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Introduction

The structure of the compact minimal sets of a flow is well known
[1, p. 38]. However, the literature on the non-compact minimal sets
seems rather scanty [1, p. 40].

The purpose of this paper is to investigate the structure of non $\cdot$

compact and non-trivial minimal sets of a locally compact flow, i.e., a
dynamical system on a locally compact metric space.

The main results obtained are as follows.
1) The non-compact and non-trivial minimal set of a locally compact

flow consists of infinitely many trajectories (Theorem 2).

2) The non-compact and non-trivial minimal set of a locally compact
flow consists of the points which are

i) Poisson stable,
ii) positively Poisson stable and negatively receding,
iii) negatively Poisson stable and positively receding,

and they all exist simultaneously (Theorem 3).
3) Poisson stable trajectories in the non-compact and non-trivial

minimal set of the locally compact flow are neither pseudorecurrent nor
almost recurrent (Theorem 4).

4) The set of all Poisson stable points in the non-compact and non-
trivial minimal set of a locally compact flow is dense in the minimal set
(Theorem 1).

\S 1. Standing notations and definitions.

$N$ is the set of all natural numbers. $R$ is the real line. $R^{+}$ denotes
the set $\{teR;t\geqq 0\}$ . $R^{-}$ denotes the set $\{t\in R;t\leqq 0\}$ .
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Let $X$ be a metric 8pace with metric $d$ . A flow, or a dynamical
system, on $X$ is the triplet (X, $R,$ $f$), where $f$ is a map of $X\times R$ onto
$X$ such that

a) $f(x, O)=x$ for every $xeX$,
b) $f(f(x, s),$ $t$) $=f(x, s+t)$ for every $xeX$ and every $s,$ $teR$ ,
c) $f$ is continuous on $X\times R$ .
The trajectory of $xeX$ in the flow (X, $R,$ $f$) is defined to be the set

$\{f(x, t);teR\}$ , which is denoted by $C(x)$ .
$f(x, [a, b])$ denotes the arc $\{f(x, t);te[a, b]\}$ .
A point $xeX$ is called a rest point of (X, $R,$ $f$) if $f(x, t)=x$ for every

$t\in R$ . A point $xeX$ is called periodic in (X, $R,$ $f$) if there exists $Te$

$R-\{0\}$ such that $f(x, t)=f(x, t+T)$ for every $teR$ .
A set $M\subset X$ is called invariant (positively invariant) (negatively

invariant) in (X, $R,$ $f$) if $f(x, t)eM$ for any xeM and any $teR(teR^{+})$
$(teR^{-})$ .

A set $M\subset X$ is called minimal in (X, $R,$ $f$) if it is non-empty, closed,
invariant, and no proper subsets of $M$ have these properties.

$L^{+}(x)$ denotes the set {$yeX$; there exists a sequence $\{t_{n}\}$ in $R$ with
$ t_{n}\rightarrow+\infty$ and $f(x, t_{n})\rightarrow y$ }.

$L^{-}(x)$ denotes the set {$y\in X$; there exists a 8equence $\{t_{n}\}$ in $R$ with
$ t_{n}\rightarrow-\infty$ and $f(x, t.)\rightarrow y$}.

$L^{+}(x)(L^{-}(x))$ is called the positive (negative) limit set of $x$ .
A point $x\in X$ or the trajectory $C(x)$ is called positively (negatively)

receding, if $L^{+}(x)(L^{-}(x))$ is empty;
receding, if $x$ is receding both positively and negatively;
positively (negatively) asymptotic, if $L^{+}(x)(L^{-}(x))$ is non-empty but

