Asymptotic Strong Convergence of Nonlinear Contraction Semigroups

Hiroko OKOCHI

Waseda University
(Communicated by J. Wada)

Introduction

Let $S=\{S(t): t \geqq 0\}$ be a (nonlinear) contraction semigroup on a closed convex subset C of a Hilbert space H. In this note we study the asymptotic strong convergence of the orbits $S(t) x(x \in C)$ of S. In 1975 Bruck [5] discussed this problem for a nonlinear contraction semigroup S under the assumption that S is generated by the subdifferential $\partial \varphi$ of a proper lower semicontinuous convex functional φ, and that φ is even in the sense that $\varphi(x)=\varphi(-x)$ on its effective domain $\mathscr{D}(\varphi)=\{x \in H$: $\varphi(x)<+\infty\}$. Since then a number of extended forms of Bruck's conditions for the asymptotic strong convergence have been obtained, for instance, in the works of [1], [4], [7], [8] and [10]. Here some other sufficient conditions on the generator A of S for the existence of strong limits of Cèsaro means $(1 / t) \int_{0}^{t} S(\tau+h) x d \tau$ as well as those of orbits $S(t) x$ are investigated.

The present paper contains three results. The first result (Theorem 1) provides a sufficient condition for the strong convergence of the orbit of S generated by the subdifferential of a proper lower semicontinuous functional φ. This result extends the author's previous result in [10] and so involves the case in which φ is even. On the other hand, if S is generated by the subdifferential of φ which assumes a minimum in H and if there exists a real number $\lambda>\min \varphi$ such that the set $M_{\mu}=\{x \in D(\partial \varphi): \varphi(x) \leqq \lambda$ and $\|x\| \leqq \mu\}$ is relatively compact for each $\mu>0$, then it is proved that $S(t) x$ converges strongly to a minimum point of φ as $t \rightarrow \infty$. Our result involves this case as well. It turns out that Theorem 1 extends the above-mentioned two results which are of completely different types. The second result (Theorem 2) is concerned with the asymptotic strong convergence of the Cèsaro means of S as well as the orbits of S them-

[^0]selves. In this theorem an extended form of Gripenberg's condition [7] (that involves the oddness condition) is employed. Accordingly, our second result extends a result of Gripenberg in the case of Hilbert spaces. Moreover, in Assertion (2°) of Theorem 2, the strong convergence of the orbits of S is obtained under the so-called Tauberian condition, by applying a result due to Lorentz [9]. These results are stated in Section 1 along with some comments and the proofs of the theorems are given in section 2. Finally, in section 3, we discuss the linear perturbation problem for the proper lower semicontinuous even convex functionals. This problem was raised in [4] by H. Brezis and closely related to Theorem 1. Here we shall show (in Proposition 4) by presenting a counterexample that perturbations of linear functionals to even convex functionals are not necessarily possible as for as the asymptotic strong convergence is concerned.

§1. Main results.

Throughout this paper we assume that H is a real Hilbert space. Our first result is stated as follows:

Theorem 1. Let φ be a proper lower semicontinuous convex functional on H which assumes a minimum in H. Suppose that there exists a real number $\lambda>\min \varphi$, a Fréchet differentiable operator B in H and a continuous functional $\alpha: \mathfrak{R}(B) \times(0, \infty) \rightarrow(0,1]$ satisfying the following conditions:
(a) The domain $\mathfrak{D}(B)$ of B contains the set $\{x \in \mathfrak{D}(\partial \varphi): \varphi(x) \leqq \lambda\}$ and the inequality

$$
\begin{equation*}
\varphi(x) \geqq \varphi\left(B x-\alpha_{x}(I-B) x\right) \tag{1}
\end{equation*}
$$

holds for $x \in \mathfrak{D}(B)$ with $(I-B) x \neq 0$, where α_{x} denotes the value $\alpha(B x$, $\|(B-I) x\|)$.
(b) The set $\{B x: x \in \mathfrak{D}(\partial \varphi), \varphi(x) \leqq \lambda$ and $\|x\| \leqq \mu\}$ is relatively compact for all $\mu>0$.

