Токуо Ј. Матн. Vol. 5, No. 1, 1982

Asymptotic Strong Convergence of Nonlinear Contraction Semigroups

Hiroko OKOCHI

Waseda University (Communicated by J. Wada)

Introduction

Let $S = \{S(t): t \ge 0\}$ be a (nonlinear) contraction semigroup on a closed convex subset C of a Hilbert space H. In this note we study the asymptotic strong convergence of the orbits S(t)x ($x \in C$) of S. In 1975 Bruck [5] discussed this problem for a nonlinear contraction semigroup S under the assumption that S is generated by the subdifferential $\partial \varphi$ of a proper lower semicontinuous convex functional φ , and that φ is even in the sense that $\varphi(x) = \varphi(-x)$ on its effective domain $\mathfrak{D}(\varphi) = \{x \in H:$ $\varphi(x) < +\infty\}$. Since then a number of extended forms of Bruck's conditions for the asymptotic strong convergence have been obtained, for instance, in the works of [1], [4], [7], [8] and [10]. Here some other sufficient conditions on the generator A of S for the existence of strong limits of Cèsaro means $(1/t) \int_{0}^{t} S(\tau+h)xd\tau$ as well as those of orbits S(t)xare investigated.

The present paper contains three results. The first result (Theorem 1) provides a sufficient condition for the strong convergence of the orbit of S generated by the subdifferential of a proper lower semicontinuous functional φ . This result extends the author's previous result in [10] and so involves the case in which φ is even. On the other hand, if S is generated by the subdifferential of φ which assumes a minimum in H and if there exists a real number $\lambda > \min \varphi$ such that the set $M_{\mu} = \{x \in D(\partial \varphi): \varphi(x) \leq \lambda$ and $||x|| \leq \mu\}$ is relatively compact for each $\mu > 0$, then it is proved that S(t)x converges strongly to a minimum point of φ as $t \to \infty$. Our result involves this case as well. It turns out that Theorem 1 extends the above-mentioned two results which are of completely different types. The second result (Theorem 2) is concerned with the asymptotic strong convergence of the Cèsaro means of S as well as the orbits of S them-

Received March 25, 1981

selves. In this theorem an extended form of Gripenberg's condition [7] (that involves the oddness condition) is employed. Accordingly, our second result extends a result of Gripenberg in the case of Hilbert spaces. Moreover, in Assertion (2°) of Theorem 2, the strong convergence of the orbits of S is obtained under the so-called Tauberian condition, by applying a result due to Lorentz [9]. These results are stated in Section 1 along with some comments and the proofs of the theorems are given in section 2. Finally, in section 3, we discuss the linear perturbation problem for the proper lower semicontinuous *even* convex functionals. This problem was raised in [4] by H. Brezis and closely related to Theorem 1. Here we shall show (in Proposition 4) by presenting a counterexample that perturbations of linear functionals to *even* convex functionals are *not* necessarily possible as for as the asymptotic strong convergence is concerned.

§1. Main results.

Throughout this paper we assume that H is a real Hilbert space. Our first result is stated as follows:

THEOREM 1. Let φ be a proper lower semicontinuous convex functional on H which assumes a minimum in H. Suppose that there exists a real number $\lambda > \min \varphi$, a Fréchet differentiable operator B in H and a continuous functional $\alpha: \Re(B) \times (0, \infty) \rightarrow (0, 1]$ satisfying the following conditions:

(a) The domain $\mathfrak{D}(B)$ of B contains the set $\{x \in \mathfrak{D}(\partial \varphi): \varphi(x) \leq \lambda\}$ and the inequality

$$(1) \qquad \varphi(x) \ge \varphi(Bx - \alpha_x(I - B)x)$$

holds for $x \in \mathfrak{D}(B)$ with $(I-B)x \neq 0$, where α_x denotes the value $\alpha(Bx, ||(B-I)x||)$.

(b) The set $\{Bx: x \in \mathfrak{D}(\partial \varphi), \varphi(x) \leq \lambda \text{ and } \|x\| \leq \mu\}$ is relatively compact for all $\mu > 0$.

Then the solution $u(t) \equiv u(t, x)$ of the initial-value problem

(2)
$$\frac{d}{dt}u(t) \in -\partial \varphi(u(t)) \quad \text{a.e.} \quad t \in (0, \infty) , \qquad u(0) = x$$

converges strongly to a minimum point (which may depend upon x) of φ as $t \to \infty$ for every initial value $x \in cl(\mathfrak{D}(\varphi)) = cl\{x \in H: \varphi(x) < +\infty\}$.

