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Extensions of Measures with Values in a Topological
Group with Applications to Vector Measures
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(Communicated by T. Saito)

The extension problem for countably additive scalar measures has
its roots in integration theory. To apply the Lebesgue construction it
was necessary to extend scalar set functions, usually defined explicitly
only on a ring, to the g-algebra of measureable sets. The existence of
such an extension for countable additive set functions is insured by the
Caratheodory outer measure construction. It was not until much later
that the integral was defined directly from a countable additive set
function on a ring (see Bogdanowicz [4] and [5]). As a result of the
Bogdanowicz construction, the original Caratheodory extension theorem
became a corollary to rather than an essential part of the definition
of the integral.

The extension problem for vector measures has had a more difficult
development. The key to the solution was discovered in the condition
of strong boundedness introduced by Rickart [16]. It is somewhat curious
that Rickart introduced strong boundedness in the context of decomposi-
tion of set functions rather than in relation to extension theory. Brooks
[7] and Oberle [14] established the equivalence of the condition of strong
boundedness with the existence of a Bartle-Dunford-Schwartz control
measure (see [2]) which could be extended to the generated o-ring by
the classical Caratheodory construction. The original vector measure if
countably additive is then extendable to the o-ring via uniform con-
tinuity. The result generated an extensive study of the theory of
topological rings of sets, see Drewnowski [8], Labuda [13], Oberle [14],
and Bogdan and Oberle [6]. The most inclusive statement of the exten-
sion theorem for vector measures has been given by Kluvanek {12].
Kluvanek has shown that for a weakly countably additive vector measure
defined on a ring, the condition of strong boundedness is equivalent to
the existence of a countably additive extension to the generated o-ring.
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The Kluvanek theorem is comprehensive in that it establishes numerous
equivalent conditions to strong boundedness—thereby pulling together the
numerous specialized extension theorems that are scattered throughout
the literature. The reader need only consult the bibliography of the
Kluvanek paper to gain an appreciation of the scope of the interest in
the vector measure extension problem.

Even though the Kluvanek extension is quite powerful, it fails to
include as a special case the extension of the Lebesgue measure from
the ring generated by half open intervals to the delta ring of Lebesgue
summable sets. A special case of such an extension theorem for vector
measures was accomplished by Gould [11] via a construction analogous
to the Caratheodory outer measure procedure. Gould’s extension was
accomplished only for vector measure taking values in a certain class of
range spaces (which turned out to be those Banach spaces which do not
contain a copy of the space of the null convergent sequences of scalars).
Since the domain of the Gould extension is a delta ring with convergence
conditions analogous to the Lebesgue summable sets, the Gould result
extends the classical Lebesgue extension. Although the Gould extension
is accomplished via an assumed property of the range space, the condition
equivalent to the existence of the extension is easily recognized as a
variant of the Rickart strong boundedness condition.

The next step in the study of the extension problem is found in the
theory of group valued measures. Sion [17] and Fox and Rogers [10]
have used  the strong boundedness condition to establish variations of
the Kluvanek theorem for group valued measures. The Sion construction
is a variation of the Caratheodory construction. However, when the range
space is a Banach space, the conditions assumed by Sion restrict the class
of extendable measures to those whose extension has finite semivaria-
tion on each measurable set. Although a large class of vector measures,
in particular the Lebesgue measure on the real line do not satisfy the
Sion criteria, the basic construction may be modified to yield a general
extension theorem.

The purpose of this paper is to show that certain countably additive
group valued measures may be extended from a ring to a delta ring
possessing monotone convergence properties similar to the delta ring of
Lebesgue summable sets. As in the scalar case, the domain of the
extension is generally larger than the generated delta ring and generally
smaller than the generated o-ring. As expected, the condition required
to accomplish the extension is a variant of the condition of strong
boundedness. It will be seen that not only does the extension theorem
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to be established generalize the classical Lebesgue extension but also
includes the Kluvanek and Gould extension theorems as well as the Sion
extension for group valued measures. Because the development is quite
lengthy and technical in nature, specific application to the theory of
vector measures will be limited to illustrations. In particular, the ana-
logues of the various equivalent formulations of strong boundedness given
by Kluvanek (some of which no longer remain true) will not be discussed.
The reader is referred to [1], [2], [6], [7], [8], [12], [18], [15], and [18] to aid
any indepth study of the extension problem for vector measures.

Let V be a ring of subsets of an abstract space X and let V, denote
the class of all countable unions of sets from the ring V. Let E be a
commutative, complete topological group and denote by a(V, E), respec-
tively ca(V, E), the class of finitely additive, respectively countably
additive, functions on the ring V into the group E. For any family of
subsets W of the space X, we say that a sequence A4, V,n=1,23, ---,
is W-dominated if there exists a set Be W such that A,cB, for all
n=1,28, ---. A function ea(V, E) is said to be Rickart on the ring
V relative to the family W if lim, ¢#(A4,)=0 for each disjoint, W-dominated
sequence A,€ V,ne N.

Section 1 of this paper contains some equivalent formulations of the
Rickart condition and results analogous to those established by Rickart,
[16], who introduced a similar class of Banach space valued, finitely
additive functions. This section also contains modified statements of the
Sion, [17], extension theorem with an outline of the extension procedure
and its relation to other recent extension theorems appearing in the
literature.

Section 2 contains a discussion of topological rings of sets generated
by group valued charges. The development given parallels the construc-
tions of Bogdan (published in [6]) who developed the theory of topological
rings of sets for families subadditive, real valued functions in connection
with the Vitali-Hahn-Saks theorem.

In section 3, the extension problem is discussed in the context of
topological rings of sets as developed in section 2. It is shown that a
group valued measure on a ring admits an extension to a measure on a
delta ring which is sequentially complete in the uniform structure gen-
erated by the extension.

Throughout this paper, let V denote a ring of subsets of an abstract
space X and let Wc V, (the family of sets expressible as a countable
union of sets from the ring V) be directed upward by set inclusion.
Let E be a commutative, complete topological group and let & denote
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a base of closed, symmetric neighborhoods of the origin in the group
E. For any set function p: D(¢)— E, with domain D(g) consisting of
subsets of the space X, and any closed neighborhood b of the origin in
E, we set

N(g, b)={Ae€ P(X): p(B)eb for all BeD(y¢) with BC A}

and
N(g, b)={(A, B): A, Be D(Y) and A-<Be N(x, b))

where -+ denotes the symmetric difference operation on the ¢-algebra
P(X) of all subsets of the space X. The natural numbers will be denoted
by N and the (non-negative) reals will be denoted (R+)R.

§1. Properties of Rickart measures.

In this section, we develop results for the space of finitely additive,
E-valued functions analogous to those given by Rickart [16] and Bogdan
and Oberle [6] for Banach space valued functions.

LEMMA 1.1. Let ptea(V, E) be Rickart on the ring V relative to the
class W. Then for each W-dominated, disjoint sequence A,€ V,ne N,
and each mneighborhood g€ &, there exists an index m(g) € N such that
A,e N(y, g) for all n=n(g).

PROOF. Assume the contrary. Then there exists a subsequence
k,e N, for n=1,2, --- and a sequence B,cV, B,cA,, for n=1,2, ...
such that u(B,)¢ g for all n=1,2,3, ---. Since the sequence B,e V, n=
1,2,8,--- is disjoint and W-dominated, and the charge pea(V, E) is
Rickart, we have a contradiction.

LEMMA 1.2. Let pca(V, E) be Rickart on the ring V relative to the
class W. Then for each disjoint W-dominated sequence A,c V,mc N,
and each meighborhood g€ &, there exists a finite set A(g) N such that
Sfor every finite set 4C N with 4 4(g)=¢, we have p(B)eg uniformly
with respect to the sets Be V, BC Uies A,.

