On the Genus Fields of Pure Number Fields II

Makoto ISHIDA
Tokyo Metropolitan University

In the preceding paper [3], we have investigated the genus fields K^{*} of pure number fields $K=\boldsymbol{Q}(\sqrt[n]{a})$. But there we could not decide K^{*} in the case where $2^{3} \mid n$ and $a \equiv-1\left(\bmod 2^{4}\right)$ and so our table in [3] was incomplete. Now, in the present paper, we shall treat this remaining open case and, consequently, shall determine the genus field K^{*} and the genus number g_{K} for any pure number field K explicitly. As for the definitions and the notations, see Ishida [2] and [3].

§1. Remaining case.

Let $K=\boldsymbol{Q}(\sqrt[n]{a})$ with $a \in \boldsymbol{Z}(a \neq \pm 1)$ be a pure number field, where, as before, a has the property

$$
\begin{equation*}
p^{v} \| a \Longrightarrow(v, n)=1 \tag{*}
\end{equation*}
$$

for any prime divisor p of a.
First, in $\S 1, \S 2$ and $\S 3$, as is stated in the introduction, we consider the remaining open case:

$$
\begin{gathered}
n=2^{\circ}(s \geqq 2 \text { and so } n \geqq 4) \\
\text { and } \quad a \equiv-1(\bmod 4)
\end{gathered}
$$

(cf. [3]). We fix them in $\S 1, \S 2$, §3. Note that, in this case, 2 is totally ramified in $K:(2)=\mathfrak{I}^{n}$ (1 is a prime ideal of K). Let k^{*} be the maximal abelian subfield of the genus field K^{*} of K and k_{2}^{*} the maximal subfield of k^{*} such that $k_{2}^{*} \subset \boldsymbol{Q}\left(\zeta_{2}{ }^{2}\right)$ for some M. ($\zeta_{2^{M I}}$ denotes a primitive 2^{μ}-th root of unity.) In other words, k_{2}^{*} is the maximal absolute abelian number field such that $k_{2}^{*} K$ is unramified over K (in narrow sense) and $k_{2}^{*} \subset \boldsymbol{Q}\left(\zeta_{2} \mu\right)$ for some M. As is well known, $\boldsymbol{Q}\left(\zeta_{4}\right) \boldsymbol{Q}(\sqrt{\boldsymbol{a}})$ is unramified over $\boldsymbol{Q}(\sqrt{\bar{a}})$ and so $\boldsymbol{Q}\left(\zeta_{4}\right) K$ is unramified over K. Hence $\boldsymbol{Q}\left(\zeta_{4}\right) \subset k_{2}^{*}$ and, as $\boldsymbol{Q}\left(\zeta_{2} x\right) / \boldsymbol{Q}\left(\zeta_{4}\right)$ is a cyclic extension, we have

$$
k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2^{d}}\right) \quad \text { for some } \quad d \in \boldsymbol{Z}
$$

Now we consider the two cases separately and prove the following assertions:

Case A. $\quad a \equiv-1\left(\bmod 2^{s+1}\right)$. Then we have

$$
\boldsymbol{k}_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right) .
$$

Case B. $a \not \equiv-1\left(\bmod 2^{s+1}\right)$. Take such $r \in Z(1 \leqq r<s)$ that $a \equiv-1$ $\left(\bmod 2^{r+1}\right)$ but $a \not \equiv-1\left(\bmod 2^{r+2}\right)$. Then we have

$$
\boldsymbol{k}_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2^{r+1}}\right) .
$$

For $s=2$ (i.e. $n=4$), we have just proved them in [3]:

$$
\left\{\begin{array}{l}
a \equiv-1(\bmod 8) \Longrightarrow k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{8}\right), \\
a \equiv 3(\bmod 8) \Longrightarrow k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{4}\right) .
\end{array}\right.
$$

Hence we shall prove these two assertions by using the induction on s.
Then we shall see that, if $2^{N} \| a+1$,

$$
k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2^{d}}\right) \quad \text { with } \quad d=\operatorname{Min}(N, s+1) .
$$

§2. Proof in the case B.
We assume that

$$
a \equiv-1\left(\bmod 2^{r+1}\right) \quad \text { but } \quad a \not \equiv-1\left(\bmod 2^{r+2}\right) \quad \text { with } \quad 1 \leqq r<s
$$