REMARK 1. Given an affine subspace X in H, suppose that the

inequality (1) holds with $B = \operatorname{Proj}_x$ and $\alpha_x \equiv 1$. Then $\varphi(x) = \varphi(Bx - (I - B)x)$ for all $x \in \mathfrak{D}(\varphi)$, which means that φ is symmetric with respect to the affine subspace X. In particular, if φ is even, i.e., $\varphi(x) = \varphi(-x)$, then our conditions (a) and (b) hold with $B = \operatorname{Proj}_{(0)} = 0$ and $\alpha_x \equiv 1$. In the case where B is a constant mapping $B(x) \equiv x_0$, Theorem 1 is reduced to the author's previous result [10] and is essentially contained in the work of Gripenberg [7].

Let A be a maximal monotone operator in H and S the contraction semigroup generated by -A.

We permit ourselves the common abbreviations, " $x_n \rightarrow x$ " and " $x_n \rightarrow x$ " in referring respectively to the strong convergence of $\{x_n\}$ to x and the weak convergence of $\{x_n\}$ to x.

We now introduce a condition for the operator A which is an extended form of Gripenberg's condition treated in [7]:

(i) There exist an element $z_0 \in A^{-1}(0)$ and a linear projection P with the following properties: For every $\varepsilon \in (0, 1)$, there exist constants $c_i = c_i(\varepsilon)$, i = 1, 2, 3, and

$$(3) c_1\{(Py_1, x_1-z_0)+(Py_2, x_2-z_0)\}+c_2(P(y_1+y_2), x_1+x_2-2z_0) \\ +c_3\{(y_1, x_1-z_0)+(y_2, x_2-z_0)\}+(y_1+y_2, x_1+x_2-2z_0) \ge 0$$

holds for all $[x_j, y_j] \in A$ with $||x_j|| \leq 1/\varepsilon$ and $||(I-P)(x_j-z_0)|| \geq \varepsilon$, j=1, 2.

Gripenberg treated the inequality (3) with P=0. The inequality (3) may be regarded as an extention of the condition that $A \subset H \times H$ is symmetric with respect to $X \times \{0\}$ (i.e., $[x, y] \in A$ iff $[\operatorname{Proj}_{x} x - (I - \operatorname{Proj}_{x})x, -y] \in A$), where X is an affine subspace of H with $z_0 \in X$. If P=0 then $X=\{z_0\}$. In particular, if A is an odd mapping (i.e., $[x, y] \in A$ iff $[-x, -y] \in A$), then condition (i) holds with P=0 and $X=\{0\}$. In this sense condition (i) is an extended form of the oddness condition for A.

Employing the above-mentioned condition (i), our second result is stated as follows:

THEOREM 2. Let $x_0 \in cl(\mathfrak{D}(A))$. (1°) Assume that condition (i) holds, and that

(ii) there exists a periodic function v with period ρ (i.e., $v(t+\rho) = v(t)$ for $t \ge 0$) such that $\lim_{t\to\infty} ||v(t)-z_0||$ exists and $\lim_{t\to\infty} ||PS(t)x_0 - v(t)|| = 0$. Then we have

$$s-\lim_{t o\infty}rac{1}{t}\int_0^t S(au+h)x_0d au=z\in A^{-1}(0)$$
 uniformly in $h\in(0,\infty)$.

(2°) Suppose that $A^{-1}(0) \neq \emptyset$, and that condition (i) holds for a

compact linear projection P. Let

(iii) $s - \lim_{t \to \infty} \{S(t+h)x_0 - S(t)x_0\} = 0 \text{ for all } h > 0.$

Then $S(t)x_0$ converges strongly to some point of $A^{-1}(0)$ as $t \to \infty$.

COROLLARY 3. Suppose that the graph of A is symmetric with respect to a closed affine subspace $X \times \{0\}$ of $H \times H$ in the sense that

$$(4) \qquad [x, y] \in A \quad iff \quad [\operatorname{Proj}_{X} x - (I - \operatorname{Proj}_{X})x, -y] \in A.$$

Then, for each $x \in cl(\mathfrak{D}(A))$, we have the convergence

$$s - \lim_{t \to \infty} \frac{1}{t} \int_0^t S(\tau + h) x d\tau = z_x \in A^{-1}(0) \quad uniformly \quad in \quad h \in (0, \infty) \ .$$

REMARK 2. Some sufficient conditions for (ii) to hold are in order.