$L^{+}(x)\cap C(x)(L^{-}(x)\cap C(x))$ is empty;
positively (negatively) Poisson stable, if $L^{+}(x)\cap C(x)(L^{-}(x)\cap C(x))$ is

non-empty;
Poisson stable, if $x$ is both positively and negatively Poisson stable.
$J^{+}(x)$ denotes the set {$y\in X$; there exist a sequence $\{x_{n}\}$ in $X$ and a

sequence $\{t_{n}\}$ in $R$ such that $x_{n}\rightarrow x,$ $ t_{n}\rightarrow+\infty$ , and $f(x_{n}, t_{n})\rightarrow y$ }.
$J^{-}(x)$ denotes the set {$y\in X$; there exist a sequence $\{x_{n}\}$ in $X$ and a

sequence $\{t_{n}\}$ in $R$ such that $x_{n}\rightarrow x,$ $ t_{n}\rightarrow-\infty$ , and $f(x_{n}, t_{n})\rightarrow y$ }.
$J^{+}(x)(J^{-}(x))$ is called the first positive (negative) prolongational

limit set of $x$ .
A point $x\in X$ is called non-wandering, if $x\in J^{+}(x)$ or $xeJ^{-}(x)$ .

($x\in J^{+}(x)$ and $x\in J^{-}(x)$ are equivalent [1, p. 35, Theorem 2.12]).
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\S 2. The structure of non-compact and non-trivial minimal sets.

A minimal set is called trivial if it consists only of one trajectory.
A minimal set which is not trivial is called non-trivial. The structure
of a trivial minimal set is simple, since it is receding, periodic, or a
rest point. On the other hand, the structure of compact minimal sets
is completely determined by G. D. Birkhoff [1, p. $38ff$]. However, not
very much is known about the properties of non-compact and non-trivial
minimal sets. Thus we are interested in the study of the properties of
these sets.

PROPOSITION 1. Let $X$ be a metric space, and let $M\subset X$ be a $n$on-
trivial minimal set of (X, $R,$ $f$). Then, every trajectory in $M$ is Poisson
stable, positively Poisson stable and negatively receding, or negatively
Poisson stable and positively $r\cdot eceding$ .

PROOF. This proposition is equivalent to the proposition that $M$

contains no trajectories such as receding, positively asymptotic, or
negatively asymptotic. Suppose $xeM$ and $C(x)$ is receding. Then $C(x)$

itself is a closed invariant subset of $M$. Hence $C(x)=M$ in contradiction
with the non-triviality of $M$. If $C(x)$ is positively asymptotic, then
$\emptyset\neq L^{+}(x)\subset M,$ $x\overline{e}L^{+}(x)$ . Since $L^{+}(x)$ is a closed invariant set, this
contradicts the minimality of $M$. Hence $C(x)$ cannot be positively
asymptotic. Analogously $C(x)$ cannot be negatively asymptotic. Q.E.D.

Hereafter in this section we consider the dynamical system on a
locally compact metric space.

LEMMA 1 [2, p. 60]. Let $X$ be a locally compact metric space. If
every point in $X$ is non-wandering in (X, $R,$ $f$), then the set of all
Poisson stable points in (X, $R,$ $f$) is dense in $X$.

We need this lemma for the proof of the following theorem.

THEOREM 1. Let Mbe a non-trivial minimal set of (X, $R,$ $f$), where
$X$ is assumed to be locally compact metric space. Then the set of all
Poisson stable points in $M$ is dense in $M$.

PROOF. Let $xeM$. Then we have $L^{+}(x)=M$ or $L^{-}(x)=M$. Suppose
$L^{+}(x)=M$. Let $g$ be the restriction of $f$ to $M$. The map $g$ defines a
dynamical system $(M, R, g)$ . By $L_{M}^{+}(x)$ and $J_{M}^{+}(x)$ we denote the positive

limit set and the positive prolongational limit set of $x$ in $(M, R, g)$

respectively, i.e.,
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$L_{r}^{+}(x)=\{yeM$; there exists a sequence $\{t_{n}\}$ in $R$ with $ t_{n}\rightarrow+\infty$ and
$g(x, t_{n})\rightarrow y\}$ and

