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On the Genus Fields of Pure Number Fields II

Makoto ISHIDA

Tokyo Metropolitan Umversity

In the preceding paper [3], we have investigated the genus fields
$K^{*}$ of pure number fields $K=Q(\sqrt[n]{a})$ . But there we could not decide
$K^{*}$ in the case where $2^{3}|n$ and $a\equiv-1(mod 2^{4})$ and so our table in [3]
was incomplete. Now, in the present paper, we shall treat this remaining
open case and, consequently, shall determine the genus field $K^{*}$ and the
genus number $g_{K}$ for any pure number field $K$ explicitly. As for the
definitions and the notations, see Ishida [2] and [3].

\S 1. Remaining case.

Let $K=Q(\sqrt[n]{a})$ with $a\in Z(a\neq\pm 1)$ be a pure number field, where,
as before, $a$ has the property

$(*)$ $p^{v}\Vert a-(v, n)=1$

for any prime divisor $p$ of $a$ .
First, in \S 1, \S 2 and \S 3, as is stated in the introduction, we consider

the remaining open case:

$n=2$ ( $s\geqq 2$ and so $n\geqq 4$)

and $a\equiv-1(mod 4)$

(cf. [3]). We fix them in \S 1, \S 2, \S 3. Note that, in this case, 2 is
totally ramified in $K:$ (2) $=1$“ (I is a prime ideal of $K$). Let $k^{*}$ be the
maximal abelian subfield of the genus field $K^{*}$ of $K$ and $k_{2}^{*}$ the maximal
subfield of $k^{*}$ such that $k_{2}^{*}\subset Q(\zeta_{2^{M}})$ for some M. ( $\zeta_{2^{H}}$ denotes a primitive
2$H_{-th}$ root of unity.) In other words, $k_{2}^{*}$ is the maximal absolute abelian
number field such that $k_{2}^{*}K$ is unramified over $K$ (in narrow sense) and
$k_{2}^{*}\subset Q(\zeta_{2^{M}})$ for some $M$. As is well known, $Q(\zeta_{4})Q(\sqrt{a})$ is unramified
over $Q(\sqrt{a})$ and so $Q(\zeta_{4})K$ is unramified over $K$. Hence $Q(\zeta_{4})\subset k_{2}^{*}$ and,
as $Q(\zeta_{2^{M}})/Q(\zeta_{4})$ is a cyclic extension, we have

Received June 28, 1980



214 MAKOTO ISHIDA

$k_{2}^{*}=Q(\zeta_{2^{d}})$ for some $d\in Z$ .
Now we consider the two cases separately and prove the following

assertions:
Case A. $a\equiv-1(mod 2^{*+1})$ . Then we have

$k_{2}^{*}=Q(\zeta_{2+1})$ .
Case B. $a\not\equiv-1(mod 2^{+1})$ . Take such $r\in Z(1\leqq r<s)$ that $a\equiv-1$

$(mod 2^{r+1})$ but $a\not\equiv-1(mod 2^{r+2})$ . Then we have
$k_{2}^{*}=Q(\zeta_{2^{r+1}})$ .

For $s=2$ (i.e. $n=4$), we have just proved them in [3]:

$(a\equiv-1(mod 8)-k_{2}^{*}=Q(\zeta_{8})$ ,
$|_{a\equiv 3(mod 8)}$

$-k_{2}^{*}=Q(\zeta_{4})$ .
Hence we shall prove these two assertions by using the induction on $s$ .

Then we shall see that, if $2^{N}\Vert a+1$ ,

$k_{2}^{*}=Q(\zeta_{2^{d}})$ with $d={\rm Min}(N, s+1)$ .
\S 2. Proof in the case $B$.
We assume that

$a\equiv-1(mod 2^{r+1})$ but $a\not\equiv-1(mod 2^{r+2})$ with $1\leqq r<s$ .
Let $K_{0}=Q((\sqrt[n]{a})^{n/2^{\prime}})\subset K$. Since $a\equiv-1(mod 2^{r+1})$ , we see that, by the
assumption of the induction, $Q(\zeta_{2^{r+1}})K_{0}$ is unramified over $K_{0}$ . Accordingly
$Q(\zeta_{2^{r+1}})K$ is also unramified over $K$ and so $k_{2}^{*}\supset Q(\zeta_{2^{r+1}})$ . Suppose that
$k_{2}^{*}\supseteqq Q(\zeta_{2^{r+1}})$ . Then we have $h^{*}\supset Q(\zeta_{2^{r+2}})$ and so $Q(\zeta_{2^{t+2}})K$ is unramified
over $K$; and, by the ‘Verschiebungssatz’, for any totally positive number
7 in $K$, prime to 2, we have $N_{K/0}\gamma\equiv 1(mod 2^{r+2})$ . Take $\gamma=\gamma_{2}=1+\alpha^{2}+\alpha$