(A) If $PS(t)x_0$ converges strongly to a point y as $t \to \infty$, then condition (ii) is automatically satisfied with $v(t) \equiv y$. In particular, if P=0, then $PS(t)x_0 \equiv 0$.

(B) Suppose that

(ii)' P is a compact linear projection, $A^{-1}(0) \neq \emptyset$ and $S(t+h)x_0 - S(t)x_0 \rightarrow 0$ as $t \rightarrow \infty$ for every h > 0.

Then it follows (see [6]) that $S(t)x_0$ converges weakly as $t \to \infty$, so that $PS(t)x_0$ converges strongly as $t \to \infty$.

(C) Assume:

(ii)" A is demipositive (see [5]) and P is a compact linear projection. Then the weak convergence of $S(t)x_0$ as $t \to \infty$ is obtained as well.

(D) Suppose that

(ii)" P is a compact linear projection, $A^{-1}(0) \neq \emptyset$ and

$$\lim_{t\to\infty} (\min\{||y||: y \in AS(t)x_0\}) \leq \lim_{t\to\infty} \left(\frac{1}{h} ||S(t+h)x_0 - S(t)x_0||\right)$$

for every h > 0.

Then $S(t)x_0$ converges weakly as $t \to \infty$ (see [11; Theorem 10.5]).

REMARK 3. Assertion (2°) of Theorem 2 and Corollary 3 were obtained respectively in Gripenberg [6] and Baillon [1] in the case where P=0.

§2. Proof of theorems.

PROOF OF THEOREM 1. Let $x \in cl(\mathfrak{D}(\varphi))$ and let u(t) be the associated solution of the equation (2). Let λ be a constant as mentioned in

Theorem 1. We recall that $u(t) \in \mathfrak{D}(\partial \varphi)$ for all t > 0 and that $\varphi(u(t))$ converges decleasingly to the minimum value of φ as $t \to \infty$. Thus there exists a point $t_0 > 0$ such that $\varphi(u(t)) \leq \lambda$ for all $t \geq t_0$. This means that $u(t) \in \mathfrak{D}(B)$ for all $t \geq t_0$. Moreover, since φ has a minimum point z in H, it follows from the definition of $\partial \varphi$ that

$$\frac{d}{dt} \| u(t) - z \|^2 = 2(u'(t), u(t) - z) \leq \{\varphi(z) - \varphi(u(t))\} \leq 0 \quad \text{a.e.} \quad t \in (0, \infty) .$$

From this we obtain $||u(t)|| \le ||u(t_0)|| + 2||z||$ for $t \ge t_0$, and so condition (b) implies that the set $\{Bu(t): t \ge t_0\}$ is relatively compact in H.

Assume that $\liminf_{t\to\infty} ||(I-B)u(t)|| = 0$. Then there exists a squence $\{t_n\}$ in $(0, \infty)$ such that $t_n \to \infty$ and $u(t_n) - Bu(t_n) \to 0$ as $n \to \infty$. On the other hand, the set $\{Bu(t): t \ge t_0\}$ is relatively compact in H, so that there exists a subsequence $\{t_{n_j}\}$ of $\{t_n\}$ such that $\{Bu(t_{n_j})\}$ converges strongly. Therefore, the sequence $\{u(t_{n_j})\}$ converges strongly as $t_{n_j} \to \infty$. On the other hand, it is well-known (see [5]) that u(t) converges weakly to a minimum point of φ as $t \to \infty$. Thus u(t) converges strongly to a minimum point of φ as $t \to \infty$.

Next, assume that $\liminf_{t\to\infty} ||(I-B)u(t)|| \equiv \varepsilon > 0$. Then there exists a point $T \ge t_0$ such that $||(I-B)u(t)|| \ge \varepsilon/2$ for all $t \ge T$, so that the sets $\{Bu(t): t \ge T\}$ and $\{||(I-B)u(t)||: t \ge T\}$ are relatively compact in H and $(0, \infty)$, respectively. Thus, it follows from the continuity of the functional α that

$$\delta \equiv \min \{ \alpha(Bu(t), ||(I-B)u(t)||): t \geq T \} > 0$$

Moreover there exists a sequence $\{t_n\}$ such that $t_n \uparrow \infty$ and both $\{Bu(t_n)\}$ and $\{\|(I-B)u(t_n)\|\}$ converges as $n \to \infty$ in H and R, respectively.