$J_{x}^{+}(x)=\{yeM$; there exist a sequence $\{x_{n}\}$ in $M$ and a sequence $\{t_{n}\}$

in $R$ such that $x_{n}\rightarrow x,$ $ t_{n}\rightarrow+\infty$ , and $g(x_{n}, t_{n})\rightarrow y$}.
$L_{\overline{u}}(x)$ and $J_{\overline{r}}(x)$ are also defined analogously.
It is clear that

(a) $L_{r}^{+}(x)\subset J_{r}^{+}(x)\subset M$ .
On the other hand we have

(b) $L_{r}^{+}(x)=L^{+}(x)$

because of the invariance and closedness of $M$. Thus we see $L_{z}^{+}(x)=$

$J_{r}^{+}(x)=M$ from (a) and (b). Hence $x\in J_{r}^{+}(x)$ . This implies that $x$ is non-
wandering in $(M, R, g)$ . In the same way as above we can prove that
every $xeM$ such that $L^{-}(x)=M$ is non-wandering in $(M, R, g)$ . On the
other hand, $M$ is locally compact, since $X$ is locally compact and $M$ is
closed in $X$. Hence the set of all the points which are Poisson stable
in $(M, R, g)$ is dense in $M$ by Lemma 2. Q.E.D.

The trivial minimal 8et contains only one trajectory. How many
trajectories does a non-trivial minimal set contain? An answer to this
problem is the following.

THEOREM 2. Every non-trivial minimal set in the dynamical system
on a locally compact metric space contains infinitely many trajectories.

We need the following lemma to prove this theorem.

LEMMA 2. Every point in the non-trivial minimal set is neither
periodic nor a rest point.

This lemma is an immediate consequence of the definition of the
non-trivial minimal set.

PROOF OF THEOREM 2. Let $X$ be a locally compact metric space. $M$

is assumed to be a non-trivial minimal set of (X, $R,$ $f$). Suppose $M$ con-
sists of finitely many trajectories, say $C(x_{1}),$ $\cdots,$

$C(x_{n})$ . Then we have

(1) $M=L^{+}(x)UL^{-}(x)$

for every $ie\{1, \cdots, n\}$ . Choose any $p_{0}e$ M. $p_{0}$ belongs to $L^{+}(x_{1})\cup L^{-}(x_{1})$

by (1). Take any $\epsilon>0$ such that $\overline{S(p_{0},\epsilon)}$ is compact, where $\overline{S(p_{0},\epsilon)}$ is
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the closure of an open ball $S(p_{0}, \epsilon)$ of radius $\epsilon$ and center $p_{0}$ . Then
there exists $t_{1}eR$ such that $|t_{1}|>1$ and $f(x_{1}, t_{1})eS(p_{0}, \epsilon)$ . For brevity,

we denote $f(x_{1}, t_{1})$ by $p_{1}$ . Then

(2) $p_{1}eS(p_{0}, \epsilon)$ .
Since $x_{1}$ is neither periodic nor a rest point by Lemma 2, we have

$p_{1}\overline{e}f(x, [-1,1])$ .
On the other hand it is valid that

$p_{1}=f(x_{1}, t_{1})\overline{e}f(x_{i}, [-1,1])$

for every $i\neq 1$ . Thus we have $-$

(3) $p_{1}\overline{\in}\bigcup_{i=0}f(x_{i}, [-1,1])$ .