$(\alpha=\sqrt[n]{a})$ in \S 3 of [3], for which we have $N_{K/Q}\gamma_{2}=1+a+a^{2}$ . Then
$N_{K/Q}\gamma_{2}\equiv 1(mod 2^{r+2})$ implies $a(1+a)\equiv 0(mod 2^{r+2})$ i.e., $a\equiv-1(mod 2^{r+2})$ , which
is a contradiction. Therefore we have

$k_{2}^{*}=Q(\zeta_{2^{r+1}})$

and our assertion in case $B$ is verified.

\S 3. Proof in the case A.

We assume that
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$a\equiv-1(mod 2^{\epsilon+1})$ .

For the sake of simplicity, we use the following notations:

$\alpha=^{2}\sqrt[l]{a}$ , $\eta=\zeta_{2^{S}}$ , $K_{1}=Q(\alpha^{2})$

and
$F=Q(\eta)K=K(\eta)$ , $E=Q(\zeta_{2^{\epsilon+1}})K=F(\sqrt{\eta})$ .

Here, as an odd prime divisor $p$ of $a$ ramifies totally in $K$, we have
$Q(\zeta_{2^{\epsilon+1}})\cap K=Q$ (cf. the property $(*)$ ) and so $[E:K]=[Q(\zeta_{2^{\epsilon+1}}):Q]=2^{\epsilon}$ . Since
$a\equiv-1(mod 2^{(\epsilon-1)+1})$ , we see that, by the assumption of the induction,
$Q(\eta)K_{1}$ is unramified over $K_{1}$ . Accordingly $F=Q(\eta)K$ is also unramified
over $K$.

Now we shall prove that any prime divisor of 2 in $F$ is unramified
in $E$ (and so, that $E$ is unramified over $F$ ). Then, by considering the
ramification indices of 2 in $K$ and $Q(\zeta_{2^{\epsilon+1}})$ , we see $k_{2}^{*}=Q(\zeta_{2^{s+1}})$ .

As is stated in \S 1, we have (2) $=1$“ in $K$ and so

(2) $=(\mathfrak{L}_{1}\mathfrak{L}_{2}\cdots \mathfrak{L}_{g})^{n}$ in $F$ ,

where $\mathfrak{L}_{1},$ $\mathfrak{L}_{2},$

$\cdots,$
$\mathfrak{L}_{g}$ are distinct prime ideals of $F$ . Take anyone of $\mathfrak{L}_{j}’ s$

and denote it by $\mathfrak{L}$ . We have

$X^{2^{\theta}}-1=(X^{2^{S-1}}-1)(X^{2^{g-1}}+1)=\prod_{i=0}^{2^{8}-1}(X-\eta^{i})$

and so

$X^{2^{\delta-1}}+1=\prod_{i=0(odd)}^{2^{s}-1}(X-\eta^{i})$ .
Hence we have

$a+1=\alpha^{2^{S}}+1=\prod_{i=0(odd)}^{2^{S}-1}(\alpha^{2}-\eta^{i})$ .

Let $N$ be the highest exponent of 2 in $a+1i.e.,$ $2^{N}\Vert a+1$ ; so our
assumption is equivalent to the inequality

$N\geqq s+1$ .
Then we have

$\mathfrak{L}^{nN}\Vert\prod_{i=0(odd)}^{2^{\theta}-1}(\alpha^{2}-\eta^{i})$ .
Also, let $e$ be the maximal value of the highest exponents of $\mathfrak{L}$ in $\alpha^{2}-\eta^{i}$

for $i=1,3,$ $\cdots,$
$2-1(\mathfrak{L}^{\ell}\Vert\alpha^{2}-\eta^{i_{0}})$ . As $i_{0}$ is odd, we may replace $\eta$ by $\eta^{i_{0}}$
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$(E=F(\sqrt{\eta})=F(\sqrt{\eta^{i_{0}}}))$ and so we may suppose $\mathfrak{L}||\alpha^{2}-\eta$ . Then, as
$2^{-1}e\geqq nN=2N$ i.e., $e\geqq 2N\geqq 2$ , we can choose $teZ(t\geqq 0)$ such that