Fix an arbitraly point $t_n > T$ and define a functional $g: [T, t_n] \rightarrow R$ by

$$g(t) = \frac{1+\delta}{2} \{ \|Bu(t)\|^2 - \|Bu(t_n)\|^2 + \|(I-B)u(t)\|^2 - \|(I-B)u(t_n)\|^2 \} - \frac{\delta}{2} \|u(t) - u(t_n)\|^2 .$$

Then, using the definition of subdifferential, we have

$$g'(t) = (1+\delta) \left\{ (u'(t), u(t) - Bu(t)) - \left(\frac{d}{dt}Bu(t), u(t)\right) \right\} - \delta(u'(t), u(t) - u(t_n)) \\ = (u'(t), u(t) - Bu(t_n) + \delta(I - B)u(t_n)) + (1+\delta)\frac{d}{dt}(u(t), Bu(t_n) - Bu(t)) \\ \leq \varphi(Bu(t_n) - (I - B)u(t_n)) - \varphi(u(t)) + (1+\delta)\frac{d}{dt}(u(t), Bu(t_n) - Bu(t)) .$$

On the other hand, one obtains

(5)
$$\varphi(Bu(t_n)-(I-B)u(t_n)) \leq \varphi(u(t_n))$$
 for $t_n \geq t_1$.

In fact, from the convexity of φ together with the inequality (1), it follows that for every $x \in \mathfrak{D}(\partial \varphi)$ with $(I-B)x \neq 0$ we have

$$\begin{aligned} \varphi(Bx) &= \varphi\left(\frac{\alpha}{1+\alpha}x + \frac{1}{1+\alpha}((1+\alpha)Bx - \alpha x)\right) \\ &\leq \frac{\alpha}{1+\alpha}\varphi(x) + \frac{1}{1+\alpha}\varphi((1+\alpha)Bx - \alpha x) \\ &\leq \frac{\alpha}{1+\alpha}\varphi(x) + \frac{1}{1+\alpha}\varphi(x) = \varphi(x) , \end{aligned}$$

where $\alpha = \alpha(Bx, ||(I-B)x||)$. Hence, if $0 \leq \delta \leq \alpha$, then

$$\begin{aligned} \varphi(Bx - \delta(I - B)x) &= \varphi\left(\frac{\alpha - \delta}{\alpha}Bx + \frac{\delta}{\alpha}(Bx - \alpha(I - B)x)\right) \\ &\leq \frac{\alpha - \delta}{\alpha}\varphi(Bx) + \frac{\delta}{\alpha}\varphi(Bx - \alpha(I - B)x) \\ &\leq \frac{\alpha - \delta}{\alpha}\varphi(x) + \frac{\delta}{\alpha}\varphi(x) = \varphi(x) \;. \end{aligned}$$

Now, by virtue of the inequality (5) and the fact that $\varphi(u(t))$ is monotone nonincleasing, we have

$$g'(t) \leq (1+\delta) \frac{d}{dt}(u(t), Bu(t_n) - Bu(t))$$
 a.e. $t \in [t_1, t_n]$.

Integrating both sides of this inequality over $[t_m, t_n]$ (m < n), we obtain

$$(6) \qquad \frac{1+\delta}{2} \{-\|Bu(t_m)\|^2 + \|Bu(t_n)\|^2 - \|(I-B)u(t_m)\|^2 + \|(I-B)u(t_n)\|^2 \} \\ + \frac{\delta}{2} \|u(t_m) - u(t_n)\|^2 \\ \leq -(1+\delta)(u(t_m), Bu(t_n) - Bu(t_m)) .$$

Let $n, m \to \infty$ in (6). Then the convergence of the sequences $\{Bu(t_n)\}$ and $\{\|(I-B)u(t_n)\|\}$ and the boundedness of $\{u(t_n)\}$ together yield that $\|u(t_m)-u(t_n)\|\to 0$. Thus $\{u(t_n)\}$ is a Cauchy sequence in H. Consequently, recalling that u(t) converges weakly to a minimum point of φ as $t\to\infty$, we conclude that u(t) converges strongly to a minimum point of φ as $t\to\infty$.

PROOF OF THEOREM 2. Let $x_0 \in \mathfrak{D}(A)$ and put $u(t) \equiv S(t)x_0$. We may assume without loss of generality that $z_0 = 0 \in A^{-1}(0)$. Then we have

$$\frac{d}{dt} \| u(t) \|^2 = 2(u'(t) - 0, u(t) - 0) \le 0, \text{ and}$$
$$\frac{d}{dt} \| u(t+h) - u(t) \|^2 = 2(u'(t+h) - u'(t), u(t+h) - u(t)) \le 0$$

for all h>0 and a.e. $t \in (0, \infty)$. These relations imply that

(7)
$$||u(t)|| \downarrow d_1 \text{ and } ||u(t+h)-u(t)|| \downarrow \delta_h \text{ as } t \to \infty$$

for some nonnegative numbers d_1 and δ_h .