ProoF. If we assume the contrary, then for each finite set 4CN,
there exists a finite set /' N and a set Be V, with BC U, 4, ANL' =¢
and x(B)¢g. Starting with any finite set 4,C N, it is possible to choose
a sequence 4,CN,n=0,1,2,3, - - - of finite sets and a W-dominated sequence
B,eV,n=1,2 38, --- with the properties:
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1- (AoU A Udn—l)ndﬂv=¢
2. .B,, CkL; Ak and #(B”) ¢ g fol‘ 'n/':-"]-, 2; 3, ct .
Condition 1 insures that the sequence B,e V,ne N is disjoint so that

condition 2 is a contradiction to the Rickart condition for the charge
rea(V, B). '

The following characterization of the Rickart condition has been
established by Bogdan and Oberle [6], for Banach space valued charges.

PROPOSITION 1.1. Let V be a ring of subsets of a space X and let
E be a commutative complete topological group. For any charge pe
a(V, E) and any class W of subsets of the space X, the following are
equivalent:

1. The charge prca(V, E) is Rickart on the ring V relative to the
class W.

2. For each disjoint, W-dominated sequence A,€ V, n€ N the series
S (A,) converges umconditionally im the group K, (that i8, the met
{Soees tt(AL): 4€ F(N)} converges in the group E).

3. For each monotone, W-dominated sequence

A,eV,neN,limu(A,+~A,)=0,

where = denotes the symmetric difference operation in the ring V and 6
denotes the null element of the group E.

PrOOF. Assume condition 1 and let A,eV,%2=1,28, --- be a W-
dominated, disjoint sequence. Then for each neighborhood g € &, Lemma
1.2 insures that there exists a finite set 4(¢g)= N with the property that
each finite set 4 N, with 4N 4(g)=¢ yields p(U.cs Ax) €9. The finite
additivity of the charge geca(V, E) and the above observation insure
that the net {3.., #(A4,): AC N, d-finite} converges in the group E. Thus,
the series 3, #(4,) converges unconditionally in the group E.

Assume that condition 2 holds and let 4, V,»=1,2,3, --- be a W-
dominated monotone sequence and set B,=A,.,+ A4, n=1,2,8, ---. The
sequence B, € V, n € N is disjoint and W-dominated. For any neighborhood
g€ &, condition 2 insures that there exists a finite set 4(g) CN such that

F‘( U Bk>€g

kea\4’

for each pair of finite sets 4, 4/ c N with 4(9) c 4’ < 4. Let n(g)€ N be
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chosen so that n(g)=max(¢; t € 4(g)). Then for indices m, nN with m, n>
n(g) and m=n, we have :

AU A+ 40)eg

Since the sequence A,, n € N is monotone, Uz A4, +~A,=A,+ A, so that
KA,+~A,) eg for indices m, n € N with m, n=n(g).

Assume that condition 3 holds and let A,e V,ne N be a disjoint,
W-dominated sequence. Let g€ & and set B,=UJ}_, 4;, forn=1,2,3, ---.
The sequence B,cV,neN is W-dominated and monotone increasing.
Applying condition 3, there exists an index n(g) € N such that m, ne N,
m, n=n(g) yields u(B,+B,) €g. In particular, for any index ne N, n>
n(g), (4,)=p(B,+B,_;)€g. Thus, the charge e a(V, E) is Rickart on
the ring V relative to the class W. The next two lemmas have important
applications in section 3.

LEMMA 1.3. Let preca(V, E) be Rickart on the ring V relative to the
class W and let A,€ V, ne N be disjoint and W-dominated. Then Jor
each meighborhood gec &, there exists an mdex n(g) € N such that n=n(g)
ytelds

H(B)eg
uniformly with respect to the sets Be V, BC A\Uj-, A, where A={,A,

PrOOF. Let ge & be arbitrary and choose a sequence g, € %, ne N
such that

%
2 0.Cg,
k=1

for all ne N. Using the property of W-boundedness given in Lemma
1.2, there exists an increasing sequence k,, n=1, 2, 8, - -- of non-negative
integers such that

KB)eg,

for each set Be V, BCc U:*', A
We have

a\Ga=0a=0 U a,.

t=1 t=ky+1 t=n s=k,+1

For any set Be V with Bc A\U:* 4,, we have
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5=\

t=n

ke

U BnNA,.

s=lks+1

Since the charge g eca(V, E) is countably additive, we have

k

:“ BN A.)=l§nmi o U’ Bn A).

s=ky+1 t=n 8=ly+1

#B)=3; o
t=n
However, for all m>n

m ktqq S oom
Z#( U BnA,)ethcy.
t=n s=k;+1 t=n

Since the neighborhood ge & is closed, we have u(B)eg, the desired
result. .

LEMMA 1.4. Let peca(V, E) be W-bounded on the ring V and let
A,eV,n=123,--- be W-dominated and increasing. Then for each
neighborhood ge &, there exists an index n(g) such that n=n(g) yields

t(B)eg
uniformly with respect to the sets Be V with BC A\A, where A=U, A,.

PROOF. We assume that for each index 2=1,2,8, ---A,=Un4sn
where A,,.c€V, A, nCA, .+ for me N. For each index ne N, set B,=
A, UA,,U---UA,,. Then the sequence B,c€V,neN is W-dominated
such that U, B.=U.A.=A4, and for ne N, B,cUi-. 4,=A4,,and A\4,C
A\B,. Using Lemma 1.8, there exists an index n(g) € N such that n=n(g)
yields #(B)eg for all sets Be V, BCA\B,. For indices n=n(g) this
yields p(B)eg for all sets Be V, BC A/A,.

Denote by P(X, W) the delta ring of all W-dominated subsets of the
space X. Using the same definition of measurability as Sion [17], and
minor modifications to his arguments, the following extension theorem
may be established.

THEOREM 1.1. Let V be a ring of subsets of the space X and let
WcCV, be directed upward by set inclusion and assume VCP(X, W).
Let peca(V, E) be Rickart on the ring V relative to the class W. Then
there exists a function p*: P(X, W)— E with the following properties

1. The measure V is extended by the function p*.

2. For each increasing W-dominated sequence A,c P(X, W), ne
N p#*(U. A, =lim, #*(4,).

3. The class 3, (¢*, W) of p*-measurable, W-dominated sets is a
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delta ring containing the class V,(W) of W-dominated, V,-sets and the
Sunction p* is finitely additive on the class 3, (¢*, W).

4. If a set Ae P(X, W) i3 u*-measurable, then for each neighborhood
g€ <, there exits a set Be (A, W) with B\Ae N(¢*, g). If the family
< 18 countable, then a set Ae P(X, W) i3 measurable if and only if
A=BUC with BeV,,, B,Ce P(X, W), BNnC=0Q and p*(C)=4.

The function p¢*: P(X, W)—E is referred to as the outer measure
generated by the Rickart measure peca(V, E). A discussion of the
uniformity on the class P(X, W) generated by the outer measure u©r is
given by Sion [17]. Although the notion of g*-measurability is useful
for studying additive (and, hence, countably additive) extensions of the
W-bounded measure (¢, the more intrinsic result is the fact that generated
outer measure p* is continuous under W-dominated convergence in the
space P(X, W).

The extension via outer measure is accomplished by introducing, for
each set A€ P(X, W), the class

&(A, W)={Be V,nP(X, W): ACB)} .

The condition WC V, insures that the class (A4, W) is non-empty for
each set Ae P(X, W). For each set Ae P(X, W), the class &°(4, W) is
directed downward by set inclusion. The measure geca(V, E) is first
extended to a finitely additive funection g,:V,NP(X, W)—E which is
continuous with respect to W-dominated increasing convergence. Noting
that for each set Ae P(X, W), the net {¢,(B): Be (4, W)} is Cauchy
in the group E, the outer measure is defined by the relation

p*(A)=lim(y,(B): Be (4, W)) .

The function p*: P(X, W)— E then satisfies the condition of the theorem.

Sion [17] solved the extension problem for measures on a ring with
values in a commutative, complete topological group for the case W= Vv,
and XeV,. For a ring V of subsets of the space X and Banach space
E, Bogdan and Oberle [6] studied the extension problem for a vector
measure (€ cab(V, E) for each of the conditions

1. W=V
and
2. W={4AeP(X): p(A, p)< o}

where
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(A, p)=sup(|p#(B)|, Be V, BC A)

and
cab(V, E)={peca(V, E): p(A, )< for each set AecV}.

