Tokyo J. Math. Vol. 4, No. 1, 1981

On the Genus Fields of Pure Number Fields II

Makoto ISHIDA

Tokyo Metropolitan University

In the preceding paper [3], we have investigated the genus fields K^* of pure number fields $K=Q(\sqrt[n]{a})$. But there we could not decide K^* in the case where $2^3|n$ and $a \equiv -1 \pmod{2^4}$ and so our table in [3] was incomplete. Now, in the present paper, we shall treat this remaining open case and, consequently, shall determine the genus field K^* and the genus number g_K for any pure number field K explicitly. As for the definitions and the notations, see Ishida [2] and [3].

§1. Remaining case.

Let $K = Q(\sqrt[n]{a})$ with $a \in \mathbb{Z}$ $(a \neq \pm 1)$ be a pure number field, where, as before, a has the property

$$(*) \qquad \qquad p^{v} \parallel a \longrightarrow (v, n) = 1$$

for any prime divisor p of a.

First, in $\S1$, $\S2$ and $\S3$, as is stated in the introduction, we consider the remaining open case:

$$n=2^{s}$$
 ($s \ge 2$ and so $n \ge 4$)
and $a \equiv -1 \pmod{4}$

(cf. [3]). We fix them in §1, §2, §3. Note that, in this case, 2 is totally ramified in K: $(2)=I^n$ (I is a prime ideal of K). Let k^* be the maximal abelian subfield of the genus field K^* of K and k_2^* the maximal subfield of k^* such that $k_2^* \subset Q(\zeta_{2^M})$ for some M. $(\zeta_{2^M}$ denotes a primitive 2^M -th root of unity.) In other words, k_2^* is the maximal absolute abelian number field such that k_2^*K is unramified over K (in narrow sense) and $k_2^* \subset Q(\zeta_{2^M})$ for some M. As is well known, $Q(\zeta_4)Q(\sqrt{a})$ is unramified over $Q(\sqrt{a})$ and so $Q(\zeta_4)K$ is unramified over K. Hence $Q(\zeta_4) \subset k_2^*$ and, as $Q(\zeta_{2^M})/Q(\zeta_4)$ is a cyclic extension, we have

Received June 28, 1980

$$k_2^* = \boldsymbol{Q}(\zeta_{2^d})$$
 for some $d \in \boldsymbol{Z}$.

Now we consider the two cases separately and prove the following assertions:

Case A. $a \equiv -1 \pmod{2^{s+1}}$. Then we have

$$k_{2}^{*} = Q(\zeta_{2^{s+1}})$$
.

Case B. $a \not\equiv -1 \pmod{2^{s+1}}$. Take such $r \in \mathbb{Z}(1 \leq r < s)$ that $a \equiv -1 \pmod{2^{r+1}}$ but $a \not\equiv -1 \pmod{2^{r+2}}$. Then we have

 $k_{2}^{*} = Q(\zeta_{2^{r+1}})$.

For s=2 (i.e. n=4), we have just proved them in [3]:

$$\begin{cases} a \equiv -1 \pmod{8} \implies k_2^* = Q(\zeta_8) , \\ a \equiv 3 \pmod{8} \implies k_2^* = Q(\zeta_4) . \end{cases}$$

Hence we shall prove these two assertions by using the induction on s. Then we shall see that, if $2^{N} || a+1$,

$$k_2^* = \mathbf{Q}(\zeta_{2^d})$$
 with $d = \operatorname{Min}(N, s+1)$.

§2. Proof in the case B.

We assume that

$$a \equiv -1 \pmod{2^{r+1}}$$
 but $a \not\equiv -1 \pmod{2^{r+2}}$ with $1 \le r < s$

Let $K_0 = Q((\sqrt[n]{a})^{n/2^r}) \subset K$. Since $a \equiv -1 \pmod{2^{r+1}}$, we see that, by the assumption of the induction, $Q(\zeta_{2^{r+1}})K_0$ is unramified over K_0 . Accordingly $Q(\zeta_{2^{r+1}})K$ is also unramified over K and so $k_2^* \supset Q(\zeta_{2^{r+1}})$. Suppose that $k_2^* \supseteq Q(\zeta_{2^{r+1}})$. Then we have $k_2^* \supset Q(\zeta_{2^{r+2}})$ and so $Q(\zeta_{2^{r+2}})K$ is unramified over K; and, by the 'Verschiebungssatz', for any totally positive number γ in K, prime to 2, we have $N_{K/Q}\gamma \equiv 1 \pmod{2^{r+2}}$. Take $\gamma = \gamma_2 = 1 + \alpha^2 + \alpha$ $(\alpha = \sqrt[n]{a})$ in §3 of [3], for which we have $N_{K/Q}\gamma_2 = 1 + a + a^2$. Then $N_{K/Q}\gamma_2 \equiv 1 \pmod{2^{r+2}}$ implies $a(1+a) \equiv 0 \pmod{2^{r+2}}$ i.e., $a \equiv -1 \pmod{2^{r+2}}$, which is a contradiction. Therefore we have

$$k_{2}^{*} = Q(\zeta_{2^{r+1}})$$

and our assertion in case B is verified.