Condition (ii) implies that $||v(t)|| \equiv \text{const.}$ and

 $||Pu(t)|| \rightarrow ||v(0)||$ as $t \rightarrow \infty$.

Hence, by (7), we obtain the convergence

$$\|(I-P)u(t)\| \rightarrow d_2 \equiv (d_1^2 - \|v(0)\|^2)^{1/2}$$
 as $t \rightarrow \infty$.

At this point there are two cases to check. Suppose that $d_2=0$. In this case condition (ii) yields that $u(t) \rightarrow v(t)$ as $t \rightarrow \infty$, and hence $(1/t) \int_{0}^{t} u(\tau+h)d\tau$ converges strongly to $(1/\rho) \int_{0}^{\rho} v(\tau)d\tau(=z)$, uniformly for $h \in (0, \infty)$ as $t \rightarrow \infty$. Next, assume that $d_2 > 0$. Then there exists a constant $T \ge 0$ such that

$$||(I-P)u(t)|| \ge \frac{d_2}{2}$$
 for $t \ge T$.

Put $\varepsilon = \min \{ d_2/2, 1/||u(0)|| \} > 0$. Since $[u(t), -u'(t)] \in A$ for a.e. t and

$$\|u(t)\| \leq \|u(0)\| \leq \frac{1}{\varepsilon} \qquad \|(I-P)u(t)\| \geq \varepsilon \quad \text{for} \quad t \geq T$$
,

we infer from (3) that

$$c_{1}\left\{\frac{d}{dt}\|Pu(t+h)\|^{2}+\frac{d}{dt}\|Pu(t)\|^{2}\right\}+c_{2}\frac{d}{dt}\|Pu(t+h)+Pu(t)\|^{2}$$
$$+c_{3}\left\{\frac{d}{dt}\|u(t+h)\|^{2}+\frac{d}{dt}\|u(t)\|^{2}\right\}+c_{2}\frac{d}{dt}\|u(t+h)+u(t)\|^{2}\leq 0$$

for every $h \ge 0$ and a.e. $t \in [T, \infty)$.

Integrate this inequality over $(j\rho, j\rho + k\rho)$ (where j and k are arbitrary positive integers with $j\rho \ge T$) to obtain

$$\begin{split} c_1\{\|Pu(h+(1+k)\rho)\|^2 - \|Pu(h+j\rho)\|^2 + \|Pu((j+k)\rho)\|^2 - \|Pu(j\rho)\|^2\} \\ + c_2\{\|Pu(h+(j+k)\rho) + Pu((j+k)\rho)\|^2 - \|Pu(h+j\rho) + Pu(j\rho)\|^2\} \\ + c_3\{\|u(h+(j+k)\rho)\|^2 - \|u(h+j\rho)\|^2 + \|u((j+k)\rho)\|^2 - \|u(j\rho)\|^2\} \\ - \|u(h+(j+k)\rho) - u((j+k)\rho)\|^2 + \|u(h+j\rho) - u(j\rho)\|^2 + 2\|u(h+(j+k)\rho)\|^2 \\ + 2\|u((j+k)\rho)\|^2 - 2\|u(h+j\rho)\|^2 - 2\|u(j\rho)\|^2 \leq 0 \end{split}$$

Moreover, we see from condition (ii) that

(10)
$$Pu(h+n\rho) \rightarrow v(h)$$
 as $n \rightarrow \infty$ for each $h \ge 0$.

Let $k \rightarrow \infty$ in (9). Then, application of (7) and (10) yields

$$egin{aligned} &\delta_h^2 \leq \|u(h+j
ho)-u(j
ho)\|^2 \ &\leq \delta_h^2 - c_1\{2\|v(h)\|^2 - \|Pu(h+j
ho)\|^2 - \|Pu(j
ho)\|^2 \ &- c_2\{\|v(h)+v(0)\|^2 - \|Pu(h+j
ho)+Pu(j
ho)\|^2\} \ &- c_8\{2d_1^2 - \|u(h+j
ho)\|^2 - \|u(j
ho)\|^2\} - 4d_1^2 + 2\|u(h+j
ho)\|^2 + 2\|u(j
ho)\|^2 \ . \end{aligned}$$

Hence, (7) and (10) yield that $\lim_{j\to\infty} ||u(h+j\rho)-u(j\rho)|| = \delta_k$ uniformly in $h \ge 0$, so that the convergence $\lim_{t\to\infty} ||u(h+t)-u(t)|| = \delta_k$ holds uniformly in $h \ge 0$. Thus, by a result of Kobayasi and Miyadera [8] we have

$$s - \lim_{t \to \infty} \frac{1}{t} \int_0^t S(\tau + h) x_0 d\tau = z \in A^{-1}(0)$$
 uniformly in $h \ge 0$.