The same extension theorem has been obtained by Gould [11], for a class
of Banach spaces which include the weakly complete spaces. Fox [9]
solved the extension problem for general Banach spaces and measures
on an algebra of sets.

All of the above extension theorems are obtained by using the
assumed properties to enlarge the domain to the desired extension ring.
The extension problem has also been approached via the existence of a
“control measure”. Brooks [7] has shown that a vector charge € a(V, E)
is Rickart on the ring V relative to the family W={X} (such charges
are called strongly bounded) if and only if the charge p admits a control
measure v € ab*(V, R). Moreover, if in addition the charge ¢ is a measure
(that is, countably additive) then the control measure may be chosen to
be countably additive. In this case, the control measure admits an
extension to the o-ring generated by the ring V via the classical cons-
truction and the vector measure is then extended via uniform continuity.
Uhl [18] has shown that for strongly bounded vector measure on an
algebra of sets, the existence of the extension measure on the generated
g-algebra is equivalent to the existence of a finitely additive control
measure which in turn is equivalent to the range of vector measures
being contained in a weakly compact subset of the range space.

§2. Topological rings of sets generated by group valued charges.

Bogdan and Oberle [6] made a study of the topology on an abstract
ring of sets generated by families of non-negative, subadditive, increasing
set functions which vanish at the empty set (called contents). The
theorems relating to completeness proved to be especially useful in
establishing extensions of the classical Vitali-Hahn-Saks theorem. In this
section, an analogous completeness theorem is established for the topology
on an abstract ring generated by a group valued charge.

Let #ca(V, E) be an arbitrary charge. Then the family of sets
{N(g, g), g€ £} is a base for a uniformity on the ring V and the associated
topology is referred to as the g-topology on the ring V. The pair (V, 1),
where V is given the p-topology for z € a(V, E) will be called a topological
ring of sets. Convergence in the u-topology of a sequence A, € V,ne N
to a set Ae V will be denoted A=g—lim, A,. If the topology on the
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group E is generated by an invariant metric p, then for any charge
rtea(V, E), for which the p-semivariation

po(4, p1)=sup [o(x(B), 6), Be V, BC A]

is finite on the ring V, the p-topology is equivalent to the usual Do+, t)-
semi-metric topology. The family of all geca(V, E) for which the p-
semivariation p,(-, #) is finite on the ring V is denoted ab(V, E).

For any sequence 4,, =0, 1,2, --. of subsets of the space X, the
symbol A,— A, is to be understood as pointwise convergence of the
associated characteristic functions. For any class W of subsets of the
space X, a topological ring (V, z) is said to be a W-dominated conver-
gence ring of sets if for each W-dominated sequence A, e V,neN for
which A,— A, we have A€ V and lim, #(B)=6 umformly with respect
to sets Be V, Bc A+ A,.

PROPOSITION 2.1. Let W be any class of subsets of the space X. A
topological ring (V, ) is a W-dominated convergence ring of sets if and
only if the ring V is closed under W-dominated, countable unions and
the charge (t is countably additive on the ring V.

Let &Z be any family of closed symmetric neighborhoods of the
identity in the group E. A topological ring (V, p) is said to be (W, &#)-
upper complete if for each increasing sequence A,c V,ne N for which
A, e N(p¢, b), for all ne N and some set bc <Z, there exists a set Be W
such that A,cB for all ne N.

The family <# is said to be additive if for each pair, b,, b, € <# and
numbers n, m € N, there exists a set bec.<# such that nb,+mb,cb. In
a general abelian group for ne N, and bcE, we set wb=b-+b+---+
b(n-times).

The family of all non-negative multiples of the unit sphere in a
Banach space is an example of an additive family. In the model of
interest, the family <% is intended to consist of bounded neighborhoods
of the identity in a locally convex topological vector space. In this case,
a topological ring (V, p) is (W, <&)-upper complete if the only increasing
sequences in the ring V which map uniformly into some bounded neigh-
borhood of the origin are the W-dominated sequences. In this situation,
each charge pecab(V, E) is (W, <&)-upper complete for W={Ae V,:
(4, p)< oo}

Any real valued, countably additive function # on a ring is (W, <#)-
upper complete for the family W consisting of all sets A e V, for which
sup (|u(B)|: Be V, BC A) is finite and <& consisting of all bounded
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neighborhoods of zero. The finite part of any abstract measure (X, %, )
is a (W, <#)-absolute convergence ring of sets for W=2 and <# consisting
of the bounded neighborhoods of zero.

A topological ring (V, ¢) is said to be a <Z-monotonely complete
ring of sets if for each monotone sequence A,€ V, n€ N for which 4,¢
N(¢, b) for all ne N and some set be<Z wet have A=, A,€V if the
sequence is increasing or A=, 4,¢€ V if the sequence is decreasing and
p-lim, A+-A,=0.

PROPOSITION 2.2. Let V be a ring of subsets closed under W-
dominated, countable unions and let (V, tt) be a (W, <Z)-upper complete
topological ring for a measure tt€ca(V, E) which is Rickart on the ring
V relative to the family W. Then the topological ring (V, p) is a Z-
monotonely complete ring of sets. Conversely, if the topological ring
(V, ) is a <B-monotonely complete ring of sets and peca(V, E) then
the ring V is a delta ring and the topological ring (V, t) is (V, <Z)-upper
complete.

PROOF. The proof proceeds as the proof of Lemma 1.3.

REMARK 2.1. A contrapositive argument, using the countable addi-
‘tivity of the charge g eca(V, E) insures that we have

A=U A, e N, b)

for each increasing, W-dominated sequence A,€ V, ne N for which A, ¢
Ny, b), for all ne N and some set be <. The converse asserted in
Proposition 2.2 is clear. '

For a charge pteca(V, E), we define the class of g-null sets 6(y) to
be all sets Aec P(X) for which p(B)=6 for each set Be V with BCA
and for every neighborhood g€ &, there exists a set Be V, such that
AcCB and Be N(, g).

REMARK 2.2. Notice that if Ae V and Be VNO(Y), then p(A+-B)=
#(A). This observation is a simple consequence of the fact that u(B)=
6 for all Be VNO(w).

Let E be a complete metrizable group with invariant metric o and
for pecab(V, E), let p,(-, ¢) denote the p-semivariation of the charge
K. .

A sequence (A4,€ V,neN) is said to be (g, p)-absolutely summable
if 3, p.(A,, t)<o. The topological ring (V, t) is said to be a (W, p)-
absolute convergence ring if every (g, p)-absolutely summable sequence
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is W-dominated.

THEOREM 2.1. Let E be a complete metrizable group with invariant
metric o and let V be a ring of subsets of an abstract space X. If a
topological ring (V, ) with € cab(V, E) is a V-dominated and (V, p)-
absolute convergemce ring, them the ring V is sequentially complete in
the po(-, 1) topology.

Since the p-semivariation p,(-, £) is a content, Theorem 2.1 is a
special case of Theorem 1.1.1 of reference [6].

Let <&#cCFE be an additive family of closed neighborhoods of the
origin in the group E. Let W(y, <#) be the family of sets Ae V, for
which there exists a set be <&, with u(B)eb for each set Be V with
BcA. If E is a Banach space and <& is the family of all positive
multiples of the closed unit sphere, then for any charge peab(V, E),
the family W(y, <#) is the family of V,-sets of finite semivariation.

THEOREM 2.2. Let V be a ring of subsets of an abstract space X
and let <& be an additive family of closed meighborhoods of the origin
in the group E. Then each charge pteca(V, E) is (W(y, &), &)-upper
complete on the ring V.

PrROOF. Let A,e€ V, ne N be increasing with A, € N(¢, b) for all n=
1,2,3,--- and some be <z We must show that there exists a set
Ae W(y, &) such that A,c A for all n=1,2,3, .--. Set A=UJ. 4, and
consider any set Be V with Bc A. Then B=lim, BN A, and from coun-
table additivity #(B)=lim,p#(BN A,) € b. Consequently, A=J,A, € W(y,#)
and the theorem is established.