Then the solution $u(t) \equiv u(t, x)$ of the initial-value problem

$$
\begin{equation*}
\frac{d}{d t} u(t) \in-\partial \varphi(u(t)) \quad \text { a.e. } \quad t \in(0, \infty), \quad u(0)=x \tag{2}
\end{equation*}
$$

converges strongly to a minimum point (which may depend upon x) of φ as $t \rightarrow \infty$ for every initial value $x \in \operatorname{cl}(\mathscr{D}(\varphi))=\operatorname{cl}\{x \in H: \varphi(x)<+\infty\}$.

Remark 1. Given an affine subspace X in H, suppose that the
inequality (1) holds with $B=\operatorname{Proj}_{X}$ and $\alpha_{x} \equiv 1$. Then $\varphi(x)=\varphi(B x-(I-B) x)$ for all $x \in \mathscr{D}(\varphi)$, which means that φ is symmetric with respect to the affine subspace X. In particular, if φ is even, i.e., $\varphi(x)=\varphi(-x)$, then our conditions (a) and (b) hold with $B=\operatorname{Proj}_{(0)}=0$ and $\alpha_{x} \equiv 1$. In the case where B is a constant mapping $B(x) \equiv x_{0}$, Theorem 1 is reduced to the author's previous result [10] and is essentially contained in the work of Gripenberg [7].

Let A be a maximal monotone operator in H and S the contraction semigroup generated by $-A$.

We permit ourselves the common abbreviations, " $x_{n} \rightarrow x$ " and " $x_{n} \rightharpoonup x$ " in refering respectively to the strong convergence of $\left\{x_{n}\right\}$ to x and the weak convergence of $\left\{x_{n}\right\}$ to x.

We now introduce a condition for the operator A which is an extended form of Gripenberg's condition treated in [7]:
(i) There exist an element $z_{0} \in A^{-1}(0)$ and a linear projection P with the following properties: For every $\varepsilon \in(0,1)$, there exist constants $c_{i}=c_{i}(\varepsilon), i=1,2,3$, and

$$
\begin{align*}
& c_{1}\left\{\left(P y_{1}, x_{1}-z_{0}\right)+\left(P y_{2}, x_{2}-z_{0}\right)\right\}+c_{2}\left(P\left(y_{1}+y_{2}\right), x_{1}+x_{2}-2 z_{0}\right) \tag{3}\\
& \quad+c_{3}\left\{\left(y_{1}, x_{1}-z_{0}\right)+\left(y_{2}, x_{2}-z_{0}\right)\right\}+\left(y_{1}+y_{2}, x_{1}+x_{2}-2 z_{0}\right) \geqq 0
\end{align*}
$$

holds for all $\left[x_{j}, y_{j}\right] \in A$ with $\left\|x_{j}\right\| \leqq 1 / \varepsilon$ and $\left\|(I-P)\left(x_{j}-z_{0}\right)\right\| \geqq \varepsilon, j=1,2$.
Gripenberg treated the inequality (3) with $P=0$. The inequality (3) may be regarded as an extention of the condition that $A \subset H \times H$ is symmetric with respect to $X \times\{0\}$ (i.e., $[x, y] \in A$ iff $\left[\operatorname{Proj}_{x} x-\right.$ $\left.\left.\left(I-\operatorname{Proj}_{X}\right) x,-y\right] \in A\right)$, where X is an affine subspace of H with $z_{0} \in X$. If $P=0$ then $X=\left\{z_{0}\right\}$. In particular, if A is an odd mapping (i.e., $[x, y] \in A$ iff $[-x,-y] \in A$), then condition (i) holds with $P=0$ and $X=\{0\}$. In this sense condition (i) is an extended form of the oddness condition for A.