§3. Proof in the case A.

We assume that

214

$$a \equiv -1 \pmod{2^{s+1}} \ .$$

For the sake of simplicity, we use the following notations:

$$lpha=\sqrt[2^s]{a}$$
 , $\eta=\zeta_{2^s}$, $K_1=oldsymbol{Q}(lpha^2)$

and

$$F = Q(\eta)K = K(\eta)$$
, $E = Q(\zeta_{2^{s+1}})K = F(\sqrt{\eta})$.

Here, as an odd prime divisor p of a ramifies totally in K, we have $Q(\zeta_{2^{s+1}}) \cap K = Q$ (cf. the property (*)) and so $[E:K] = [Q(\zeta_{2^{s+1}}):Q] = 2^s$. Since $a \equiv -1 \pmod{2^{(s-1)+1}}$, we see that, by the assumption of the induction, $Q(\eta)K_1$ is unramified over K_1 . Accordingly $F = Q(\eta)K$ is also unramified over K.

Now we shall prove that any prime divisor of 2 in F is unramified in E (and so, that E is unramified over F). Then, by considering the ramification indices of 2 in K and $Q(\zeta_{2^{s+1}})$, we see $k_2^* = Q(\zeta_{2^{s+1}})$.

As is stated in §1, we have $(2) = l^n$ in K and so

$$(2) = (\mathfrak{L}_1 \mathfrak{L}_2 \cdots \mathfrak{L}_g)^n \quad \text{in} \quad F,$$

where $\mathfrak{L}_1, \mathfrak{L}_2, \dots, \mathfrak{L}_g$ are distinct prime ideals of F. Take anyone of \mathfrak{L}_j 's and denote it by \mathfrak{L} . We have

$$X^{2^{s}}-1=(X^{2^{s-1}}-1)(X^{2^{s-1}}+1)=\prod_{i=0}^{2^{s-1}}(X-\eta^{i})$$

and so

$$X^{2^{s-1}} + 1 = \prod_{i=0 \text{ (odd)}}^{2^{s-1}} (X - \eta^i) .$$

Hence we have

$$a + 1 = \alpha^{2^s} + 1 = \prod_{i=0 \text{ (odd)}}^{2^s - 1} (\alpha^2 - \eta^i)$$
.

Let N be the highest exponent of 2 in a+1 i.e., $2^N || a+1$; so our assumption is equivalent to the inequality

 $N \ge s+1$.

Then we have

$$\mathfrak{L}^{nN} \| \prod_{i=0 \text{ (odd)}}^{2^{3}-1} (\alpha^{2}-\gamma^{i}) .$$

Also, let *e* be the maximal value of the highest exponents of \mathfrak{L} in $\alpha^2 - \eta^i$ for $i=1, 3, \dots, 2^e - 1(\mathfrak{L}^e || \alpha^2 - \eta^{i_0})$. As i_0 is odd, we may replace η by η^{i_0}

 $(E = F(\sqrt{\eta}) = F(\sqrt{\eta^{i_0}}))$ and so we may suppose $\mathfrak{L}^{\bullet} || \alpha^2 - \eta$. Then, as $2^{\mathfrak{s}-1}e \ge nN = 2^{\mathfrak{s}}N$ i.e., $e \ge 2N \ge 2$, we can choose $t \in \mathbb{Z}(t \ge 0)$ such that

 $2^{t+1} \leq e < 2^{t+2}$.