§3. Extensions of group valued measures via topological rings of
sets.

In this section a general extension theorem for certain group valued
measures will be established. The extension is accomplished by first
extending to the family V, and a subfamily of V, and then using these
classes to define the domain of the completion. The domain of the
extension consists of a subfamily of measurable sets and when the
base & is countable, this extension is characterized as the smallest
extension delta ring closed under W-dominated increasing sequential
convergence.

Let P(X) denote the c-algebra of all subsets of the space X and let
P(X, W) denote the delta ring of all members of P(X) dominated by
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some set from the class W. Proposition 1.1, the Rickart condition, and
the countable additivity insure that each measure g eca(V, E), Rickart
on the ring V relative to the class W, admits an additive extension
t.: P(X, W)NV,—E characterized by the relation: For each set A€
PX, W)nV, p(A)=lim, (A, where A,e V,neN is any W-dominated
sequence increasing to the set A (see Fox, [9], or Sion, [17]).

REMARK 3.1. 1. Foranyset Aec V,NP(X, W), Be V,BCA, we have
tt,(A) = p(B) + t£,(A\B).

2. For any neighborhood g€ & and any set Ae V,NP(X, W), the
conditions A € N(#,, g) and A € N(, g) are equivalent.

PROPOSITION 8.1. Let pteca(V, E) be Rickart on the ring V relative
to the class W and let A,e¢ V,,nec N be an increasing, W-dominated
sequence with A=), A..

1. The sequence tt,(A,), ne€ N is Cauchy in the group E and p,(A)=
lim, #,(A,).

2. For each meighborhood g€ &, there exists an index n(g) e N and
a set Be V, such that Be N(u,, g) and A\A,CB for all indices n=n(g).

3. If ALe V, ne N is another increasing sequence with A=UJ, A,,
then

lim f2,(A,)=1lim z£,(4;) .

Proor. 1. Let A,e V,NP(X, W) be increasing and W-dominated
with A=, A,. Assume that for each index neN, 4,=U. A, .. with
ApnCApmi: and A, ,.eV for m=1,2,8, ---. For each neN, set B,=
A, ,U---UA, . and note that the sequence B,€ V, n € N is W-dominated,
increasing with B,cA,cA and A={J,B,. From Remark 3.1(1), for each
index t € N, p,(4,) = p(B,) + tt,(A\B,). Consequently, for any pair of indices
m, n € N, we have

#n(Am) - ,‘ca(An) = #U(AM\BM) + #(Bm'%' Bn) - #G(AM\B'") .

Since the sequence B,c V, ne N is increasing, Lemma 1,3 insures that
for each neighborhood g € &, there exists an index n(g) such that n=n(g)
yields A\B, e N(¢, g). Therefore, for indices m, n=n(g), #(B.=+B,)€g
and from Remark 3.1, £, (A\B, €g for t=m, n so that

#U(Am) '—'[’ea(A'n) € 3g .

Thus, the sequence p,(A,), n € N is Cauchy in the group E.
To see that f,(A)=lim, #,(A,), we note that from the construction,
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t,(A)=lim, ¢,(B,) and for each index t € N p,(A,) —t£,(B,)=p,(A\B,). Then
for any neighborhood g€ & and index »=m(g) (chosen as above) we have
t(A)—p(B,)€g so that lim,p,(A4,)=1lim, #(B,) and therefore p,(A4)=
lim, 2,(A4,).

2. Let ge & be arbitrary and choose the sequence B, V, nec N as
in the proof of 2(1) above. That is, the sequence B,c V,ne N is in-
creasing to the set A and for each indexne N, B,cA,cA. From Lemma
1.4 and Remark 3.1, there exists an index x(g) suc thhat A\B, € N(«,, g)
for all indices n=n(g). We set B=A\B,, € V, and note Be N(,, g) and
A\A,c B for all indices n=n(g).

3. Finally, let A,e V,NP(X, W), ne N be an increasing sequence
for which A=J, A.. Choose the sequences B,, B, € V, n e N correspond-
ing to the sequences A,, A, V,NP(X, W) as in (1) above. From (2)
above, we have lim, #,(4,)=1im, #(B,) and lim, ¢¢,(A,)=lim, ¢(B.). But the
construction of the extension insures that pg,(A4)=lim, ¢(B,)=lim, p(B)).
Consequently, #,(A)=lim, p¢,(4,)=lim, g, (AL).

For each measure p € ca(V, E) which is Rickart on the ring V relative
to the class W and each decreasing sequence 4,€ V, ne N with A=, A,,
the sequence ¢(A4,), n € N is Cauchy in the group E. Moreover, if A, e
V,ne N is another decreasing sequence with A=, 4., we get from
the countable additivity

lim ¢£(A,)=lim p(A?) .

Consequently, the limit g;: A— t;(A) for sets Ae V, represents a group
valued finitely additive function on the class V, for which g, (A4)=p,(A)
for all sets Ae V,NnV,.

LEMMA 3.1. Let peca(V, E) be Rickart on the ring V relative to
the class W.

1. For each set AcV, with A=N,A,, A, eV, A,.,.CA, for neN
and each meighborhood ge &, there exists an index n(g) such that n=n(g)
yields A\A e N(u,, g).

2. For any set AeV with A=BUC,BeV, CeV, and BNC=Q,
p(A) = pe,(B) + 1£,(C).

3. For sets Ac V,NP(X, W), BeV; and CeV with BcCcA.
L (A\B) = tt,(A) — tt,(B).

PrROOF. 1. Let ge 2 be an arbitrary neighborhood and let 4, ¢ V,
ne€ N be a sequence decreasing to the set AeV,. From the Rickart
condition there exists and index n(g) such that n, m=n(g) yields #(B)c g
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uniformly with respect to sets Be V with BCA,+A,. Moreover, for
each index n e N,

ANA=lim A\, -

From countable additivity, for any set Be V, B A,\A, p#(B)=lim, #(BnN
(A,\A,+:) so that p(B)eg for indices n=n(g). Recalling Remark 3.1,
for indices n=n(g), 4,\A4 € N(¥,, 9).

2. Let Ae V have the representation A=BUC with BeV, CeV,
and BNC=». Assume that the set Be V;, has the representation B=
N. B, where B, V, B, A, ne N is decreasing. The sequence A\B,€ V,
n € N increases to the set A\B=Ce€ V,. From Proposition 1.1, £,(C)=
t(A\B)=lim, ¢,(A\B,) = t((A) —lim, (B,) so that

£,(C)=(A) — 2(B) .

3. Consider sets Ae V,NP(X, W), Be V; and Ce V with BcCcA.
Assume that A=|J, A, for an increasing sequence A, with Cc A, for
ne N. The sequence A\Be V, ne N increases to the set A\B. Also,
from part (2) above, for each index n e N, p(A,)=p,(B)+ ¢, (A\B). Using
Proposition 3.1, we have

L(A)=p(B)+¢,(A\B) .

REMARK 3.2. The requirement that the sets A and B be separated
by a set from the ring V will be removed when it has been shown that
for each increasing, W-dominated sequence A,€ V, ne€ N, the sequence
¢ (A,), ne N is Cauchy in the group E.

PROPOSITION 3.2. Let preca(V, E) be Rickart on the ring V relative
to the class W. For each decreasing sequence A,€ V,, me N with A=
N.A., we have

1. p,(A)=lim, ¢,(4,).