Employing the above-mentioned condition (i), our second result is stated as follows:

Theorem 2. Let $x_{0} \in \operatorname{cl}(\mathfrak{D}(A)) .\left(1^{\circ}\right)$ Assume that condition (i) holds, and that
(ii) there exists a periodic function v with period ρ (i.e., $v(t+\rho)=$ $v(t)$ for $t \geqq 0$) such that $\lim _{t \rightarrow \infty}\left\|v(t)-z_{0}\right\|$ exists and $\lim _{t \rightarrow \infty} \| P S(t) x_{0}-$ $v(t) \|=0$. Then we have

$$
s-\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(\tau+h) x_{0} d \tau=z \in A^{-1}(0) \quad \text { uniformly in } \quad h \in(0, \infty)
$$

(2 ${ }^{\circ}$) Suppose that $A^{-1}(0) \neq \varnothing$, and that condition (i) holds for a
compact linear projection P. Let

$$
\begin{equation*}
s-\lim _{t \rightarrow \infty}\left\{S(t+h) x_{0}-S(t) x_{0}\right\}=0 \quad \text { for all } \quad h>0 \tag{iii}
\end{equation*}
$$

Then $S(t) x_{0}$ converges strongly to some point of $A^{-1}(0)$ as $t \rightarrow \infty$.
Corollary 3. Suppose that the graph of A is symmetric with respect to a closed affine subspace $X \times\{0\}$ of $H \times H$ in the sense that

$$
\begin{equation*}
[x, y] \in A \quad \text { iff } \quad\left[\operatorname{Proj}_{x} x-\left(I-\operatorname{Proj}_{x}\right) x,-y\right] \in A \tag{4}
\end{equation*}
$$

Then, for each $x \in \operatorname{cl}(\mathfrak{D}(A))$, we have the convergence

$$
s-\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(\tau+h) x d \tau=z_{x} \in A^{-1}(0) \text { uniformly in } h \in(0, \infty) .
$$

Remark 2. Some sufficient conditions for (ii) to hold are in order.
(A) If $P S(t) x_{0}$ converges strongly to a point y as $t \rightarrow \infty$, then condition (ii) is automatically satisfied with $v(t) \equiv y$. In particular, if $P=0$, then $P S(t) x_{0} \equiv 0$.
(B) Suppose that
(ii) P is a compact linear projection, $A^{-1}(0) \neq \varnothing$ and $S(t+h) x_{0}-$ $S(t) x_{0} \rightarrow 0$ as $t \rightarrow \infty$ for every $h>0$.
Then it follows (see [6]) that $S(t) x_{0}$ converges weakly as $t \rightarrow \infty$, so that $P S(t) x_{0}$ converges strongly as $t \rightarrow \infty$.
(C) Assume:
(ii)" A is demipositive (see [5]) and P is a compact linear projection. Then the weak convergence of $S(t) x_{0}$ as $t \rightarrow \infty$ is obtained as well.
(D) Suppose that
(ii)" P is a compact linear projection, $A^{-1}(0) \neq \varnothing$ and

$$
\lim _{t \rightarrow \infty}\left(\min \left\{\|y\|: y \in A S(t) x_{0}\right\}\right) \leqq \lim _{t \rightarrow \infty}\left(\frac{1}{h}\left\|S(t+h) x_{0}-S(t) x_{0}\right\|\right)
$$

for every $h>0$.
Then $S(t) x_{0}$ converges weakly as $t \rightarrow \infty$ (see [11; Theorem 10.5]).
Remark 3. Assertion (2°) of Theorem 2 and Corollary 3 were obtained respectively in Gripenberg [6] and Baillon [1] in the case where $P=0$.

§2. Proof of theorems.