There exists $\alpha>0$ such that $\alpha<(\epsilon/2)$ and
$S(p_{1}, \alpha)\subset S(p_{0}, \epsilon)$

by (2). On the other hand there exists $\beta>0$ such that $\beta<(\epsilon/2)$ and

$\overline{S(p_{1},\beta)}\cap(\bigcup_{=0}^{\cdot}f(x_{i}, [-1,1]))=\emptyset$

by (3). Let $\epsilon_{1}=\min\{\alpha, \beta\}$ . Then we obtain the following:

(4) $\left\{\begin{array}{l}S(p_{1}, \epsilon_{1})\subset S(p_{0}, \epsilon)\\\frac{}{S(p_{1},\epsilon_{1})}\cap(\bigcup_{i=1}f(x_{i};[-1,1]))=\emptyset\\\epsilon_{1}<\frac{\epsilon}{2}\end{array}\right.$

Since we have
$p_{1}eC(x_{1})\subset L^{+}(x_{1})\cup L^{-}(x_{1})=M$ ,

there exists $t_{2}$ such that

$|t_{2}|>2$ and $f(x_{1}, t_{2})eS(p_{1}, \epsilon_{1})$ .
Let $p_{2}=f(x_{1}, t_{2})$ . As $C(x_{1})$ is neither periodic nor a rest point, we have

$p_{2}=f(x_{I}, t_{2})\overline{e}f(x_{1}, [-2,2])$
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and

$p_{g}=f(x_{1}, t_{2})\overline{e}f(x_{i}, [-2,2])$

for every $i\neq 1$ , so that

$p_{l}\overline{e}\bigcup_{i=1}^{l}f(x, [-2,2])$ .
Applying the procedure to obtain $\epsilon_{1}$ which satisfies (4), we obtain $\epsilon_{2}>0$

such that

$S(p_{2}, \epsilon_{2})\subset S(p_{1}, \epsilon_{1})$ ,

$\overline{S(p_{2},\epsilon_{2})}\cap(\bigcup_{=1}f(x, [-2,2]))=\emptyset$ ,

$\epsilon_{l}<\frac{\epsilon_{1}}{2}$ .
Iterating this procedure we obtain a sequence $\{\epsilon_{k}\}$ in $R$ such that for
every $keN$

$S(p_{k}, \epsilon_{k})\subset S(p_{k-1}, \epsilon_{k-1})$ ,
$\overline{S(p_{k},\epsilon_{k})}\cap(\bigcup_{=1}^{l}f(x_{i}, [\leftrightarrow k, k]))=\emptyset$ ,

$0<\epsilon_{k}<\frac{\epsilon_{k-1}}{2}$ ,

where $p_{k}=f(x_{1}, t_{k})$ and $|t_{k}|>k$ . Thus we have a nested sequence

$\overline{S(p_{0},\epsilon)}\supset\overline{S(p_{1},\epsilon_{1})}\cdots\supset\overline{S(p_{k},\epsilon_{k})\supset}\cdots$ ,

where every $\overline{S(p_{k},\epsilon_{k})}$ is non-empty and $\overline{S(p_{0},\epsilon}$) is compact. Hence
$\bigcap_{k=1}^{\infty}S(p_{k}, \epsilon_{k})\neq\emptyset$ . Take any $qe\bigcap_{k=1}^{\infty}\overline{S(p_{k},\epsilon_{k})}$, then we have

$qeL^{+}(x_{1})\cup L^{-}(x_{1})=M$ ,

the proof of which is as follows. By the assumption it is valid that
$d(p_{k}, q)\leqq\epsilon_{k}$ for every $keN$. On the other hand $p_{k}=f(x_{1}, t_{k})$ and $|t_{k}|>k$

hold for every $keN$. Hence we have

$|t_{k}|\rightarrow+\infty$ $(k\rightarrow+\infty)$

and

$f(x_{1}, t_{k})\rightarrow q$ $(k\rightarrow+\infty)$ ,
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so that
$q\in L^{+}(x_{1})\cup L^{-}(x_{1})=M$ .

However, since

$\overline{S(p_{k},\epsilon_{k})}\cap(\bigcup_{i=1}f(x_{i}, [-k, k]))=\emptyset$

holds for every $keN$, we have

$q\overline{e}\bigcup_{l=1}f(x_{i}, [-k, k])$

for every $keN$, which implies that

$q\overline{e}f(x_{i}, [-k, k])$

for every $ie\{1, \cdots, n\}$ and every $k\in N$, so that $q\overline{\in}f(x_{i}, R)$ for every
$i\in\{1, \cdots, n\}$ . Hence we have

$qeM-(\bigcup_{=\iota}^{n}f(x_{l}, R))$ ,

which is a contradiction. Q.E.D.