2. For each meighborhood g€ &, there exists an index n(g) such that
n=n(g) yields A,\Ae Ny, 9).

PrROOF. For each index n e N, assume A,=\,. A, . With A, ., CA, .
for indices m e N. For each index ne N, define B,=A4,,N---NA4,, and
note that the sequence B,c V, ne N decreases to the set 4 and moreover
A,cB, for ne N. Now, for each neighborhood g€ 2, Lemma 3.1(1)
insures that there exists an index n(g) for which n=(g) yields B,\\Ae
N(p,, g') where g'e & and cls2¢’Cg. In particular, for n=n(g), B,\A4, €
N(¢,, g) and from Lemma 38.1(2) u(B,)=t:(4,)+ ¢.(B,\A,). Consequently,
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for indices n=n(g), we get u(B,)—ts(A)=4.(B\A,)€g. Thus p,(A)=
limn ,“(Bn) = limn yb(An)'

REMARK 3.3. Consider a set Aec V,NP(X, W) and a set Be V, with
Bc A. Assume B=[),B, where the sequence B, V, n € N is decreasing.
The sequence B,\\A € V,, ne N decreases to the empty set so that Proposi-
tion 3.2(1) yields lim, #;,(B,\A)=p,(@)=0. Consequently, for each neigh-
borhood ge &, there exists an index n(g) for which n=n(g) yields
t(B\A)eg. Also, for each index me€ N, we have H(B,)=p(B,NA)+
(B, \A) and since y,(B)=lim, #(B,), there exists an index m(g) such that
m=m(g) yields p(B.)—(B)eg. Consequently, for indices k=max(n(g),
m(g)), we have g,(B, N A)—tt,(B) € 2g; that is, p£,(B)=lim, £,(B, N A). This
observation strengthens Proposition 8.2(2) which is the key to the proof
of the Theorem 3.1.

PrOPOSITION 3.8. Let peca(V, E) be Rickart on the ring V relative
to the class W. Then for each decreasing sequence A,€ V, ne N with
A=N. A, and each meighborhood g€ &, there exists an index m(g) such

that n=n(g) yields A\A € N(t,, 9).

PROOF. Let g€ & be arbitrary and define the sequence B,€ V, ne N
just as in Proposition 3.2. That is, A,cB, and B,,CB, for indices
neN and A=N,A4.=MN.B.. From Proposition 3.2(2), there exists an
index n(g) such that n=n(g) yields B,\\Ae N(y, g). Consider any set
Ce V, with CCc A,\A and indices n=n(g9). Then CCB,\A and from Remark
3.3, if the sequence C,c V, me N decreases to the set C, then p;(C)=
lim,, ¢£,(C. N (B,\A)). Consequently, for indices n=n(g) we get 1(Cleg
or A,\Ae N(y,, 9).

LEMMA 3.2. Let pteca(V, E) be Rickart on the ring V relative to
the class W.

1. For each finite family A,e V,NP(X, W), g.€ &, k=1, ---, n, with
A, e N, g.), k=1, ---, n, we have Ui, A, € N(¢,, cls (g, + - - - +gu))-

2. For meighborhoods g, g.€ & and sets A,e V,NP(X, W), A;e V,
with A,e N(Y,, g.), A.€ N(¢,, 9.), we have A U A, e N(,, cls(g,+9,)).

PrROOF. 1. Consider a finite family A,e V.NP(X, W), g.€ %, k=
1, ---, n with A, e N(#,, g.) for k=1, ---, » and assume A,=UJ. A;,. With
A, .eV, A, .CA; n, for m=1,2,8, --- and k=1,2, ---,n. From the
countable additivity, for any set Ae V, AcA,U---U A,, we have ¢(4)=
lim, #(AN Ui-: Ai.»). Moreover, for each index m € N, we have
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n n k—1
AnU4,.=04n(4.\U4;.)
k=1 k=1 i=1
so that
n ” k-1
#(An Ua.)=3m(an (4.0 4;.0))
The relations A, € N(¥,, g.) for k=1, ---, n yields
,a(Am Il;_] A,,,,,,) eg,+---+g, for each meN.

Consequently, #(A)=lim, (AN Ui 4rn) €cls(g.+ - +g.). The observa-
tion in Remark 3.1(2), insures that A,U---UA, € N(g,, cls(gi+---+g.)-

2. Consider sets Ae V,NP(X, W), Be V; with Ae N(,, g,) and Be
N(ts, g,) for g, g.€ £ and Ce V with CCAUB. From the representation
C=((A\B)NC)U(BNC) where (A\B)NnCe V, and BNCeV,, we conclude
from Lemma 3.1(2)

1(C)=p,((AAB)NC)+(CNB) € g, +9. -
Consequently,
AU Be N(,, cls(g,+g,)) -
For each set Ae P(X, W) introduce the following families

Z(A, V, W)={Be V,nP(X, W): ACB}
A (A, V, V,)={Ce V,: CC A}
Z(A,V,V, W)={B\C: Be Z (4, V, W),Ce #(4, V, V,)}.

The families (4, V, W) and & (4, V, V,, W) are directed downward by
set inclusion and the family _# (4, V, V,) is directed upward by set in-
clusion. Moreover, for each measure p¢ € ca(V, E) which is Rickart on the
ring V relative to the class W, the net {¢,(B), Be (4, V, W)} is Cauchy
in the group E (see Fox, [9], Gould, [11], and Sion, [17]). The completeness
of the group F insures that the limit p#*(A4)=lim (#,(B): (4, V, W)) exists.
The mapping p*: A—p*(A) for Ae P(X, W) is called the outer measure
generated by Rickart measure g. A modification of the arguments given
by Sion, [17], shows that the restriction of the outer measure to the
family of measurable sets is a countably additive extension of the Rickart
measure ¢ to a delta ring. The development given here will be to
generate the extension of the Rickart measure directly from the
extensions g, and g, without reference to the ¢* measurable sets from
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the o-ring P(X, W). It is clear that the outer measure u* agrees with
the function g, on the class V,NnP(X, W). The equality of the outer
measure #* and g, on the class V, is contained in the next proposition.

PROPOSITION 3.4. Let pcca(V, E) be Rickart on the ring V relative
to the class W. For each set Ac V, p*(A)=p,(A).

PROOF. Let ge 2 be an arbitrary neighborhood and using the
definition of the outer measure pg*, choose a set Be (A, V, W) such
that B'e € (4, V, W) and B'CB yields p#*(A)—p,(B)eg. Assume that
the set A has a representation A=, A4, with 4,e V and A,..CA, for
indices ne€ N. Then the sequence A.NBeZ (A, V, W), ne N satisfies
the relation

p*(A)—p(A,NB)eg

for all n e N.

Moreover, for each ne N, A,=(4.NB)U(A,\B), A,nBe V, A\BeV,
and the sequence A,\Be V,, n € N decreases to the empty set @». From
Proposition 3.3, there exists an index n(g) such that n=n(g) yields -4,\Be
N(#s, 9). Applying Lemma 38.1(2) for each index n e N, g,(A\(A,\B)) =
H(A,)—p(A\B). Consequently, for indices n=n(g) we have

p*(A)—p(A,)=p*(A)—p.(A.NB)+p(A,NB)—uA,)
so that
p*(A) —p(A,)=(p*(A) — #£(A. N B)) — ¢y A,\B)
or
pr(A)—(A)eg+g=2g .
Since the neighborhood g € & is arbitrary, we conclude

p#(A)=lim p(A,)=p1(4) .

REMARK 3.4. Let A€V, and ge & be arbitrary. From Lemma
3.1(1), there exists a set Be V with Ac B such that B\A € N(x,, g). From
Proposition 3.4, there exists a set Ce (4, V, W) with #,(C")—p(A)eg
for all sets C'e& (A, V, W) with C'cC. Then for every set D¢
z (A, V, W) with DcBNC, we have simultaneously

to(D)—p(A)eg

and
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t.(D\A)eg .

THEOREM 3.1. Let preca(V, E) be Rickart on the ring V relative to
the class W. Let A,€V, ne N be an increasing, W-dominated sequence
with A=, A,. Then the sequence tt,(A,), n€ N is Cauchy (and hence
convergent) in the group E and if A,€ V, ne€ N 18 any other increasing
sequence with A=, AL, then lim, ¢,(4,)=lim, ¢,(4.).