Let $\mathfrak{L}^{e_i} \parallel \alpha^2 - \eta^i$ for $i=1, 3, \dots, 2^s - 1(e=e_i)$. For odd $i=1+2^{f_i}c$ $(2 \nmid c)$, we see that

$$\alpha^2 - \eta^i = (\alpha^2 - \eta) + \eta (1 - \eta^{2^{f_i}})$$

and $\mathfrak{L}^{\epsilon} \| \alpha^2 - \eta, \mathfrak{L}^{2^{f_i+1}} \| 1 - \eta^{2^{f_i}}$ in F. Consequently we have

$$\begin{array}{ll} f_i \leq t \longrightarrow 2^{f_i+1} \leq 2^{t+1} \leq e & \text{and so } e_i = 2^{f_i+1} \\ (f_i = t, \ 2^{t+1} = e \longrightarrow e_i \geq e & \text{and so } e_i = e = 2^{t+1} & (\text{the maximality of } e)) \\ f_i > t \longrightarrow 2^{f_i+1} \geq 2^{t+2} > e & \text{and so } e_i = e \\ \end{array}$$

Suppose that the inequality t < s i.e., $t \leq s-1$ holds and note that $1 < i = 1+2^{s-1} \leq 2^s-1$. The number of such *i* that $f_i = 1$ (resp. 2, 3, \cdots , *t*) is 2^{s-2} (resp. 2^{s-3} , 2^{s-4} , \cdots , 2^{s-t-1}). Hence we have

$$\begin{aligned} 2^{s}(s+1) &\leq 2^{s}N = nN = \sum_{i=0(\text{odd})}^{2^{s}-1} e_{i} \\ &= 2^{s-2} \cdot 2^{2} + 2^{s-3} \cdot 2^{3} + \dots + 2^{s-t-1} \cdot 2^{t+1} \\ &+ \{2^{s-1} - (2^{s-2} + \dots + 2^{s-t-1})\}e \\ &= t \cdot 2^{s} + 2^{s-t-1} \cdot e < (s-1)2^{s} + 2^{s-t-1} \cdot 2^{t+2} \\ &= 2^{s}(s+1) \end{aligned}$$

which is a contradiction. Accordingly we must have $t \ge s$ and so the inequality

$$e \geq 2^{t+1} \geq 2^{s+1} = 2 \cdot 2^s = 2n$$
 .

Then we have $\alpha^2 \equiv \eta \pmod{2^{2n}}$, which implies that the congruence equation

$$X^2 \equiv \eta \pmod{\Re^{2n}}$$

has an integral solution α in F. (Note that $\mathfrak{L}^* || 1+(-1)$, where -1 is a primitive second root of unity.) So, as is well known (cf. Hecke [1]), \mathfrak{L} is unramified in $E = F(\sqrt{\eta})$.

Since \mathfrak{L} is an arbitrary prime divisor of 2 in F, we see that E is unramified over F. Therefore we have

$$k_{2}^{*} = Q(\zeta_{2^{*}+1})$$

and our assertion in case A is also verified.

§4. Final results.

Now we return to the general situation: $K = Q(\sqrt[n]{a})$ (n > 1 is arbitrary and *a* has the property (*)). Then, combining the results in [3] and in §1, we have the following final results. (We denote by ζ_m a primitive *m*th root of unity.)

THEOREM. Let $K = Q(\sqrt[n]{a})$ with $a \in \mathbb{Z}$ $(a \neq \pm 1)$ be a pure number field, where a has the property

$$(*) \qquad \qquad p^{v} \parallel a \Longrightarrow (v, n) = 1$$

for any prime divisor p of a. Let

$$2^{s} || n \quad and \quad 2^{v} || a$$
.

Then the maximal abelian subfield k^* of the genus field K^* of K is given as follows $(K^* = k^*K)$:

 $k^* = k_1^* \cdot k_2^*$ (composite),

where

$$k_1^* = \prod_{p \mid a \ (p: \ prime)} \{ the \ subfield, \ of \ degree \ (n, \ p-1), \ of \ the \ cyclotomic \ number \ field \ Q(\zeta_p) \} \ (composite)$$

and

$$k_{2}^{*} = \begin{cases} Q \text{ if } n \text{ is odd (i.e., } s=0), \\ Q \text{ if } n \text{ is even and } a \equiv 1 \pmod{4}, \\ Q(\sqrt{2}) \text{ if } n \text{ is even, } a \text{ is even (i.e., } v>0) \\ and a/2^{v} \equiv 1 \pmod{4}, \\ Q(\sqrt{-2}) \text{ if } n \text{ is even, } a \text{ is even (i.e., } v>0) \\ and a/2^{v} \equiv 3 \pmod{4}, \\ Q(\zeta_{2^{d}}) \text{ with } d = \operatorname{Min}(N, s+1) \text{ if } n \text{ is even} \\ (\text{i.e., } s>0), a \equiv 3 \pmod{4} \text{ and } 2^{N} ||a+1. \end{cases}$$

§5. Genus number.