It is easy to see that this convergence also holds for $x_0 \in cl(\mathfrak{D}(A))$. Thus, we proved Assertion (1°).

By virtue of (A) and (B) of Remark 2, Assertion (2°) is a direct consequence of Assertion (1°) and Lorentz [9].

PROOF OF COROLLARY 3. Since A is a maximal monotone operator and $cl(\mathfrak{D}(A))$ is a convex subset of H, condition (4) yields that $\{\operatorname{Proj}_{x} x: x \in cl(\mathfrak{D}(A))\} = X \cap cl(\mathfrak{D}(A)) \subset A^{-1}(0)$. Hence, for $x \in cl(\mathfrak{D}(A))$, $\operatorname{Proj}_{x} S(t)x$ $(=\operatorname{Proj}_{x \cap cl(\mathfrak{D}(A))}S(t)x)$ converges strongly as $t \to \infty$. This is obtained in the same way as in the derivation of the convergence of $\operatorname{Proj}_{A^{-1}(0)}S(t)x$ (cf., [10; Lemma 9.2]).

Fix an arbitraly point $z_0 \in X \cap cl(\mathfrak{D}(A))$ and define a linear projection P by $P = \operatorname{Proj}_{X-z_0}$. Then, by (4), we have

$$(y_1 - (-y_2), x_1 - (2Px_2 - x_2 + 2z_0 - 2Pz_0)) \ge 0$$
, and
 $(y_2 - (-y_1), x_2 - (2Px_1 - x_1 + 2z_0 - 2Pz_0)) \ge 0$

for $[x_i, y_i] \in A$, i=1, 2. Here we have used the fact that $\operatorname{Proj}_x x = \operatorname{Proj}_{x-z_0}(x-z_0) + z_0 = Px - Pz_0 - z_0$. Summing up these inequalities, one

NONLINEAR CONTRACTION SEMIGROUPS

obtains

$$(y_1+y_2, x_1+x_2-2z_0)-(y_1+y_2, Px_1+Px_2-2Pz_0)\geq 0$$
.

Thus, condition (i) holds with $c_1 = c_3 = 0$ and $c_2 = -1$. Moreover, since PS(t)x (= $\operatorname{Proj}_x x + Pz_0 + z_0$) converges strongly as $t \to \infty$, it follows from (A) of Remark 2 that condition (ii) holds for each $x \in cl(\mathfrak{D}(A))$.

Therefore, the assertion follows from Assertion (1°) of Theorem 2.

REMARK 4. The relationship between Theorems 1 and 2 may be stated as follows: If the operator B in Theorem 1 is a compact linear projection, then Theorem 1 can be derived from Assertion (2°) of Theorem 2 (cf., [7]).

§3. Linear perturbation to even convex functionals.

Assume that ψ is a proper *l.s.c. even* convex functional and let $f \in H$ be such that $\min_{z \in H} \{\psi(z) - (f, z)\}$ is achieved. Let u(t) be the solution of $du/dt + \partial \psi(u) \ni f$, u(0) = x. Brezis raised in [3] the problem as to whether u(t) converges strongly as $t \to \infty$.

In virtue of Theorem 1, u(t) converges strongly if $\varphi \equiv \psi - f$ satisfies conditions (a) and (b) with $B = \operatorname{Proj}_X$ and $X = \{rf: r \in R\}$.

But, in general, u(t) need not be strongly convergent, as stated below.

PROPOSITION 4. There exists a proper l.s.c. convex functional ψ and $f \in H$ such that (i) ψ is even; (ii) $\psi - f$ assumes a minimum in H; but (iii) the solution u(t) of the initial-value problem

$$du/dt + \partial \psi(u) \ni f$$
, $u(0) = x$

does <u>not</u> converge strongly as $t \to \infty$ for some $x \in \mathfrak{D}(\psi)$.