$2^{t+1}\leqq e<2^{t+2}$ .
Let $\mathfrak{L}^{e_{i}}\Vert\alpha^{2}-\eta^{i}$ for $i=1,3,$ $\cdots,$ $2-1(e=e_{1})$ . For odd $i=1+2^{f_{i}}c(2fc)$ , we
see that

$\alpha^{2}-\eta^{i}=(\alpha^{2}-\eta)+\eta(1-\eta 2f_{i}c)$

and $\mathfrak{L}^{l}\Vert\alpha^{2}-\eta,$ $\mathfrak{L}2f_{i}+1\Vert 1-\eta 2^{f_{i_{t}}}$ in $F$. Consequently we have

$f_{:}\leqq t-2^{f+1}\leqq 2^{t+1}\leqq e$ and so $e=2^{f_{i}+1}$

($f_{i}=t,$ $2^{t+1}=e-e_{i}\geqq e$ and so $e=e=2^{t+1}$ (the maximality of $e$)) ,
$f_{i}>t-2^{f+1}\geqq 2^{t+2}>e$ and so $e_{i}=e$ .

Suppose that the inequality $t<s$ i.e., $t\leqq s-1$ holds and note that $1<i=$
$1+2^{\iota-1}\leqq 2-1$ . The number of such $i$ that $f_{i}=1$ (resp. 2, 3, $\cdots,$

$t$) is $2^{-2}$

(resp. $2^{3},2^{},$ $\cdots,$
$2^{-t-1}$). Hence we have

2 $(s+1)\leqq 2N=nN=\sum_{i=0(odd)}^{2-1}e_{i}$

$=2^{-2}\cdot 2^{2}+2^{-S}\cdot 2^{3}+\cdots+2^{*-t-1}\cdot 2^{t+1}$

$+\{2^{-1}-(2^{-2}+\cdots+2^{-t-1})\}e$

$=t\cdot 2+2^{-t-1}\cdot e<(s-1)2+2^{-t-1}\cdot 2^{t+2}$

$=2’(s+1)$ ,

which is a contradiction. Accordingly we must have $t\geqq s$ and so the
inequality

$e\geqq 2^{t+1}\geqq 2^{+1}=2\cdot 2=2n$ .
Then we have $\alpha^{2}\equiv\eta(mod \mathfrak{L}^{2}‘‘)$ , which implies that the congruence equation

$X^{2}\equiv\eta(mod\mathfrak{L}^{2n})$

has an integral solution $\alpha$ in F. (Note that $\mathfrak{L}||1+(-1)$ , where $-1$ is
a primitive second root of unity.) So, as is well known (cf. Hecke [1]),
$\mathfrak{L}$ is unramified in $E=F(\sqrt{\eta})$ .

Since 2 is an arbitrary prime divisor of 2 in $F$, we see that $E$ is
unramified over $F$. Therefore we have

$k_{2}^{*}=Q(\zeta_{2^{\epsilon+1}})$

and our assertion in case A is also verified.
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\S 4. Final results.

Now we return to the general situation: $K=Q(\sqrt[n]{a})(n>1$ is arbitrary
and $a$ has the property $(*))$ . Then, combining the results in [3] and in
\S 1, we have the following final results. (We denote by $\zeta_{m}$ a primitive
mth root of unity.)

THEOREM. Let $K=Q(\sqrt[n]{a})$ with $a\in Z(a\neq\pm 1)$ be a pure number field,
where $a$ has the property

$(*)$ $p^{v}\Vert a-(v, n)=1$

for any prime divisor $p$ of $a$ . Let

2’ 1 $n$ and $2^{v}\Vert a$ .
Then the maximal abelian subfield $k^{*}$ of the genus field $K^{*}$ of $K$ is given
as follows $(K^{*}=k^{*}K)$ :

$k^{*}=k_{1}^{*}\cdot k_{2}^{*}$ (composite) ,

where

$k_{1}^{*}=\prod_{p|a(p.prime)}$ {the subfield, of degree $(n, p-1)$ , of the

cyclotomic number field $Q(\zeta_{p})$ } (composite)

and

$k_{2}^{*}=\left\{\begin{array}{l}Qn(i.e., s=0)\\Qna\equiv 1(mod 4)\\Q(\sqrt{2})nav>0\\a/2^{v}\equiv 1(mod 4)\\Q(\sqrt{-2})nav>0\\a/2^{v}\equiv 3(mod 4)\\Q(\zeta_{2^{d}})d={\rm Min}(N, s+1)n\end{array}\right.$

(i.e., $s>0$), $a\equiv 3(mod 4)$ and $2^{N}\Vert a+1$ .

\S S. Genus number.