In order to give the genus number g_{κ} of the pure number field $K=Q(\sqrt[n]{a})$, it suffices to decide the maximal abelian subfield k_0 of K:

$$egin{aligned} g_{\scriptscriptstyle K} \!=\! [K^*\!\!:K] \!=\! [k^*\!\!:Q]/[k_{\scriptscriptstyle 0}\!\!:Q] \ =\! [k_1^*\!\!:Q][k_2^*\!\!:Q]/[k_{\scriptscriptstyle 0}\!\!:Q] \;, \end{aligned}$$

(cf. [2]). Under the assumption (*) on a, we can show that $k_0 = Q$ if n is odd and $k_0 = Q(\sqrt{a})$ if n is even.

We sketch the proof of this fact.* First, if $Q(\zeta_n) \cap K = Q$, then we see easily, by investigating the structure of the Galois group of $Q(\zeta_n, \sqrt[n]{a})$ over Q, that $Q((\sqrt[n]{a})^{n/f})$ is the unique subfield, of $K = Q(\sqrt[n]{a})$, of degree f(f|n). Now suppose that, for an odd prime $q, q^t ||[k_0; Q]$ with t > 0. Let $q^{s'} || n$ and $K_1 = Q((\sqrt[n]{a})^{n/q^{s'}}) \subset K$. Then k_0 contains a subfield F of degree q^t and, as $[K: K_1]$ is prime to q, K_1 must contain F.

(i) If $\pm a$ is not a power of q, then there is a prime divisor $p \neq q$ of a and p is totally ramified in K_1 (cf. the property (*)). Accordingly we have $Q(\zeta_{q^{s'}}) \cap K_1 = Q$ and, as is remarked above, F coincides with $Q(\sqrt[q^t]{a})$. So F contains $\zeta_{q^t}(t > 0)$, which is a contradiction.

(ii) If $\pm a$ is a power of q, then F is a subfield of $Q(\zeta_{q^M})$ for some $M \in \mathbb{Z}$. On the other hand, by the definition, F is contained in the maximal abelian subfield of the genus field of K_1 . So we have F = Q (cf. Theorem and §2 of [3]), which is also a contradiction.

Hence $[k_0: Q]$ is a power of 2 and k_0 is contained in $K_0 = Q((\sqrt[n]{a})^{n/2^s})$, where $2^s || n$.

(iii) If $\pm a$ is not a power of 2, then, in a similar way as in (i), we have $k_0 = Q((\sqrt[n]{a})^{n/2}) = Q(\sqrt{a})$.

(iv) If $\pm a$ is a power of 2, then, also in a similar way as in (ii), we have $k_0 = Q(\sqrt{\pm 2}) = Q(\sqrt{a})$ (cf. Theorem and §3 of [3]).

COROLLARY. As for the maximal abelian subfield k_0 of $K = Q(\sqrt[n]{a})$, we have

$$k_0 = \begin{cases} \mathbf{Q} & \text{if } n \text{ is odd,} \\ \mathbf{Q}(\sqrt{a}) & \text{if } n \text{ is even.} \end{cases}$$

So the genus number $g_k = [K^*: K]$ of K is given as follows:

$$g_{\kappa} = \prod_{p \mid a} (n, p-1) imes \begin{cases} 1 \ if \ n \ is \ odd, \\ 1/2 \ if \ n \ is \ even, \ a \equiv 1 \pmod{4}, \\ 1 \ if \ n \ is \ even, \ a \equiv 0 \pmod{2}, \\ 2^{d-2} \ with \ d = \operatorname{Min} (N, s+1) \ if \ n \ is \ even \\ (2^{s} || n), \ a \equiv 3 \pmod{4} \ and \ 2^{N} || a+1 \ . \end{cases}$$

§6. Remarks.

We prove our Theorem and Corollary under the assumption that a

^{*} Of course, as for subfields of pure field extensions, more general results are obtained by algebraic considerations (without the property (*)) (a private communication of Prof. Endo).

has the property (*). However, without this assumption, we can obtain some information on the genus fields of pure number fields.

For example, we treat the case

$$K = Q(\sqrt[n]{a})$$
 where $(a, n) = 1$ and $[K:Q] = n$

(without the property (*) of a). Let

 $n = q_0^{s_0} q_1^{s_1} \cdots q_t^{s_t}$ $(s_0 \ge 0; s_1, \cdots, s_t > 0)$,

where $q_0=2$ and q_i are odd primes, and put

$$K_i = Q((\sqrt[n]{a})^{n/q_i^{s_i}})$$
 $(i=0, 1, \dots, t)$.