Let $K_{0}=Q\left((\sqrt[n]{a})^{n / 2^{r}}\right) \subset K$. Since $a \equiv-1\left(\bmod 2^{r+1}\right)$, we see that, by the assumption of the induction, $\boldsymbol{Q}\left(\zeta_{2}{ }^{r+1}\right) K_{0}$ is unramified over K_{0}. Accordingly $\boldsymbol{Q}\left(\zeta_{2} r+1\right) K$ is also unramified over K and so $k_{2}^{*} \supset \boldsymbol{Q}\left(\zeta_{2 r+1}\right)$. Suppose that $k_{2}^{*} \supsetneqq \boldsymbol{Q}\left(\zeta_{2} r+1\right)$. Then we have $k_{2}^{*} \supset \boldsymbol{Q}\left(\zeta_{2} r+2\right)$ and so $\boldsymbol{Q}\left(\zeta_{2} r+2\right) K$ is unramified over K; and, by the 'Verschiebungssatz', for any totally positive number γ in K, prime to 2 , we have $N_{K / Q} \gamma \equiv 1\left(\bmod 2^{r+2}\right)$. Take $\gamma=\gamma_{2}=1+\alpha^{2}+\alpha$ $(\alpha=\sqrt[n]{a})$ in §3 of [3], for which we have $N_{K / Q} \gamma_{2}=1+a+a^{2}$. Then $N_{K / \mathbf{Q}} \gamma_{2} \equiv 1\left(\bmod 2^{r+2}\right)$ implies $a(1+a) \equiv 0\left(\bmod 2^{r+2}\right)$ i.e., $a \equiv-1\left(\bmod 2^{r+2}\right)$, which is a contradiction. Therefore we have

$$
k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2} r+1\right)
$$

and our assertion in case B is verified.

§3. Proof in the case A.

We assume that

$$
a \equiv-1\left(\bmod 2^{s+1}\right)
$$

For the sake of simplicity, we use the following notations:

$$
\alpha=\sqrt[28]{a}, \quad \eta=\zeta_{2^{8}}, \quad K_{1}=\boldsymbol{Q}\left(\alpha^{2}\right)
$$

and

$$
\boldsymbol{F}=\boldsymbol{Q}(\eta) K=K(\eta), \quad E=\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right) K=F(\sqrt{\eta}) .
$$

Here, as an odd prime divisor p of a ramifies totally in K, we have $\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right) \cap K=\boldsymbol{Q}$ (cf. the property (*)) and so $[E: K]=\left[\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right): \boldsymbol{Q}\right]=2^{s}$. Since $a \equiv-1\left(\bmod 2^{(s-1)+1}\right)$, we see that, by the assumption of the induction, $\boldsymbol{Q}(\eta) K_{1}$ is unramified over K_{1}. Accordingly $\boldsymbol{F}=\boldsymbol{Q}(\eta) K$ is also unramified over K.

Now we shall prove that any prime divisor of 2 in F is unramified in E (and so, that E is unramified over F). Then, by considering the ramification indices of 2 in K and $\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right)$, we see $k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right)$.

As is stated in $\S 1$, we have (2) $=\mathfrak{l}^{n}$ in K and so

$$
(2)=\left(\mathfrak{R}_{1} \mathfrak{R}_{2} \cdots \mathfrak{R}_{g}\right)^{n} \quad \text { in } \quad F,
$$

where $\mathfrak{R}_{1}, \mathfrak{R}_{2}, \cdots, \mathfrak{R}_{g}$ are distinct prime ideals of F. Take anyone of \mathbb{R}_{j} 's and denote it by \mathbb{R}. We have

$$
X^{2^{s}}-1=\left(X^{2^{s-1}}-1\right)\left(X^{2^{8-1}}+1\right)=\prod_{i=0}^{2^{s-1}}\left(X-\eta^{i}\right)
$$

and so

$$
X^{2^{s-1}}+1=\prod_{i=0(\text { odd })}^{2^{s-1}}\left(X-\eta^{i}\right)
$$

Hence we have

$$
a+1=\alpha^{2^{s}}+1=\prod_{i=0(\text { (odd })}^{2^{s}-1}\left(\alpha^{2}-\eta^{i}\right)
$$

Let N be the highest exponent of 2 in $a+1$ i.e., $2^{N} \| a+1$; so our assumption is equivalent to the inequality

$$
N \geqq s+1
$$

Then we have

$$
\mathcal{B}^{n N} \| \prod_{i=0 \text { (odd) }}^{2^{s}-1}\left(\alpha^{2}-\eta^{i}\right)
$$

