(94) oS5 p—

:Ca"( 210 +— (al__ 1)) <Ca .

Case (ii): 1/ 2<a=(V5+1)/2.
In this case we have

(95) 500, 1)=S@, =1, S8@1,1)=8@, 1)=8¢, 1)=~1,
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4 3 a 3
f:(D) <fi)< ) <f:(1) .

As in the Case (i), it follows from (90) that

1 a _ _ _ n—5
96 ” * an n—2 __ n—3 n—4 k
( ) Na,0§ 2 a”+ a+1 a,0 Na,o +Na.0 )+kz=.o a,0
<lot O (Nmp+NZY+SINE
= 2 a—|—1 a, a, &) a,0 9

by virtue of relation N ;2<2N?;®.
So, if we pick a constant C satisfying

1
97 Cc ’
@D >2(1__a,’—-a,+1)
a*(a—1)

we can show N;,<Ca" inductively.
From this lemma and (88) we get

(98) h*(f,)<loga for every V 2<a=2.

But by using Theorem 2.3, the same assertion follows also for 1<a <1 2.
Consequently we have

THEOREM 4.1. h*(f)=loga for 1<a=<2.

From this theorem and Theorem 3.1, we have

COROLLARY 4.1. If a<a', then @w>’..
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