As [K:Q]=n, we have $[K_i:Q]=q_i^{s_i}$. We denote by k^* and $k^{(i)^*}$ the maximal abelian subfields of the genus fields of K and K_i respectively. Then we have

$$k^* = k^{(0)*} \cdot k^{(1)*} \cdot \cdots \cdot k^{(t)*}$$

(cf. [2]).

Now, for the simplicity, put, for a fixed $i(0 \le i \le t)$,

 $L = K_i$, $q = q_i$, $s = s_i$ and $k'^* = k^{(i)*}$.

First, let $k_2'^*$ be the maximal subfield of k'^* such that $k_2'^* \subset Q(\zeta_{q^M})$ for some M. Here note that $q \nmid a$. If $q \neq 2$, then the results of cases (2) and (3) in §2 of [3] also hold and so we have $k_2'^* = Q$. If $q = q_0 = 2$, then the results of case (1) in §3 of [3] and of §1 also hold and so we have $k_2'^* = Q$ for $a \equiv 1 \pmod{4}$ and $k_2'^* = Q(\zeta_{2^d})$ with $d = \operatorname{Min}(N, s+1)$ for $a \equiv 3 \pmod{4} (2^N \parallel a+1, s=s_0)$. Next, we determine, for a prime divisor pof a, the greatest common divisor e(p) of the ramification indices of all the prime divisors of p in $L: e(p) = (e_1, \dots, e_q)$ where $(p) = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_q^{e_g}$ in L. Let $a = p^{\circ b} (p \nmid b)$ and $v = q^c w (q \nmid w)$. Clearly $a^{1/q^s} = p^{q^c w/q^s} \cdot b^{1/q^s}$. So, if $s \leq c$, we have $L = Q q^{q^s} \sqrt{b}$ and, as $p \nmid b (p \neq q)$, p is unramified in L; and so we have e(p) = 1. If s > c, we see easily that p is unramified in $L_1 =$ $Q((q^{q^s} \overline{a})^{q^{s-c}}) = Q(q^{q^s} \overline{b}) ((p) = \mathfrak{p}_1 \dots \mathfrak{p}_g \text{ in } L_1)$ and L is of Eisenstein type with respect to each $\mathfrak{p}_i(i=1, \dots, g)$. So $\mathfrak{p}_1, \dots, \mathfrak{p}_g$ are totally ramified in L and we have $e(p) = [L: L_1] = q^{s-c}$. Hence k'^* is obtained as

 $k^{\prime *} = \prod_{p \mid a} \{ \text{the subfield, of degree } (q^{s-\operatorname{Min}(s,c)}, p-1), \text{ of } Q(\zeta_p)(p^v \parallel a, q^c \parallel v) \} \times k_2^{\prime *} \quad (\text{composite})$

(cf. Chapter 4 in [2]).

Therefore we have the following assertion: Let K, n, a and k^* be as above. For a prime divisor p of a, let

 $p^{r} || a \text{ and } v = q_{0}^{c_{0}} q_{1}^{c_{1}} \cdots q_{t}^{c_{t}} u \qquad ((u, n) = 1, c_{t} \ge 0)$

and put

$$k^*(p) = \text{the subfield, of degree} \left(\prod_{i=0}^t q_i^{s_i - \text{Min}(s_i, c_i)}, p-1\right), \text{ of } Q(\zeta_p)$$

Then we have

$$k^* = k_1^* \cdot k_2^*$$
,

where

$$k_1^* = \prod_{p \mid a} k^*(p)$$
 (composite)

and

$$k_2^* = \begin{cases} Q(\zeta_{2^d}) \text{ if } n \text{ is even, } a \equiv 3 \pmod{4} \ (d = \operatorname{Min}(N, s_0 + 1), \ 2^N \parallel a + 1) \ , \ Q \quad \text{otherwise }. \end{cases}$$

References

- E. HECKE, Vorlesungen über die Theorie der Algebraischen Zahlen, Chelsea, New York, 1948 (Satz 119).
- [2] M. ISHIDA, The genus fields of algebraic number fields, Lecture Notes in Math., 555, Springer, Berlin-Heidelberg-New York, 1976.
- [3] M. ISHIDA, On the genus fields of pure number fields, Tokyo J. Math., 3 (1980), 177-185.

Present Address: DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA-KU, TOKYO 158

220