Proof of Theorem 1. Let $x \in \operatorname{cl}(\mathfrak{D}(\varphi))$ and let $u(t)$ be the associated solution of the equation (2). Let λ be a constant as mentioned in

Theorem 1. We recall that $u(t) \in \mathscr{D}(\partial \varphi)$ for all $t>0$ and that $\varphi(u(t))$ converges decleasingly to the minimum value of φ as $t \rightarrow \infty$. Thus there exists a point $t_{0}>0$ such that $\varphi(u(t)) \leqq \lambda$ for all $t \geqq t_{0}$. This means that $u(t) \in \mathscr{D}(B)$ for all $t \geqq t_{0}$. Moreover, since φ has a minimum point z in H, it follows from the definition of $\partial \varphi$ that

$$
\frac{d}{d t}\|u(t)-z\|^{2}=2\left(u^{\prime}(t), u(t)-z\right) \leqq\{\varphi(z)-\varphi(u(t))\} \leqq 0 \quad \text { a.e. } \quad t \in(0, \infty)
$$

From this we obtain $\|u(t)\| \leqq\left\|u\left(t_{0}\right)\right\|+2\|z\|$ for $t \geqq t_{0}$, and so condition (b) implies that the set $\left\{B u(t): t \geqq t_{0}\right\}$ is relatively compact in H.

Assume that $\lim \inf _{t \rightarrow \infty}\|(I-B) u(t)\|=0$. Then there exists a squence $\left\{t_{n}\right\}$ in $(0, \infty)$ such that $t_{n} \rightarrow \infty$ and $u\left(t_{n}\right)-B u\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, the set $\left\{B u(t): t \geqq t_{0}\right\}$ is relatively compact in H, so that there exists a subsequence $\left\{t_{n_{j}}\right\}$ of $\left\{t_{n}\right\}$ such that $\left\{B u\left(t_{n_{j}}\right)\right\}$ converges strongly. Therefore, the sequence $\left\{u\left(t_{n_{j}}\right)\right\}$ converges strongly as $t_{n_{j}} \rightarrow \infty$. On the other hand, it is well-known (see [5]) that $u(t)$ converges weakly to a minimum point of φ as $t \rightarrow \infty$. Thus $u(t)$ converges strongly to a minimum point of ρ as $t \rightarrow \infty$.

Next, assume that $\lim \inf _{t \rightarrow \infty}\|(I-B) u(t)\| \overline{ } \|>0$. Then there exists a point $T \geqq t_{0}$ such that $\|(I-B) u(t)\| \geqq \varepsilon / 2$ for all $t \geqq T$, so that the sets $\{B u(t): t \geqq T\}$ and $\{\|(I-B) u(t)\|: t \geqq T\}$ are relatively compact in H and $(0, \infty)$, respectively. Thus, it follows from the continuity of the functional α that

$$
\delta \equiv \min \{\alpha(B u(t),\|(I-B) u(t)\|): \quad t \geqq T\}>0
$$

Moreover there exists a sequence $\left\{t_{n}\right\}$ such that $t_{n} \uparrow \infty$ and both $\left\{B u\left(t_{n}\right)\right\}$ and $\left\{\left\|(I-B) u\left(t_{n}\right)\right\|\right\}$ converges as $n \rightarrow \infty$ in H and \boldsymbol{R}, respectively.

Fix an arbitraly point $t_{n}>T$ and define a functional $g:\left[T, t_{n}\right] \rightarrow \boldsymbol{R}$ by

$$
\begin{aligned}
g(t)= & \frac{1+\delta}{2}\left\{\|B u(t)\|^{2}-\left\|B u\left(t_{n}\right)\right\|^{2}+\|(I-B) u(t)\|^{2}-\left\|(I-B) u\left(t_{n}\right)\right\|^{2}\right\} \\
& -\frac{\delta}{2}\left\|u(t)-u\left(t_{n}\right)\right\|^{2} .
\end{aligned}
$$