Also, let e be the maximal value of the highest exponents of \mathbb{Z} in $\alpha^{2}-\eta^{i}$ for $i=1,3, \cdots, 2^{s}-1\left(\mathfrak{R}^{e} \| \alpha^{2}-\eta^{i_{0}}\right)$. As i_{0} is odd, we may replace η by $\eta^{i_{0}}$
$\left(E=F(\sqrt{\eta})=F\left(\sqrt{\eta^{i_{0}}}\right)\right)$ and so we may suppose $\mathscr{L}^{\bullet} \| \alpha^{2}-\eta$. Then, as $2^{s-1} e \geqq n N=2^{s} N$ i.e., $e \geqq 2 N \geqq 2$, we can choose $t \in Z(t \geqq 0)$ such that

$$
2^{t+1} \leqq e<2^{t+2}
$$

Let $\mathscr{R}^{e_{i}} \| \alpha^{2}-\eta^{i}$ for $i=1,3, \cdots, 2^{s}-1\left(e=e_{1}\right)$. For odd $i=1+2^{f_{i}} c$ ($2 \nmid c$), we see that

$$
\alpha^{2}-\eta^{i}=\left(\alpha^{2}-\eta\right)+\eta\left(1-\eta^{2}{ }^{f_{i}}\right)
$$

and $\mathfrak{B}^{e}\left\|\alpha^{2}-\eta, \mathfrak{R}^{2_{i}+1}\right\| 1-\eta^{2^{f_{i}}}$ in F. Consequently we have

$$
\begin{aligned}
& f_{i} \leqq t \Longrightarrow 2^{f_{i}+1} \leqq 2^{t+1} \leqq e \quad \text { and so } e_{i}=2^{f_{i}+1} \\
& \left(f_{i}=t, 2^{t+1}=e \Longrightarrow e_{i} \geqq e \text { and so } e_{i}=e=2^{t+1} \quad(\text { the maximality of } e)\right), \\
& f_{i}>t \Longrightarrow 2^{f_{i}+1} \geqq 2^{t+2}>e \quad \text { and so } e_{i}=e
\end{aligned}
$$

Suppose that the inequality $t<s$ i.e., $t \leqq s-1$ holds and note that $1<i=$ $1+2^{s-1} \leqq 2^{s}-1$. The number of such i that $f_{i}=1$ (resp. $2,3, \cdots, t$) is 2^{s-2} (resp. $2^{s-3}, 2^{s-4}, \cdots, 2^{s-t-1}$). Hence we have

$$
\begin{aligned}
2^{s}(s+1) \leqq & 2^{s} N=n N=\sum_{t=0 \text { (odd })}^{2^{s}-1} e_{i} \\
= & 2^{s-2} \cdot 2^{2}+2^{s-3} \cdot 2^{3}+\cdots+2^{s-t-1} \cdot 2^{t+1} \\
& +\left\{2^{s-1}-\left(2^{s-2}+\cdots+2^{s-t-1}\right)\right\} e \\
= & t \cdot 2^{s}+2^{s-t-1} \cdot e<(s-1) 2^{s}+2^{s-t-1} \cdot 2^{t+2} \\
= & 2^{s}(s+1),
\end{aligned}
$$

which is a contradiction. Accordingly we must have $t \geqq s$ and so the inequality

$$
e \geqq 2^{t+1} \geqq 2^{s+1}=2 \cdot 2^{s}=2 n
$$

Then we have $\alpha^{2} \equiv \eta\left(\bmod \mathfrak{ß}^{2 n}\right)$, which implies that the congruence equation

$$
X^{2} \equiv \eta\left(\bmod \Re^{2 n}\right)
$$

has an integral solution α in F. (Note that $\mathfrak{R}^{n} \| 1+(-1)$, where -1 is a primitive second root of unity.) So, as is well known (cf. Hecke [1]), \mathfrak{Z} is unramified in $E=F(\sqrt{\eta})$.

Since \mathfrak{B} is an arbitrary prime divisor of 2 in F, we see that E is unramified over F. Therefore we have

$$
k_{2}^{*}=\boldsymbol{Q}\left(\zeta_{2^{s+1}}\right)
$$

and our assertion in case A is also verified.
§4. Final results.
Now we return to the general situation: $K=\boldsymbol{Q}(\sqrt[n]{a})(n>1$ is arbitrary and a has the property (*)). Then, combining the results in [3] and in $\S 1$, we have the following final results. (We denote by ζ_{m} a primitive m th root of unity.)