The above-mentioned fact is asserted by the following example (which is motivated by that of Baillon):

EXAMPLE. We construct the aimed ψ and f in the space $H=l^2$. Let a_1 and b_2 be functionals on \mathbb{R}^2 defined by

$$\begin{aligned} a_{\lambda}(\xi, \eta) &= -\frac{1}{2} \left(\frac{\pi}{2} \right)^{\lambda} \xi + \frac{\lambda}{2} \left(\frac{\pi}{2} \right)^{\lambda-1} \eta , \\ b_{\lambda}(\xi, \eta) &= \begin{cases} [\tan^{-1} (|\xi|/|\eta|)]^{\lambda} \cdot (\xi^{2} + \eta^{2})^{1/2} + a_{\lambda}(|\xi|, |\eta|) & \text{if } \xi \eta \ge 0 \\ a_{\lambda}(\xi, \eta) & \text{if } \xi \le 0 \text{ and } \eta \ge 0 \\ -a_{\lambda}(\xi, \eta) & \text{if } \xi \ge 0 \text{ and } \eta \le 0 . \end{cases} \end{aligned}$$

It is easy to check that a_{λ} is linear, while b_{λ} is even. We then demonstrate that $c_{\lambda} \equiv b_{\lambda} - a_{\lambda}$ is a nonnegative convex functional on \mathbb{R}^2 provided that $\lambda \ge 1$. According to [1], c_{λ} is a convex functional on $\mathbb{R}^+ \times \mathbb{R}^+$ if $\lambda \ge 1$. On the other hand, c_{λ} is differentiable, on $\mathbb{R}^2 \setminus \{0\}$ and

 $\operatorname{grad} c_{\lambda}(\xi, 0) = 2a_{\lambda}$ for $\xi > 0$.

Hence, from the defining inequality for the subdifferential, we have

$$c_{\lambda}(\xi, \eta) \geq 2a_{\lambda}(\xi, \eta)$$
, $(\xi, \eta) \in \mathbf{R}^{+} \times \mathbf{R}^{+}$

But this inequality shows that $c_{\lambda} \ge 0$ on \mathbb{R}^2 , and that c_{λ} is a convex functional on \mathbb{R}^2 .

Now put

(11)
$$\lambda_i = \frac{\pi^2}{8} \frac{b}{b-1} b^i \quad (b=1/\log 2), \quad i=1, 2, 3, \cdots,$$

and, for $\alpha = (\alpha_i)_{i \ge 1}$ $(\alpha_i > 0)$, define f_{α} and ψ_{α} by

$$f_{\alpha}(x) = \alpha_1 a_{\lambda_1}(x_1, x_2) + \cdots + \alpha_n a_{\lambda_n}(x_n, x_{n+1}) + \cdots$$

$$\psi_{\alpha}(x) = \alpha_1 b_{\lambda_1}(x_1, x_2) + \cdots + \alpha_n b_{\lambda_n}(x_n, x_{n+1}) + \cdots,$$

where $x = (x_i)_{i \ge 1} \in l^2$. Then, $\min(\psi_{\alpha} - f_{\alpha}) = 0$ and ψ_{α} is even for every $\alpha = (\alpha_i)_{i \ge 1}$.

Next, let $T_1 \ge 1, \dots, T_n \ge n, \dots$ and $\beta_1, \beta_2, \dots, \beta_n, \dots > 0$ be as in Lemma 6 of [2] and put $\varphi_{\alpha} \equiv \psi_{\alpha} - f_{\alpha}$ and $\varepsilon = 1/4$ in Lemma 6. Then, as is mentioned in [2], it follows that for every $n \ge 1$ one has

(12)
$$||S_{\alpha}(T_{i})x_{1}-x_{i+1}|| \leq \varepsilon + \cdots + \varepsilon^{i} \qquad i=1, 2, \cdots, n$$

whenever $\alpha = (\alpha_i)_{i \ge 1}$ satisfies that $\alpha_i = \beta_i$, $i = 1, \dots, n$, where S_{α} refers the semigroup generated by $\partial \varphi_{\alpha}$ and $x_i \in l^2$ $(i \ge 1)$ are as follows:

$$x_{1} = (1, 0, 0, \cdots)$$

$$x_{2} = \left(0, \exp\left(-\frac{\pi^{2}}{8}\frac{1}{\lambda_{1}}\right), 0, 0, \cdots\right)$$

$$x_{i} = \left(0, 0, \cdots, 0, \exp\left[-\frac{\pi^{2}}{8}\left(\frac{1}{\lambda_{1}} + \cdots + \frac{1}{\lambda_{i-1}}\right)\right], 0, 0, \cdots\right)$$
.....