Then, using the definition of subdifferential, we have

$$
\begin{aligned}
g^{\prime}(t) & =(1+\delta)\left\{\left(u^{\prime}(t), u(t)-B u(t)\right)-\left(\frac{d}{d t} B u(t), u(t)\right)\right\}-\delta\left(u^{\prime}(t), u(t)-u\left(t_{n}\right)\right) \\
& =\left(u^{\prime}(t), u(t)-B u\left(t_{n}\right)+\delta(I-B) u\left(t_{n}\right)\right)+(1+\delta) \frac{d}{d t}\left(u(t), B u\left(t_{n}\right)-B u(t)\right) \\
& \leqq \varphi\left(B u\left(t_{n}\right)-(I-B) u\left(t_{n}\right)\right)-\varphi(u(t))+(1+\delta) \frac{d}{d t}\left(u(t), B u\left(t_{n}\right)-B u(t)\right)
\end{aligned}
$$

On the other hand, one obtains

$$
\begin{equation*}
\varphi\left(B u\left(t_{n}\right)-(I-B) u\left(t_{n}\right)\right) \leqq \varphi\left(u\left(t_{n}\right)\right) \text { for } t_{n} \geqq t_{1} . \tag{5}
\end{equation*}
$$

In fact, from the convexity of φ together with the inequality (1), it follows that for every $x \in \mathfrak{D}(\partial \varphi)$ with ($I-B$) $x \neq 0$ we have

$$
\begin{aligned}
\varphi(B x) & =\varphi\left(\frac{\alpha}{1+\alpha} x+\frac{1}{1+\alpha}((1+\alpha) B x-\alpha x)\right) \\
& \leqq \frac{\alpha}{1+\alpha} \varphi(x)+\frac{1}{1+\alpha} \varphi((1+\alpha) B x-\alpha x) \\
& \leqq \frac{\alpha}{1+\alpha} \varphi(x)+\frac{1}{1+\alpha} \varphi(x)=\varphi(x),
\end{aligned}
$$

where $\alpha=\alpha(B x,\|(I-B) x\|)$. Hence, if $0 \leqq \delta \leqq \alpha$, then

$$
\begin{aligned}
\varphi(B x-\delta(I-B) x) & =\varphi\left(\frac{\alpha-\delta}{\alpha} B x+\frac{\delta}{\alpha}(B x-\alpha(I-B) x)\right) \\
& \leqq \frac{\alpha-\delta}{\alpha} \varphi(B x)+\frac{\delta}{\alpha} \varphi(B x-\alpha(I-B) x) \\
& \leqq \frac{\alpha-\delta}{\alpha} \varphi(x)+\frac{\delta}{\alpha} \varphi(x)=\varphi(x)
\end{aligned}
$$

Now, by virtue of the inequality (5) and the fact that $\varphi(u(t))$ is monotone nonincleasing, we have

$$
g^{\prime}(t) \leqq(1+\delta) \frac{d}{d t}\left(u(t), B u\left(t_{n}\right)-B u(t)\right) \quad \text { a.e. } \quad t \in\left[t_{1}, t_{n}\right] .
$$

Integrating both sides of this inequality over $\left[t_{m}, t_{n}\right](m<n)$, we obtain

$$
\begin{align*}
\frac{1+\delta}{2}\{ & \left.-\left\|B u\left(t_{m}\right)\right\|^{2}+\left\|B u\left(t_{n}\right)\right\|^{2}-\left\|(I-B) u\left(t_{m}\right)\right\|^{2}+\left\|(I-B) u\left(t_{n}\right)\right\|^{2}\right\} \tag{6}\\
& +\frac{\delta}{2}\left\|u\left(t_{m}\right)-u\left(t_{n}\right)\right\|^{2} \\
\leqq & -(1+\delta)\left(u\left(t_{m}\right), B u\left(t_{n}\right)-B u\left(t_{m}\right)\right) .
\end{align*}
$$

Let $n, m \rightarrow \infty$ in (6). Then the convergence of the sequences $\left\{B u\left(t_{n}\right)\right\}$ and $\left\{\left\|(I-B) u\left(t_{n}\right)\right\|\right\}$ and the boundedness of $\left\{u\left(t_{n}\right)\right\}$ together yield that $\left\|u\left(t_{m}\right)-u\left(t_{n}\right)\right\| \rightarrow 0$. Thus $\left\{u\left(t_{n}\right)\right\}$ is a Cauchy sequence in H. Consequently, recalling that $u(t)$ converges weakly to a minimum point of φ as $t \rightarrow \infty$, we conclude that $u(t)$ converges strongly to a minimum point of φ as $t \rightarrow \infty$.