In order to give the genus number $g_{K}$ of the pure number field
$K=Q(\sqrt[n]{a})$ , it suffices to decide the maximal abelian subfield $k_{0}$ of $K$:

$g_{K}=[K^{*}; K]=[k^{*}: Q]/[k_{0}:Q]$

$=[k_{1}^{*}: Q][k_{2}^{*}: Q]/[k_{0}:Q]$ ,
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(cf. [2]). Under the assumption $(*)$ on $a$ , we can show that $k_{0}=Q$ if $n$

is odd and $k_{0}=Q(\sqrt{a})$ if $n$ is even.
We sketch the proof of this fact. * First, if $Q(\zeta_{n})\cap K=Q$ , then we see

easily, by investigating the structure of the Galois group of $Q(\zeta,$
$,$

$\sqrt[n]{a)}$

over $Q$ , that $Q((\sqrt[n]{a})^{n/f})$ is the unique subfield, of $K=Q(W\overline{a})$ , of degree
$f(f|n)$ . Now suppose that, for an odd prime $q,$ $q^{t}\Vert[k_{0}:Q]$ with $t>0$ .
Let $q^{\prime}\Vert n$ and $K_{1}=Q((\sqrt[n]{a})^{n/q^{\prime}})\subset K$. Then $k_{0}$ contains a subfield $F$ of
degree $q^{t}$ and, as $[K:K_{1}]$ is prime to $q,$ $K_{1}$ must contain $F$.

(i) $If\pm a$ is not a power of $q$ , then there is a prime divisor $p\neq q$

of $a$ and $p$ is totally ramified in $K_{1}$ (cf. the property $(*)$). Accordingly
we have $Q(\zeta_{q^{\epsilon^{\prime}}})\cap K_{1}=Q$ and, as is remarked above, $F$ coincides with
$Q(q\sqrt[t]{a})$ . So $F$ contains $\zeta_{q^{t}}(t>0)$ , which is a contradiction.

(ii) $If\pm a$ is a power of $q$ , then $F$ is a subfield of $Q(\zeta_{q^{K}})$ for some
$MeZ$. On the other hand, by the definition, $F$ is contained in the
maximal abelian subfield of the genus field of $K_{1}$ . So we have $F=Q$
(cf. Theorem and \S 2 of [3]), which is also a contradiction.

Hence $[k_{0}:Q]$ is a power of 2 and $k_{0}$ is contained in $K_{0}=Q((\sqrt[n]{a})^{n/2})$ ,
where 2 $\Vert n$ .

(iii) If $\pm a$ is not a power of 2, then, in a similar way as in (i),
we have $k_{0}=Q((\sqrt[n]{a})^{n/2})=Q(\sqrt{a})$ .

(iv) If $\pm a$ is a power of 2, then, also in a similar way as in (ii),
we have $k_{0}=Q(\sqrt{\pm 2})=Q(\sqrt{a})$ (cf. Theorem and \S 3 of [3]).

COROLLARY. As for the maximal abelian subfield $k_{0}$ of $K=Q(\sqrt[n]{a})$ ,
we have

$k_{0}=\left\{\begin{array}{ll}Q i & n is odd,\\Q ( & Z) if n is even.\end{array}\right.$

So the genus number $g_{k}=[K^{*}: K]$ of $K$ is given as follows:

$g_{K}=\prod_{p|a}(n, p-1)\times\left\{\begin{array}{l}n\\na\equiv 1(mod 4)\\na\equiv 0(mod 2)\\2^{d-2}d={\rm Min}(N, s+1)n\end{array}\right.$

$(2 \Vert n),$ $a\equiv 3(mod 4)$ and $2^{N}\Vert a+1$ .
\S 6. Remarks.

We prove our Theorem and Corollary under the assumption that $a$

*Of $cour8e$ , as for subfields of pure field extensions, more general results are obtained by
algebraic considerations (without the property $(x)$) (a private communication of Prof. Endo).
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has the property $(*)$ . However, without this assumption, we can obtain
some information on the genus fields of pure number fields.

For example, we treat the case
$K=Q(\sqrt[n]{a})$ where $(a, n)=1$ and $[K:Q]=w$

(without the property $(*)$ of $a$). Let

$n=q_{0^{0}}^{\epsilon}q_{1^{1}}^{\epsilon}\cdots q_{t^{t}}^{\epsilon}$ $(s_{0}\geqq 0;s_{1}, \cdots, s_{t}>0)$ ,

where $q_{0}=2$ and $q_{i}$ are odd primes, and put

$K=Q((\sqrt[n]{a})^{n/q_{l^{S}}i})$ $(i=0,1, \cdots, t)$ .