Since $a_{\lambda_i}(i \ge 1)$ are linear functional on \mathbb{R}^2 , so is f_{α} with $\mathfrak{D}(f_{\alpha}) \subset l^2$. But a sequence $\alpha' = (\alpha'_i)_{i\ge 1}$ of positive numbers can be chosen so that $D(f_{\alpha'}) = l^2$ and $f_{\alpha'} \in l^2$. Put

NONLINEAR CONTRACTION SEMIGROUPS

(13)
$$\alpha_1 = \min \{\beta_1, \alpha'_1\} \text{ and } \alpha_i = \min \{\beta_i \alpha_{i-1}, \alpha'_i\} \text{ for } i \geq 2.$$

Then, since $0 < \alpha_i \leq \alpha'_i$ for $i \geq 1$, we have $f_{\alpha} \in l^2$ again.

Finally, we show that the solution of the equation

$$du/dt + \partial \psi_{\alpha}(u) \ni f_{\alpha}$$
, $u(0) = (1, 0, 0, \cdots)$

does not converge strongly as $t \to \infty$. According to the selection of T_i , β_i $(i \ge 1)$ as mentioned in the proof of Lemma 6 of [2], we infer from (12) and (13) that

(14)
$$||u(T'_n)-x_{n-1}|| \leq \varepsilon + \cdots + \varepsilon^n \text{ for } n \geq 1$$
,

where $T'_n = (\beta_1/\alpha_1)T_1 + (\beta_2/\alpha_2)(T_2 - T_1) + \cdots + (\beta_n/\alpha_n)(T_n - T_{n-1})$. Since $\varepsilon = 1/4$ and $||x_n|| = \exp\left[-(\pi^2/8)((1/\lambda_1) + \cdots + (1/\lambda_{n-1}))\right]$, the estimate (14) together with (11) yields

$$\liminf_{n\to\infty} \|u(T'_n)\| \ge \exp\left[-\frac{\pi^2}{8}\left(\frac{8}{\pi^2}\frac{b-1}{b}\frac{b}{b-1}\right)\right] - \frac{\varepsilon}{1-\varepsilon} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

Since $T'_n \ge T_n \ge n$, this means that u(t) does not converge strongly to 0 as $t \to \infty$. On the other hand, $\varphi_{\alpha}(x) \equiv \psi_{\alpha}(x) - (f_{\alpha}, x) \ge 0$, and $\varphi_{\alpha}(x) = 0$ iff x=0. Thus we infer with the aid of the result of [5] that $w - \lim_{t \to \infty} u(t) = 0$. Consequently, u(t) does not converge strongly as $t \to \infty$.

ACKNOWLEDGEMENT. The author would like to thank Professors Y. Komura, S. Oharu and K. Kobayasi for their comments.

References

- J. B. BAILLON, Quelques propriétés de convergence asymptotique pour les contractions impaires, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), 587-590.
- [2] J. B. BAILLON, Un example concernant le comportement asymptotique de la solution du problème $du/dt + \partial \varphi(u) \ni 0$, J. Functional Analysis, **28** (1978), 369-376.
- [3] J. B. BAILLON et H. BREZIS, Une remarque sur le comportement asymptotique des semi groupes nonlinéaies, Houston J. Math., 2 (1976), 5-7.
- [4] H. BREZIS, Asymptotic behavior of some evolution systems, Nonlinear Evolution Equations (ed. by M. Crandall), 141-154, Academic Press, New York, 1978.
- [5] R. E. BRUCK, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Functional Analysis, 18 (1975), 15-26.
- [6] R. E. BRUCK, On the almost-convergence of iterates of non-expansive mapping in Hilbert space and structure of the ω-limit set, Israel J. Math., 29 (1978), 1-16.
- [7] G. GRIPENBERG, On the asymptotic behavior of nonlinear contraction semigroups, Math. Scand., 44 (1979), 385-397.
- [8] K. KOBAYASI and I. MIYADERA, On the strong convergence of the Cèsaro means of contractions in Banach spaces, Proc. Japan Acad., 56 (1980), 245-249.
- [9] G. G. LORENTZ, A contribution to the theory of divergent sequences, Acta Math., 80

(1948), 167-190.

- [10] H. OKOCHI, A note on asymptotic strong convergence of nonlinear contraction semigroups, Proc. Japan Acad., 56 (1980), 83-84.
- [11] A. PAZY, Semigroups of nonlinear contractions and their asymptotic behavior, Nonlinear Analysis and Mechanics; Heriot-Watt Symposium vol 3 (ed. by R. J. Knops), Pitman, San Fransisco, 1978, 36-134.

Present Address: DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCES AND ENGINEERINGS WASEDA UNIVERSITY NISHIOKUBO, SHINJUKU-KU, TOKYO 160