We see from Proposion 1 and Theorem 1 that there are four possible

cases for the non-trivial minimal sets of the dynamical system on a
locally compact metric space: the non-trivial minimal set of such a flow

consists of
1) Poisson stable points,
2) Poisson stable points and the points which are positively Poisson

stable and negatively receding,
3) Poisson stable points and the points which are negatively Poisson

stable and positively receding,
4) Poisson stable points, the points which are positively Poison

stable and negatively receding, and the points which are negatively

Poisson stable and positively receding.
We shall show that 4) is the only possible case. For that purpose

we introduce some concepts.

DEFINITION 1 [2, p. 65]. Let $(Y, R, g)$ be a dynamical system. A

set $M\subset Y$ is said to be positively (negatively) minimal if $M$ is closed,

positively (negatively) invariant, and contains no non-empty proper sub-

sets with these properties.
The following lemmas are known.
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LEMMA 3 [2, p. 67]. Let $(Y, R, g)$ be a dynamical system. For any
$M\subset Y$ the following are pairwise equivalent:

1) $M$ is positively (negatively) minimal,
2) $\overline{C^{+}(x)}=M(\overline{C^{-}(x)}=M)$ for every $x\in M$,
3) $L^{+}(x)=M(L^{-}(x)=M)$ for every $xeM$.
LEMMA 4 [3, p. 48]. Let $Y$ be a locally compact metric space. $A$

subset of $Y$ is positively (or negatively) minimal in a dynamical system
$(Y, R, g)$ if and only if it is compact and minimal in $(Y, R, g)$ .

By the aid of these lemmas we can determine the structure of the
non-compact and non-trivial minimal set in the locally compact flow.

THEOREM 3. Let $X$ be a locally compact metric space. Then the
non-trivial and non-compact minimal set of a dynamical system (X, $R,$ $f$)
always contains the trajectories which are Poisson stable, positively
Poisson stable and negatively receding, and negatively Poisson stable and
positively receding simultaneously and no trajectories of other types.

PROOF. Let $M$ be a non-compact and non-trivial minimal set in
(X, $R,$ $f$). Since $X$ is locally compact, $M$ is neither positively minimal
nor negatively minimal by Lemma 4, so that there exist $u,$ $veM$ such
that

$L^{+}(u)\subset M$ and $L^{+}(u)\neq M$ ,
$L^{-}(v)\subset M$ and $L^{-}(v)\neq M$ ,

by Lemma 3. Since $M$ is minimal, both $L^{+}(u)$ and $L^{-}(v)$ must be empty.
But then we have

(5) $L^{-}(u)=M$ and $L^{+}(v)=M$ ,
the proof of which is as follows: $M$ contains no receding points by
Proposition 1, so that $L^{-}(u)$ and $L^{+}(v)$ are both non-empty and contained
in $M$, and so (5) is valid by the minimality of $M$.

Thus the trajectory $C(u)(C(v))$ is negatively (positively) Poisson
stable and positively (negatively) receding. On the other hand, $M$

contains Poisson stable trajectories by Theorem 1. No trajectories
except these are contained in $M$ by Proposition 1. Q.E.D.

We give here an example of non-trivial and non-compact minimal
sets of a locally compact flow.

EXAMPLE 1 [1, p. 33]. $Co$nsider a planar differential system
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(6) $u^{\prime}=g(u, v)$ , $v^{\prime}=\alpha g(u, v)$ $(’=\frac{d}{dt})$

where $\alpha$ is a positive irrational number, and $g$ is a function from $R^{2}$

into $R$ such that

$g(u, v)=g(u+1, v+1)=g(u+1, v)=g(u, v+1)$

for every $u,$ $veR$ , and

$g(u, v)>0$ $((u, v)\overline{e}\{(0,0), (0,1), (1,0), (1,1)\})$ ,
$g(O, O)=g(O, 1)=g(1, O)=g(1,1)=0$ .