PROOF. Let ge & be arbitrary and choose sequences ¢,, g, € &, n €
N such that cls3g.cg,, and 3., g.Cg for all n=1,2, 8, --- (see Sion,
[17], Lemma 2.4). From Remark 3.4, for each index n € N we may choose
a set B,e (A4, V, W) with B,\A, e N(#,, g.) and p,(B)—p,(4,) €g, for
all sets Be #(4,, V, W) with BCB,. By restricting the sequence B, ¢
V,, ne N to the set in W dominating the sequence A, n€N, we may
assume that the sequence B,c V, me N is W-dominated. Assume that
for each index me N, we have a representation B,=U;-.B,. with
B,.cV, B, .CB,.,. for indices meN. For indices m=2, ne N, we set
K, .=Ur.B,, and note

Kp\Buo=U G
i=1
and for indices 1€ N with 1<i1=sm—1

Bt,n\Hi’,nw = G:':n

where
G;’:ﬂ = Bi,ﬂ\rLiJ+lBr,n
and

Br.=B..0n U B, .

r=i+1

For indices 1€ N with 1=<:=m—1, we set
H;"=HH:?,,

and note that H*e & (4, V, W) with H"cB,. Consequently, Wé have
B\H"<B\A, so that B\He N(t,, gi). Choose indices N(m)(1=1=m—1)
such that

B\B,, € N(t,, 92
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and
HMH € N, 90)

for indices k= N,(m).
Then for indices » e N with n=N,(m) and 1<i<m—1, we have

B, ,~H"C(B,,+~B)UB\NA)UH"~H™)
or
B, .+ H{, € N(#,, cls3g) C N(t,, g.) .
Consequently for indices n=max(N,(m), i=1, ---, m—1) we have
Giw=B, .+ H, e N, g.) .

Also, for any pair of indices m, n € N, the equality
Km.n'%Bm,n:UGzﬂ
i=1
and Lemma 3.2(1) yields

| Km,n\Bm,n € N(;“a; CIS(g1+ ot +gm—1))

for indices n= N(m)=max(N,(m): i=1, ---, m—1).

For each index meN, we set K,=U,K,, and without loss of
generality, we assume (via Proposition 3.1(2)) that for indices %=N(m)
we have

1. K,\K,.€N(t, g.) -

The relations A,cB,cK, and K,\B,, ,c(K,\K,..)U(K, .\B,.) for indices
m, n € N yield

2. K,\B..c N(,, cls2g)

for indices n=N(m).

Also, for each m,neN, B, ,\A,cB,\A, so that B, \A.ec N, 9)
and the sequence A,\B,..c V, nec N decreases to the empty set. Conse-
quently, from Proposition 3.2(2), we may assume that for indices n=
N(m), A,\B,,.€ N(,, 9).

Finally, since the sequence K, € V,, me N increases to the set B,
there exists an index m(g) such that s, t=m(g) yields

3. #v(KJ) —”o(Kt) €g.
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We then have for indices s,t, re€ N

ti(A,) — s A) = (P A) — 1o B)) + (¢ o(B,) — Lo B, )
+ (16(B,,.) — (K + (4 K,) — Lo KL))
+ (6(K,) — 1o B.,.)) + (1£(B:..) — tta(By))
+ (I’ea(Bt) —ﬂ,(At)) .

Consequently, fer indices s, t=m(g), one has
Ui(A,)—1t(A,) eb6g+2cls2g

by choosing r=max(N(s), N(t)). This completes the proof of the first
part.

The proof of the second part is similar to the proof above; therefore,
only the essential points will be mentioned. Let A, A,€ V,, ne N be
two increasing, W-dominated sequences with A=UJ,A,=U.A4.. Let the
neighborhoods g¢,, g, € &, n € N be chosen as above. Choose a sequence,
B,e (A, V, W), ne N with the property that for all ne N, B,\A, ¢
Ny, g.) and p,(B)—p;(A)eg. for all Be (4,, V, W) with BCB,.
Choose an analogous sequence B, €% (A4,, V, W), ne N for the sequence
A,eV;, neN. Since the unions U, B, and U, B, contain the set Ae
P(X, W), by restricting each sequence to (U,B.) NU.B.), we may
assume that U, B.=U.B,. All the ralations developed in the proof
above apply to the sequences K, K, € V,, me N defined for m, n € N by
the relations K,=U, K, ., Kn=U. K. . and

Il
C:

Km,n BT,%

il
-

r

’ ’
Km,nz -Br,n .

icg

1

Since the sequences K,., K, € V,, me N increase to the same limit, Pro-
position 3.1(3) insures that

lim ¢ (K,)=1im ¢ (K,,) .
This relation gives
lim p¢,(A,)=lim p,(4,) .
Let tea(V, E) be a charge. A net of sets {4;, ye ['}CP(X) is said

to converge to the empty set in the pg-topology, written p-lim,.r A;,=Q
if for each neighborhood g € &, there exists an index v(g) € I" such that
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v=v(g) yields A, e N(x, g). This notion of convergence is an abstraction
of convergence in semivariation for vector measures and has been employed
for group valued measures by Sion, [17].

Let pteca(V, E) be Rickart on the ring V relative to the class W
(recall that the class W is assumed to consist of V, sets and be directed
upward by set inclusion). The domain of a completion of the measure
L is defined as follows

V) ={AeP(X, W): #,—lim (D: De & (4, V, V,, W)=} .

That is, a set Ae P(X, W) belongs to the family V () if for each neigh-
borhood ge %, there exists sets BeZ (A, V, W) and Ce _#(4, V, V,)
such that De& (A4, V, V,, W) and DcB\C yields D e N(¢,, g).

Before proceeding to the next theorem, it is necessary to develop
a characterization of the W-dominated, pg-null sets. Notice that if
AcP(X, W), then Acd(y) if and only if for each neighborhood ge &,
there exists a set Be& (4, V, W) with Be N(¢,, g). Equivalently, if
AecP(X, W) then Acd(r) if and only if p*(A)=6. :

THEOREM 3.2. Let ptcca(V, E) be Rickart on the ring V relative to
the class W.
1. The family V. () 18 a ring containing the classes

V.NP(X, W), V, and 6()NPX, W) .

2. If A, eV (), ne N is increasing and W-dominated, then
A=A, eV (v .

8. For each set Ae V., (1), the set A\A is p-null where
A= (B:BeZ (A, V, W) and A=(C:Ce . #(A4,V, V).

PROOF. 1. To see that the family V.() is a ring, consider two sets
A, A, e V() and let g € & be arbitrary. Choose sets D, e & (A,, V, V,, W),
D,e N(¢,, 9), ©=1,2 and assume D,=B\C, B,e (A, V, W), C,e _#(4,,
V, V,) for indices i=1, 2. If we set D,,=D,UD, then D,,c & (4,U
A, V,V, W) and D,,=N(y,, cls2g) so that A,UA4,e V, (). If we set
D, .,=(B,NnB,)\(C;nC,), then D,,e & (A,NA,,V,V,, W) and D,, € N(t,, cls2g)
so that A,NA4,e V. (¢). If we set D,,=(B\C)\(C,\B,), then D, ,e & (4,\4,,
V,V, W) and D,,=D,UD, so that D,,e N(x,, cls2g) and consequently
A\A e V().

Proposition 3.1(2) insures that V,Nn P(X, W)c V. (¢#) and Lemma 3.1(1)
insures that V,cV,(¢#). To see that d(x)NP(X, W)cC V. (¢) consider a
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W-dominated set Acf(y¢) and a neighborhood ge <. Then from the
definition, there exists a set Be & (4, V, W) with Be N(#,, g). Con-
sequently, De& (4, V, V,, W), DcB\@e& (A, V, V;,, W) yields De
N(z,, 9) so that p-lim(D: De& (4, V, V,, W))= and hence Aec V, ().
2. Let A,eV, (), ne N be W-dominated and increasing and let
g€ Z be arbitrary. Choose sequences g,, g, € %, ne N with cls3g,Cyg.,,
and >r_,9.Cg for all n=1,2 3.-- (see Sion, [17], Lemma 2.4). From
the definition of the class V,(#), for each ne N, there exist sets B, e
A, V,W)and C,e #(A,, V, V,) with B,\C, € N(¢,, g.). By restricting
the sequence B,e V,,neN to the set in W dominating the sequence
A,, ne N, we may assume that the sequence B,, n € N is W-dominated and
for each index m e N we assume the representation B,=U, B, with
B,,.cV, B, ,CB,, .+ for indices ne N. For indices m,ne N, set K, ,=
n.B, .. Proceeding as in the proof of Theorem 3.1, for each m e N,
there exists an index N(m) such that

Km,n\Bmm € N(#o’ cls (g1+ e +gm—-1))
for all n=N(m).
For each index m € N, set K,,=UJ. K.... and without loss of generality,
we assume (via Proposition 3.1(2)) that for indices n=N(m) we have

( 1 ) KM\KMy” e 'N(#O’ gm) .