Proof of Theorem 2. Let $x_{0} \in \mathfrak{D}(A)$ and put $u(t) \equiv S(t) x_{0}$. We may assume without loss of generality that $z_{0}=0 \in A^{-1}(0)$. Then we have

$$
\begin{aligned}
& \frac{d}{d t}\|u(t)\|^{2}=2\left(u^{\prime}(t)-0, u(t)-0\right) \leqq 0, \text { and } \\
& \frac{d}{d t}\|u(t+h)-u(t)\|^{2}=2\left(u^{\prime}(t+h)-u^{\prime}(t), u(t+h)-u(t)\right) \leqq 0
\end{aligned}
$$

for all $h>0$ and a.e. $t \in(0, \infty)$. These relations imply that

$$
\begin{equation*}
\|u(t)\| \downarrow d_{1} \quad \text { and } \quad\|u(t+h)-u(t)\| \downarrow \delta_{h} \quad \text { as } \quad t \rightarrow \infty \tag{7}
\end{equation*}
$$

for some nonnegative numbers d_{1} and δ_{h}.
Condition (ii) implies that $\|v(t)\| \equiv$ const. and

$$
\|P u(t)\| \rightarrow\|v(0)\| \quad \text { as } \quad t \rightarrow \infty .
$$

Hence, by (7), we obtain the convergence

$$
\|(I-P) u(t)\| \rightarrow d_{2} \equiv\left(d_{1}^{2}-\|v(0)\|^{2}\right)^{1 / 2} \quad \text { as } \quad t \rightarrow \infty .
$$

At this point there are two cases to check. Suppose that $d_{2}=0$. In this case condition (ii) yields that $u(t) \rightarrow v(t)$ as $t \rightarrow \infty$, and hence $(1 / t) \int_{0}^{t} u(\tau+h) d \tau$ converges strongly to ($\left.1 / \rho\right) \int_{0}^{\rho} v(\tau) d \tau(=z)$, uniformly for $h \in(0, \infty)$ as $t \rightarrow \infty$. Next, assume that $d_{2}>0$. Then there exists a constant $T \geqq 0$ such that

$$
\|(I-P) u(t)\| \geqq \frac{d_{2}}{2} \text { for } t \geqq T
$$

Put $\varepsilon=\min \left\{d_{2} / 2,1 /\|u(0)\|\right\}>0$. Since $\left[u(t),-u^{\prime}(t)\right] \in A$ for a.e. t and

$$
\|u(t)\| \leqq\|u(0)\| \leqq \frac{1}{\varepsilon} \quad\|(I-P) u(t)\| \geqq \varepsilon \quad \text { for } \quad t \geqq T
$$

we infer from (3) that

$$
\begin{aligned}
& c_{1}\left\{\frac{d}{d t}\|P u(t+h)\|^{2}+\frac{d}{d t}\|P u(t)\|^{2}\right\}+c_{2} \frac{d}{d t}\|P u(t+h)+P u(t)\|^{2} \\
& \quad+c_{3}\left\{\frac{d}{d t}\|u(t+h)\|^{2}+\frac{d}{d t}\|u(t)\|^{2}\right\}+c_{2} \frac{d}{d t}\|u(t+h)+u(t)\|^{2} \leqq 0
\end{aligned}
$$

for every $h \geqq 0$ and a.e. $t \in[T, \infty)$.
Integrate this inequality over ($j \rho, j \rho+k \rho$) (where j and k are arbitrary positive integers with $j \rho \geqq T$) to obtain