Theorem. Let $K=\boldsymbol{Q}(\sqrt[n]{a})$ with $a \in \boldsymbol{Z}(a \neq \pm 1)$ be a pure number field, where a has the property

$$
\begin{equation*}
p^{v} \| a \Longrightarrow(v, n)=1 \tag{*}
\end{equation*}
$$

for any prime divisor p of a. Let

$$
2^{s} \| n \quad \text { and } \quad 2^{v} \| a
$$

Then the maximal abelian subfield k^{*} of the genus field K^{*} of K is given as follows $\left(K^{*}=k^{*} K\right)$:

$$
k^{*}=k_{1}^{*} \cdot k_{2}^{*} \quad(\text { composite }),
$$

where

$$
\begin{aligned}
k_{1}^{*}= & \prod_{p \mid a(p: p r i m e)}\{\text { the subfield, of degree }(n, p-1) \text {, of the } \\
& \text { cyclotomic number field } \left.\boldsymbol{Q}\left(\zeta_{p}\right)\right\} \quad \text { (composite) }
\end{aligned}
$$

and

$$
k_{2}^{*}=\left\{\begin{array}{l}
\boldsymbol{Q} \text { if } n \text { is odd (i.e., } s=0), \\
\boldsymbol{Q} \text { if } n \text { is even and } a \equiv 1(\bmod 4), \\
\boldsymbol{Q}(\sqrt{2}) \text { if } n \text { is even, } a \text { is even (i.e., } v>0) \\
\text { and } a / 2^{v} \equiv 1(\bmod 4), \\
\boldsymbol{Q}(\sqrt{-2}) \text { if } n \text { is even, a is even (i.e., } v>0) \\
\text { and } a / 2^{v} \equiv 3(\bmod 4), \\
\boldsymbol{Q}\left(\zeta_{2} d\right) \text { with } d=\operatorname{Min}(N, s+1) \text { if } n \text { is even } \\
\text { (i.e., } s>0), a \equiv 3(\bmod 4) \text { and } 2^{N} \| a+1 .
\end{array}\right.
$$

§5. Genus number.

In order to give the genus number g_{K} of the pure number field $K=\boldsymbol{Q}(\sqrt[n]{a})$, it suffices to decide the maximal abelian subfield k_{0} of K :

$$
\begin{aligned}
g_{K} & =\left[K^{*}: K\right]=\left[k^{*}: \boldsymbol{Q}\right] /\left[k_{0}: \boldsymbol{Q}\right] \\
& =\left[k_{1}^{*}: \boldsymbol{Q}\right]\left[k_{2}^{*}: \boldsymbol{Q}\right] /\left[k_{0}: \boldsymbol{Q}\right],
\end{aligned}
$$

(cf. [2]). Under the assumption (*) on a, we can show that $k_{0}=\boldsymbol{Q}$ if n is odd and $k_{0}=\boldsymbol{Q}(\sqrt{a})$ if n is even.

We sketch the proof of this fact.* First, if $Q\left(\zeta_{n}\right) \cap K=Q$, then we see easily, by investigating the structure of the Galois group of $\boldsymbol{Q}\left(\zeta_{n}, \sqrt[n]{a}\right)$ over \boldsymbol{Q}, that $\boldsymbol{Q}\left((\sqrt[n]{a})^{n / f}\right)$ is the unique subfield, of $K=\boldsymbol{Q}(\sqrt[n]{a})$, of degree $f(f \mid n)$. Now suppose that, for an odd prime $q, q^{t} \|\left[k_{0}: Q\right]$ with $t>0$. Let $q^{s^{\prime}} \| n$ and $K_{1}=\boldsymbol{Q}\left((\sqrt[n]{a})^{n / q^{s^{\prime}}}\right) \subset K$. Then k_{0} contains a subfield F of degree q^{t} and, as [$K: K_{1}$] is prime to q, K_{1} must contain F.
(i) If $\pm a$ is not a power of q, then there is a prime divisor $p \neq q$ of a and p is totally ramified in K_{1} (cf. the property (*)). Accordingly we have $\boldsymbol{Q}\left(\zeta_{q^{8}}\right) \cap K_{1}=\boldsymbol{Q}$ and, as is remarked above, \boldsymbol{F} coincides with $\boldsymbol{Q}(\sqrt[a^{t}]{a})$. So \boldsymbol{F} contains $\zeta_{q}(t>0)$, which is a contradiction.
(ii) If $\pm a$ is a power of q, then F is a subfield of $Q\left(\zeta_{q}{ }^{M}\right)$ for some $M \in Z$. On the other hand, by the definition, F is contained in the maximal abelian subfield of the genus field of K_{1}. So we have $F=\boldsymbol{Q}$ (cf. Theorem and §2 of [3]), which is also a contradiction.