For indices m, n e N, the relations A,CB,CK, and K,\B,, ,C(Ku\Kn,) U
(Km,n, Bm,,.) Yield

(2) K.\B,.,n € N(tt,, cls(gn+g.)) S N(2,, cls 29)

for indices n=N(m).

For each m,ne N, B,,.,\C,<B,\C,. so that B, ,\C..€ N (¢,, g.) and the
sequence C,\B,,.€ V, ne N, decreases to the empty set. Consequently,
from Proposition 3.3 we may assume that for indices n=N(m), C,\B.. . <
N(¢;, 9,.). Finally, since the sequence K,, € V,, m € N increases to the set
U. K.=U.B,., Proposition 8.1(2) insures that there exists an index
m(g) e N and a set L,eV, such that L, e N(#,, 90 and m=m(g) yields
K/K,cL, where K=UJ, B,. We then have

K\C,,c(K+K,)U(K,+B, ) U Bn.+Cn)
for indices m, n e N (take n=N(m))
K\C,.CL,U (K, B,,.) U(Bp,:\Cn) U(Cp\Bn,a)

and cdnsequently from Lemma 3.2(2)
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K\C, € N(x,, cls59)

for indices m=m(g).
3. Let

A=nN(B:Be% (4, V, W) and A=U(C:Ce F~ (4, V, V).

Then A\AcD for all sets De& (A4, V, V,, W) and since p-lim(D:De
&(A, V, V, W)=, for each neighborhood g € &, there exists a set D, e

& (A, V,V, W) with D, e N(¢,, g). Consequently, the set A\A has arbi-
trarily small covers.

PROPOSITION 3.5. Let pteca(V, E) be Rickart on the ring V relative
to the class W.

1. For each decreasing sequence A,c V,NP(X, W), ne N with A=
N.A,eV, we have p,(A)=lim, ¢,(A,).

2. For each increasing sequence A,€ V, ne N with A=, A.€V,,
we have p,(A)=lim, p,(A,).

PrROOF. 1. Let ge & be arbitrary and choose g, € &, with 3}:_,9.Cg
for all n=1,2,3, ---. For each index n» € N, choose B, V, B,C A, such
that A,\B, e N(z,, g,) and define C,=;-, B.. Note that the sequence
C.e€ V,ne N, decreases to its intersection and for each ne N

B\C,=UB\B.cU 4.\B.c U4.\B, .

Applying Lemma 3.2(1), for each index n € N, we have
B,\C, € N(,, cls(g:+ - +9.1) »
consequently, for each index n e N, B,\C, € N(#,, g) so that
1(A,) —(C,) = (1t.(A,) — p(B,)) + ((B,) — p(C,))
or
t(A,) —(C)=p(A\B,) + (B,\C,) € 29 .

Since the sequence C,c V, ne N converges, there exists an index n(g)
such that n=n(g) yields #(C,) € lim, p(C,)+g. Therefore, for indices n=
n(g) we have

#.(A,) elim p(C,)+3g .

In particular, if the sequence A,€ V,, n € N decreases to the empty set,
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then the sequence C,c€ V, n e N, decreases to the empty set and conse-
quently lim, z,(4,)=40.

If the sequence A,€ V, ne N decreases to a set AcV,, we set A=
U.B, with B,eV, B,cB,;, n€ N, and set C,=A,\B,,n€ N and note
that the sequence C, € V,, n € N, decreases to the empty set. From above,
lim, ¢,(A\B,)=80 or lim, (#,(A,)—p¢(B,)=60. Then for any neighborhood
g € &, there exists an index n(g) such that n=n(g) yields

t(A,)—(B,)eg

and

t(A)—(B,)eg .
Consequently, for indices n=n(g), we have
Lo(An) — t,(A) = (1,(A,) — p(B.) + (4(B,) — t(4)) € 29
so that
1i:n t(A)=p,(4) .

2. Let A,eV,neN, increase to a set AcV,, and let ge & be
arbitrary. Since we assume A€ V,, there exists a set Be V with AcCB.
The sequence B\A,€ V,, ne€ N decreases to the set B\Ae V,. Applying
part 1 of this proposition, we have p, (B\A)=lim &,(B\A,). Therefore,
there exists an index n(g) such that n=n(g) yields p¢,(B\4,) —#.(B\A4) € g.
Applying Lemma 3.1(2) and rearranging terms, we have

U (A) — ts(A,) = (1(B) — t,(B\A)) + (¢£,(B\A,) — 4« B))
so that
!“J(A) —'#J(An) = Auo(B\A) _ya(B\An) €g

for all n=n(g).

Let pteca(V, E) be Rickart on the ring V relative to the class W.
Then for each set Ac V,(¢#), the net #,(C): Ce . # (4, V, V,) is Cauchy in
the group E. Indeed, if this were not the case, then there would exist
a neighborhood g € & such that for each set Ce _#(4, V, V,), there exists
aset C'e #(A,V,V, with CcC’ and #,(C")—(C)¢g. Starting with
any set C,e “(4, V, V,) we may apply the hypothesis inductively to
choose an increasing sequence C,e . # (A4, V, V,) with g,(C,+,)—(C,) € g.
The last condition is a contradiction to Theorem 3.1. For each set Aec
V.(t), the completion is defined by the relation g, (A)=1lim (¢,(C):Ce
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F(A, V, V;). The additivity of the function g, on t;he class V, insures
that the completion () is finitely additive on the ring V(). Moreover,
the completion g,(-) represents an extension of the functions p,(-) and

o(-)-

THEOREM 3.3. Let pteca(V, E) be Rickart on the ring V relative to
the family W and assume that the family & is countable. Then the
family V,(u)cP(X, W) is the smallest delta ring which is closed under
W-dominated, increasing convergence and contains the ring V and the
family 0(p)NP(X, W) of W-dominated p-null sets.

PrOOF. Let U be a delta ring containing the ring V and closed under
W-dominated increasing convergence and let A € V, () be arbitrary. Since
the family & is countable, there exists an increasing sequence C, ¢
F(A, V, V,)), ne N such that p#-limC,=A and A\U,C,c6(¢). Using the
properties of the delta ring U, C=U,C,€ U. Since the family U is a
ring containing the family 8(¢) N P(X, W), A=CU(4\C)e U.

THEOREM 3.4. Let ptcca(V, E) be Rickart on the ring V relative to
the class W and (W, &&)-upper complete for an additive family <& of
closed meighborhoods of the origin. Then the completion p,e€ca(V., E)
18 (W, &&)-upper complete.

ProOOF. Let A,c V., (), neN, be an increasing sequence for which
A, e N(., b),neN, and a set be <& Let b,, b€ &, ne N, be chosen to
satisfy the relations 3b,cbd, and >3..b.Cb for all n=1,2,38, ---. Using
the definition of the ring V,(#), choose sequences B, & (4,, V, W), C, ¢
F(A, V, V,), ne N, with B,\C, € N(,, b,) for all indices ne N. For each
index meN, we assume B,=U,Ba.. Wwith B,.,€V, B, ,CB, ... for
indices e N. For any pair of indices m,ne N, set K, ,=Ur B, ,.
Proceeding as in the proof of Theorem 3.1, for each m € N there exists
an index N(m) such that

K, \B...€ N, cls(b,+ - +b,_))

for all n=N(m).