As $[K:Q]=n$ , we have $[K_{i}:Q]=q_{i^{i}}^{l}$ . We denote by $k^{*}$ and $k^{(i)*}$ the
maximal abelian subfields of the genus fields of $K$ and $K_{i}$ respectively.
Then we have

$k^{*}=k^{(0)_{*}}\cdot k^{(1)_{*}}\cdots\cdot k^{(t)_{*}}$

(cf. [2]).
Now, for the simplicity, put, for a fixed $i(0\leqq i\leqq t)$ ,

$L=K_{i}$ , $q=q_{i}$ , $s=s_{i}$ and $k^{\prime*}=k^{(i)_{*}}$

First, let $k_{2}^{*}$ be the maximal subfield of $k$‘* such that $k_{2^{*}}^{\prime}\subset Q(\zeta_{q^{M}})$ for
some $M$. Here note that $qfa$ . If $q\neq 2$ , then the results of cases (2)

and (3) in \S 2 of [3] also hold and so we have $k_{2^{*}}^{\prime}=Q$ . If $q=q_{0}=2$ , then
the results of case (1) in \S 3 of [3] and of \S 1 also hold and so we
have $k_{2^{*}}^{\prime}=Q$ for $a\equiv 1(mod 4)$ and $k_{2^{*}}^{\prime}=Q(\zeta_{2^{d}})$ with $d={\rm Min}(N, s+1)$ for
$a\equiv 3(mod 4)(2^{N}\Vert a+1, s=s_{0})$ . Next, we determine, for a prime divisor $p$

of $a$ , the greatest common divisor $e(p)$ of the ramification indices of
all the prime divisors of $p$ in $L:e(p)=(e_{1}, \cdots, e_{g})$ where $(p)=\mathfrak{B}_{1}^{e_{1}}\cdots \mathfrak{P}_{g^{ff}}^{e}$ in
$L$ . Let $a=p^{v}b(pfb)$ and $v=q^{c}w(q\sqrt{}^{\prime}w)$ . Clearly $a^{1/q}’=p^{q^{C}w/q^{\epsilon}}\cdot b^{1/q^{\epsilon}}$ . So, if
$s\leqq c$ , we have $L=Q)^{q}\sqrt[\theta]{b}$) and, as $p\downarrow b(p\neq q),$ $p$ is unramified in $L$ ; and
so we have $e(p)=1$ . If $s>c$ , we see easily that $p$ is unramified in $L_{1}=$

$Q((q\sqrt[\epsilon]{a})^{q^{\epsilon-c}})=Q(q\sqrt[\prime]{b})$ ( $(p)=\mathfrak{p}_{1}\cdots \mathfrak{p}_{g}$ in $L_{1}$) and $L$ is of Eisenstein type
with respect to each $\mathfrak{p}_{i}(i=1, \cdots, g)$ . So $\mathfrak{p}_{1},$

$\cdots,$
$\mathfrak{p}_{\sigma}$ are totally ramified in

$L$ and we have $e(p)=[L:L_{1}]=q^{-a}$ . Hence $k^{\prime*}$ is obtained as

$k^{\prime*}=\prod_{p|a}$ {the subfield, of degree $(q^{\epsilon-M\ln(\epsilon,c)},$ $p-1)$ , of $Q(\zeta_{p})(p^{v}\Vert a,$ $q^{c}\Vert v)$ }

$\times k_{2^{*}}^{\prime}$ (composite)

(cf. Chapter 4 in [2]).
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Therefore we have the following assertion: Let $K,$ $n,$ $a$ and $k^{*}$ be
as above. For a prime divisor $p$ of $a$ , let

$ p^{l^{\prime}}\Vert$ $a$ and $v=q_{0^{0}}^{c}q_{1^{1}}^{c}\cdots q_{t}^{c\ell}u$ $((u, n)=1,$ $c\geqq 0$)

and put

$k^{*}(p)=the$ subfield, of degree $(\prod_{i=0}^{t}q_{i^{ii,i}}-K\ln(\cdot c)p-1)$ , of $Q(\zeta_{p})$ .

Then we have
$k^{*}=k_{1}^{*}\cdot k_{2}^{*}$ ,

where

$k_{1}^{*}=\prod_{p|a}k^{*}(p)$ (composite)

and

$k_{2}^{*}=\left\{\begin{array}{l}Q(\zeta_{2^{d}})na\equiv 3(mod 4)(d={\rm Min}(N, s_{0}+1)\\2^{N}\Vert a+1)\\Q\end{array}\right.$
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