Hence $\left[k_{0}: Q\right.$] is a power of 2 and k_{0} is contained in $K_{0}=\boldsymbol{Q}\left((\sqrt[n]{a})^{n / 2^{8}}\right)$, where $2^{s} \| n$.
(iii) If $\pm a$ is not a power of 2, then, in a similar way as in (i), we have $k_{0}=\boldsymbol{Q}\left((\sqrt[n]{a})^{n / 2}\right)=\boldsymbol{Q}(\sqrt{a})$.
(iv) If $\pm a$ is a power of 2, then, also in a similar way as in (ii), we have $k_{0}=Q(\sqrt{ \pm 2})=\boldsymbol{Q}(\sqrt{a})$ (cf. Theorem and $\S 3$ of [3]).

Corollary. As for the maximal abelian subfield \boldsymbol{k}_{0} of $K=\boldsymbol{Q}(\sqrt[n]{a})$, we have

$$
k_{0}=\left\{\begin{array}{l}
\boldsymbol{Q} \text { if } n \text { is odd } \\
\boldsymbol{Q}(\sqrt{a}) \text { if } n \text { is even } .
\end{array}\right.
$$

So the genus number $g_{k}=\left[K^{*}: K\right]$ of K is given as follows:

$$
g_{K}=\prod_{p \mid a}(n, p-1) \times\left\{\begin{array}{l}
1 \text { if } n \text { is odd, } \\
1 / 2 \text { if } n \text { is even, } a \equiv 1(\bmod 4), \\
1 \text { if } n \text { is even, } a \equiv 0(\bmod 2), \\
2^{d-2} \text { with } d=\operatorname{Min}(N, s+1) \text { if } n \text { is even } \\
\left(2^{s} \| n\right), a \equiv 3(\bmod 4) \text { and } 2^{N} \| a+1
\end{array}\right.
$$

§6. Remarks.

We prove our Theorem and Corollary under the assumption that a

[^0]has the property (*). However, without this assumption, we can obtain some information on the genus fields of pure number fields.

For example, we treat the case

$$
K=\boldsymbol{Q}(\sqrt[n]{\boldsymbol{a}}) \quad \text { where } \quad(a, n)=1 \quad \text { and } \quad[K: \boldsymbol{Q}]=n
$$

(without the property (*) of a). Let

$$
n=q_{0}^{s_{0}} Q_{1}^{s_{1}^{1}} \cdots q_{t}^{s_{t}^{t}} \quad\left(s_{0} \geqq 0 ; s_{1}, \cdots, s_{t}>0\right),
$$

where $q_{0}=2$ and q_{i} are odd primes, and put

$$
K_{i}=\boldsymbol{Q}\left((\sqrt[n]{a})^{n / q_{i} i_{i}}\right) \quad(i=0,1, \cdots, t)
$$

As $[K: Q]=n$, we have $\left[K_{i}: Q\right]=q_{i}^{s_{i}}$. We denote by k^{*} and $k^{(i)^{*}}$ the maximal abelian subfields of the genus fields of K and K_{i} respectively. Then we have

$$
k^{*}=k^{(0) *} \cdot k^{(1) *} \cdots \cdots k^{(t) *}
$$

(cf. [2]).
Now, for the simplicity, put, for a fixed $i(0 \leqq i \leqq t)$,

$$
L=K_{i}, \quad q=q_{i}, \quad s=s_{i} \quad \text { and } \quad k^{\prime *}=k^{(i)_{*}}
$$