$$
\begin{aligned}
& c_{1}\left\{\|P u(h+(1+k) \rho)\|^{2}-\|P u(h+j \rho)\|^{2}+\|P u((j+k) \rho)\|^{2}-\|P u(j \rho)\|^{2}\right\} \\
& \quad+c_{2}\left\{\|P u(h+(j+k) \rho)+P u((j+k) \rho)\|^{2}-\|P u(h+j \rho)+P u(j \rho)\|^{2}\right\} \\
& \quad+c_{s}\left\{\|u(h+(j+k) \rho)\|^{2}-\|u(h+j \rho)\|^{2}+\|u((j+k) \rho)\|^{2}-\|u(j \rho)\|^{2}\right\} \\
& \quad-\|u(h+(j+k) \rho)-u((j+k) \rho)\|^{2}+\|u(h+j \rho)-u(j \rho)\|^{2}+2\|u(h+(j+k) \rho)\|^{2} \\
& \quad+2\|u((j+k) \rho)\|^{2}-2\|u(h+j \rho)\|^{2}-2\|u(j \rho)\|^{2} \leqq 0
\end{aligned}
$$

Moreover, we see from condition (ii) that

$$
\begin{equation*}
P u(h+n \rho) \rightarrow v(h) \text { as } n \rightarrow \infty \quad \text { for each } h \geqq 0 . \tag{10}
\end{equation*}
$$

Let $k \rightarrow \infty$ in (9). Then, application of (7) and (10) yields

$$
\begin{aligned}
\delta_{h}^{2} \leqq & \|u(h+j \rho)-u(j \rho)\|^{2} \\
\leqq & \delta_{h}^{2}-c_{1}\left\{2\|v(h)\|^{2}-\|P u(h+j \rho)\|^{2}-\|P u(j \rho)\|^{2}\right\} \\
& -c_{2}\left\{\|v(h)+v(0)\|^{2}-\|P u(h+j \rho)+P u(j \rho)\|^{2}\right\} \\
& -c_{3}\left\{2 d_{1}^{2}-\|u(h+j \rho)\|^{2}-\|u(j \rho)\|^{2}\right\}-4 d_{1}^{2}+2\|u(h+j \rho)\|^{2}+2\|u(j \rho)\|^{2} .
\end{aligned}
$$

Hence, (7) and (10) yield that $\lim _{j \rightarrow \infty}\|u(h+j \rho)-u(j \rho)\|=\delta_{h}$ uniformly in $h \geqq 0$, so that the convergence $\lim _{t \rightarrow \infty}\|u(h+t)-u(t)\|=\delta_{h}$ holds uniformly in $h \geqq 0$. Thus, by a result of Kobayasi and Miyadera [8] we have

$$
s-\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(\tau+h) x_{0} d \tau=z \in A^{-1}(0) \quad \text { uniformly in } \quad h \geqq 0 .
$$

It is easy to see that this convergence also holds for $x_{0} \in \operatorname{cl}(\mathfrak{D}(A))$. Thus, we proved Assertion (1°).

By virtue of (A) and (B) of Remark 2, Assertion (2°) is a direct consequence of Assertion (1°) and Lorentz [9].

Proof of Corollary 3. Since A is a maximal monotone operator and $c l(\mathscr{D}(A))$ is a convex subset of H, condition (4) yields that $\left\{\operatorname{Proj}_{x} x\right.$: $x \in \operatorname{cl}(\mathfrak{D}(A))\}=X \cap \operatorname{cl}(\mathfrak{D}(A)) \subset A^{-1}(0)$. Hence, for $x \in c l(\mathbb{D}(A)), \operatorname{Proj}_{X} S(t) x$ $\left(=\operatorname{Proj}_{x \cap 0 l(D(\Delta))} S(t) x\right)$ converges strongly as $t \rightarrow \infty$. This is obtained in the same way as in the derivation of the convergence of $\operatorname{Proj}_{A^{-1}(0)} S(t) x$ (cf., [10; Lemma 9.2]).