For each index me N, we set K,=U, K,.,,.. Since the family W is
directed upward by set inclusion and K, ,cB,U:--UB, for all indices
m, n€ N, the sequence K, ,, 2€ N is W-dominated. Now, for any pair
of indices m, n € N, we have

Km,n':Bm,n U (Km,n Bm.n)
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and
B,. . B, € N(,, cls 2b) .

To see the last relation, recall that we have B,=C,U(B,\C,) for all
indices me N. But C,cA,eN(u,b), me N and g,Cy, so that C,c
N(¢,, b). From Lemma 3.2(2), for all indices m € N, B,, € N(#,, cls 2b).

Finally, for indices m,n e N with n=N(m), we have K, ,\B,.€
N(z¢,, b) so that (by Lemma 3.2(1))

K, .€ N, cls 4b)

for indices n=N(m), me N. Since the sequence K, , neN is W-
dominated, for each index m e N, we have

K,=lim K,, , € N(#,, cls 4b) .

Since the sequence K,, m e N is increasing and the measure g eca(V, E)
is (W, &)-upper complete, it follows that the sequence K,e V,, me N
is W-dominated. Consequently, the sequence A,, m e N is W-dominated.

§4. Extensions of Rickart vector measures.

In this section the results of the previous two sections are applied
to Banach space valued measures.

Let V be a ring of subsets of an abstract space X and let (&, | |)
denote a Banach space. Denote by C(V) the space of all subadditive
and increasing functions from the ring V into the non-negative reals R+
which vanish at the empty set. The space C(V) is called the space of
contents on the ring V and elements are referred to as contents. Since
the ring V is an abelian group with respect to the symmetric difference
operation -- defined by A+~ B=(A\B) U (B\A) for sets A, Be V, each content
p € C(V) generates a semimetric on the group (V, <) by the relation

o(A, B)=p(A= B)
for sets A, Be V.
This semimetric is invariant in the sense
o(4, B)=p(A+-C, B+=C)

for sets A, B,Ce V.
Consequently, any family of contents PcC(V) generates a uniform
topology on the group (V, +). A pair (V, P), where the ring V is
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endowed with the topology generated by the family PcC(V), will be
called a topological ring of sets.

Topological rings of sets of the above type were studied in detail
by Bogdan and Oberle, [6], Drewnowski, [8], and Labuda, [13] in connec-
tion with extensions of the Vitali-Hahn-Saks theorem. As will be seen
in this section, topological rings occur quite naturally in the study of
vector measures.

Let QcC(V) be any family of contents. The topological ring (V, Q)
is said to be a dominated convergence ring of sets if for each V-dominated
sequence A,e€ V,neN, with A,—~ A, we have A€ V and lim,q(4,+-A)=
0 for each g€ Q. The topological ring (V, Q) is said to be an absolute
convergence ring of sets if for each sequence A,e V,ne N for which
S q(A,) < oo for each content ge@, we have A=U,4,.€V and
lim, q(A\U%-. A,)=0 for each content g Q. A topological ring which is
both a dominated and absolute convergence ring of sets is called a
monotone convergence ring of sets.

For each vector charge g ea(V, E), the semivariation is defined for
each set A e P(X) by the relation

p(4A, p)=sup(|(B)|: Be V, BCA).

The semivariation p(-, g¢): P(X)—[0, ] is increasing on the g-algebra
P(X) and subadditive on the ring V. The space ab(V, E)(cab(V, E)) of
locally bounded vector charges (measures) consists of those charges
(measures) for which the restriction of the semivariation to the ring V
is a content. Additionally, if <& is defined to be the family of all
multiples of the unit sphere, then each locally bounded vector measure
Lecab(V, E) is (Z(y), &#)-upper complete for the class I(u¢) of V, -sets
of finite semivariation. The family 3(¢) is known as the family of
“summable V,” sets.

Let pcab(V, E) be a vector charge. Then the topological ring (V, %)
as introduced in section 2 is nothing more than the topological ring
(V, o(-, 1)) generated as above by the content »(-, #)e C(V). For a
general (without finite semivariation on the ring V) vector charge e
a(V, E), the topological ring (V, g) is topologically equivalent to the ring
(V, py(-, 1)) where for a set A€ P(X)

Dy (4, t)=sup(y(|(B)|): Be V, BC A)
and (r)=r/1+7r) for re€[0, ) and (=)=1.

THEOREM 4.1. Let V be a ring of subsets of an abstract space X
and let E be a Banach space, and let <& denote the family of positive
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multiples of the unit sphere in E. For a locally bounded vector measure
precab(V, E), the following are equivalent.
1. The measure pt 8 Rickart on the ring V relative to the family
2(u) of summable V, sets.
2. There exists a delta ring V, and a vector measure ¢, € cab(V,, KE)
such that
a. VcVv,
b. pcp,
c. The measure Y, is upper complete on the ring V..
8. There exists a monotone convergence ring of sets (V,, v,) such that
a. The ring V is dense in the topological ring (V., p.)
b. The measure pt i8 p.-continuous on V.

PrROOF. From Theorems 3.2 and 3.4 the vector measure ¢ admits an
extension pg,ecab(V, FKE) such that the topological ring (V. &) is a
(Z(p), &) absolute convergence ring of sets. Since the ring V, is a delta
ring and g, is countably additive, the topological ring (V. #.,) is a
dominated convergence ring of sets.

A Banach space (E,| |) is said to satisfy Gould’s property (Gould,
[9]) if each sequence ¢, e E, n € N, which is bounded away from zero, has
the following property: For each number M>0, there exists a finite set
AM)c N such that |3, 0 € |=M. The characterizations of unconditional
and weak unconditional summability given by Bessaga and Pelczynski,
[3], insure that the Banach space with Gould’s property are precisely
those Banach spaces which do not contain a copy of the space ¢, (the
space of null convergent sequences of scalars with the uniform norm).
The usefulness of Banach spaces with Gould’s property results from the
fact that each locally bounded charge taking values in a Banach space
with Gould’s property is Rickart.

COROLLARY. Let V be a ring of subsets of an abstract space X and
let (E,| |) be a Banach space which does not contain a copy of the space
¢,. The following are equivalent for a locally bounded vector measure
precab(V, K.

1. There exists a delta ring V, and a vector measure t, € cab(V,, &)
such that
VcvV,

HCl,

The measure lt, 18 upper complete on the delta ring V..

There exists a monotone convergence ring of sets (V.,, »,) such that
The ring V 18 p.-dense in the ring V,

PROADP
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b. The measure p is p-continuous on the ring V.

A pointwise bounded sequence p,cab(V, R), ne N is said to be
uniformly Rickart on the ring V if the vector charge p:V—l. given by
the relation p(A)={u,(A), n€ N) is Rickart on the ring V relative to the
family 2(p)={Ae V,: sup,p(A4, p,)<oo}.

The following theorem was constructively established by Areskin,
[1], for the case of scalar valued volumes on an algebra of sets.

THEOREM 4.2. Let p,cca(V, E), ne N, be uniformly Rickart and
converge pointwise to zero on the ring V. Then there exists a monotone
convergence ring of sets (U, p) such that VC U and the sequence {,, n € N
admits a sequence of extemsions {f,,nec N> which is p-equicontinuous
and pointwise convergent to zero on the delta ring U.

PROOF. For each set Ae V, consider the sequence {¢,(4), ne N> as
the value p(A) of a vector charge p:V—c,(E). From the Rickart con-
dition and the countable additivity of each coordinate charge, the charge
rea(V, c(E)) is countably additive on the ring ¥V and Rickart on the
ring V relative to the family 3(¢)={A4 e V,: sup, p(4, #,)<}. Applying
Theorem 4.1, there exists a delta ring V, and a vector measure p,e
cab(V,, ci(E)) such that Vc V,, pcp, and the topological ring (V.,, p(-, .))
is topologically complete. The definition of the range space insures
that the measure g, has a representation p,(4)=<{ui(4), ne N) ec(E)
for each set AeV,. Consequently, p,cp; and for each set AeV,,
lim, pe(A)=0.
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