Farther, assume that $g$ has the properties assuring the existence and
uniqueness of the solutions of the initial value problem for (6). Then
(6) defines a dynamical system on the 2-dimensional torus $T^{2}$ . This
dynamical system has exactly one rest point $p$ , exactly one trajectory
$C_{\iota}$ which is positively Poisson stable and negatively asymptotic to $p$ ,
and exactly one trajectory $C_{2}$ which is negatively Poisson stable and
positively asymptotic to $p$ . The other trajectories are all Poisson
stable.

Restricting the dynamical system on $T^{2}-\{p\}$ , we obtain a dynamical
system on a locally compact metric space, since $T^{2}-\{p\}$ is obviously
locally compact. This dynamical system has only one minimal set, which
is $T^{2}-\{p\}$ . It is clear that $T^{2}-\{p\}$ is non-trivial and non-compact. Then
$C_{\iota}$ and $C_{2}$ turn out to be positively Poisson stable and negatively receding,
and negatively Poisson stable and positively receding, respectively.
Other trajectories are all Poisson stable.

The non-compact and non-trivial minimal set of the locally compact
flow contains Poisson stable trajectories (see Theorem 3). To examine
the properties of these trajectories, we introduce Shcherbakov’s classi-
fication of Poisson stable trajectories.

It is known that a trajectory $C(x)$ of a dynamical system (X, $R,$ $f$)
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is positively Poisson stable if and only if for any $\epsilon>0$ , any $t_{0}eR$ and
any $yeC(x)$ there exists $T>0$ such that

$ d(f(y, [t_{0}, t_{0}+T]), y)<\epsilon$

(see [4, p. 75]). Generally, $T$ depends on $\epsilon,$ $t_{0}$ and $y$ . According to the
mode of the dependence of $T$ on these values, B. A. Shcherbakov
classified the Poisson stable trajectories as follows [4, p. 75 ff.], [5].

1. $T$ is independent of $\epsilon$ . In this case $C(x)$ is a rest point or
periodic.

2. $T$ is independent of $t_{0}$ . In this ca8e $C(x)$ is almost recurrent.
3. $T$ is independent of $y$ . In this case $C(x)$ is defined to be pseudo-

recurrent.
4. $T$ is independent of $t_{0}$ and $y$ . In this case $C(x)$ is recurrent.

Here the definitions of the almost recurrence and recurrence of trajecto-
ries are as follows. The trajectory $C(p)$ of a dynamical system (X, $R,$ $f$)
is said to approximate uniformly the set $Q\subset X$ if for any $\epsilon>0$ there
exists $T>0$ such that

$Q\subset S(f(p, t, t+T), \epsilon)$

for any $teR$ . Then $C(p)$ is said to be:
almost recurrent if it approximates $\{p\}$ uniformly;
recurrent if it approximates itself uniformly.
It is known that every trajectory which is almost recurrent or

pseudorecurrent is Poisson vtable [4, p. 74 ff.], and that the closure of
the trajectory which is almost recurrent (pseudorecurrent) contains only
the trajectories which are almost recurrent (pseudorecurrent) [4, p. 77].
Since a non-trivial and non-compact minimal set of a locally compact
flow always contains the trajectory which is not Poisson stable (Theorem
3), we have

THEOREM 4. Poisson 8table trajectories in the non-trivial and non-
compact minimal set in a locally compact flow are neither pseudo-
recurrent nor almost recurrent.

COROLLARY 4.1. No Poisson stable trajectories in the non-trivial
and non-compact minimal set of a locally compact flow are recurrent.

PROOF. The recurrence implies the almost recurrence.
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