First, let $k_{2}^{\prime *}$ be the maximal subfield of $k^{\prime *}$ such that $k_{2}^{\prime *} \subset \boldsymbol{Q}\left(\zeta_{q}{ }^{M}\right)$ for some M. Here note that $q \nmid a$. If $q \neq 2$, then the results of cases (2) and (3) in $\S 2$ of [3] also hold and so we have $k_{2}^{\prime *}=\boldsymbol{Q}$. If $q=q_{0}=2$, then the results of case (1) in §3 of [3] and of $\S 1$ also hold and so we have $k_{2}^{\prime *}=\boldsymbol{Q}$ for $a \equiv 1(\bmod 4)$ and $k_{2}^{\prime *}=\boldsymbol{Q}\left(\zeta_{2} d\right)$ with $d=\operatorname{Min}(N, s+1)$ for $a \equiv 3(\bmod 4)\left(2^{N} \| a+1, s=s_{0}\right)$. Next, we determine, for a prime divisor p of a, the greatest common divisor $e(p)$ of the ramification indices of all the prime divisors of p in $L: e(p)=\left(e_{1}, \cdots, e_{g}\right)$ where $(p)=\Im_{1}^{e_{1}} \cdots \mathfrak{F}_{g}^{e_{g}}$ in L. Let $a=p^{v} b(p \nmid b)$ and $v=q^{c} w(q \nmid w)$. Clearly $a^{1 / q^{s}}=p^{q^{c} w / q^{s}} \cdot b^{1 / q^{s}}$. So, if $s \leqq c$, we have $L=\boldsymbol{Q}) \sqrt[q]{b}$) and, as $p \nmid b(p \neq q), p$ is unramified in L; and so we have $e(p)=1$. If $s>c$, we see easily that p is unramified in $L_{1}=$ $\boldsymbol{Q}\left((\sqrt[q 8]{a})^{q^{g^{-c}}}\right)=\boldsymbol{Q}(\sqrt[q^{q}]{b}) \quad\left((p)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{g}\right.$ in $\left.L_{1}\right)$ and L is of Eisenstein type with respect to each $\mathfrak{p}_{i}(i=1, \cdots, g)$. So $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{g}$ are totally ramified in L and we have $e(p)=\left[L: L_{1}\right]=q^{s-c}$. Hence $k^{\prime *}$ is obtained as

$$
\begin{aligned}
k^{* *}= & \prod_{p \mid a}\left\{\text { the subfield, of degree }\left(q^{s-\operatorname{Min}(s, c)}, p-1\right), \text { of } \boldsymbol{Q}\left(\zeta_{p}\right)\left(p^{v}\left\|a, q^{c}\right\| v\right)\right\} \\
& \times k_{2}^{\prime *} \quad \text { (composite) }
\end{aligned}
$$

(cf. Chapter 4 in [2]).

Therefore we have the following assertion: Let K, n, a and k^{*} be as above. For a prime divisor p of a, let

$$
p^{n} \| a \quad \text { and } \quad v=q_{0}^{c_{0}} q_{1}^{c_{1}} \cdots q_{t}^{c_{t}} u \quad\left((u, n)=1, c_{i} \geqq 0\right)
$$

and put

$$
k^{*}(p)=\text { the subfield, of degree }\left(\prod_{i=0}^{t} q_{i}^{s i-\min \left(s_{i}, c_{i}\right)}, p-1\right) \text {, of } Q\left(\zeta_{p}\right)
$$

Then we have

$$
k^{*}=k_{1}^{*} \cdot k_{2}^{*},
$$

where

$$
k_{1}^{*}=\prod_{p \mid a} k^{*}(p) \quad \text { (composite) }
$$

and

$$
k_{2}^{*}=\left\{\begin{array}{l}
\boldsymbol{Q}\left(\zeta_{2^{d}}\right) \text { if } n \text { is even, } a \equiv 3(\bmod 4)\left(d=\operatorname{Min}\left(N, s_{0}+1\right)\right. \\
\boldsymbol{Q} \text { otherwise } .
\end{array}\right.
$$

References

[1] E. Hecke, Vorlesungen über die Theorie der Algebraischen Zahlen, Chelsea, New York, 1948 (Satz 119).
[2] M. Ishida, The genus fields of algebraic number fields, Lecture Notes in Math., 555, Springer, Berlin-Heidelberg-New York, 1976.
[3] M. Ishida, On the genus fields of pure number fields, Tokyo J. Math., 3 (1980), 177-185.

[^0]: * Of course, as for subfields of pure field extensions, more general results are obtained by algebraic considerations (without the property (*)) (a private communication of Prof. Endo).