Fix an arbitraly point $z_{0} \in X \cap \operatorname{cl}(\mathfrak{D}(A))$ and define a linear projection P by $P=\operatorname{Proj}_{X-z_{0}}$. Then, by (4), we have

$$
\begin{aligned}
& \left(y_{1}-\left(-y_{2}\right), x_{1}-\left(2 P x_{2}-x_{2}+2 z_{0}-2 P z_{0}\right)\right) \geqq 0, \quad \text { and } \\
& \left(y_{2}-\left(-y_{1}\right), x_{2}-\left(2 P x_{1}-x_{1}+2 z_{0}-2 P z_{0}\right)\right) \geqq 0
\end{aligned}
$$

for $\left[x_{i}, y_{i}\right] \in A, i=1,2$. Here we have used the fact that $\operatorname{Proj}_{x} x=$ $\operatorname{Proj}_{X-z_{0}}\left(x-z_{0}\right)+z_{0}=P x-P z_{0}-z_{0}$. Summing up these inequalities, one
obtains

$$
\left(y_{1}+y_{2}, x_{1}+x_{2}-2 z_{0}\right)-\left(y_{1}+y_{2}, P x_{1}+P x_{2}-2 P z_{0}\right) \geqq 0 .
$$

Thus, condition (i) holds with $c_{1}=c_{3}=0$ and $c_{2}=-1$. Moreover, since $P S(t) x$ ($=\operatorname{Proj}_{x} x+P z_{0}+z_{0}$) converges strongly as $t \rightarrow \infty$, it follows from (A) of Remark 2 that condition (ii) holds for each $x \in \operatorname{cl}(\mathfrak{D}(A))$.

Therefore, the assertion follows from Assertion (1°) of Theorem 2.
Remark 4. The relationship between Theorems 1 and 2 may be stated as follows: If the operator B in Theorem 1 is a compact linear projection, then Theorem 1 can be derived from Assertion (2°) of Theorem 2 (cf., [7]).

§3. Linear perturbation to even convex functionals.

Assume that ψ is a proper l.s.c. even convex functional and let $f \in H$ be such that $\min _{z \in H}\{\psi(z)-(f, z)\}$ is achieved. Let $u(t)$ be the solution of $d u / d t+\partial \psi(u) \ni f, u(0)=x$. Brezis raised in [3] the problem as to whether $u(t)$ converges strongly as $t \rightarrow \infty$.

In virtue of Theorem $1, u(t)$ converges strongly if $\varphi \equiv \psi-f$ satisfies conditions (a) and (b) with $B=\operatorname{Proj}_{X}$ and $X=\{r f: r \in R\}$.

But, in general, $u(t)$ need not be strongly convergent, as stated below.

PROPOSITION 4. There exists a proper l.s.c. convex functional ψ and $f \in H$ such that (i) ψ is even; (ii) $\psi-f$ assumes a minimum in H; but (iii) the solution $u(t)$ of the initial-value problem

$$
d u / d t+\partial \psi(u) \ni f, \quad u(0)=x
$$

does not converge strongly as $t \rightarrow \infty$ for some $x \in \mathfrak{D}(\psi)$.
The above-mentioned fact is asserted by the following example (which is motivated by that of Baillon):

Example. We construct the aimed ψ and f in the space $H=l^{2}$. Let a_{λ} and b_{λ} be functionals on R^{2} defined by

$$
\begin{aligned}
& a_{\lambda}(\xi, \eta)=-\frac{1}{2}\left(\frac{\pi}{2}\right)^{\lambda} \xi+\frac{\lambda}{2}\left(\frac{\pi}{2}\right)^{\lambda-1} \eta, \\
& b_{\lambda}(\xi, \eta)= \begin{cases}{\left[\tan ^{-1}(|\xi| /|\eta|)\right]^{\lambda} \cdot\left(\xi^{2}+\eta^{2}\right)^{1 / 2}+a_{\lambda}(|\xi|,|\eta|) \text { if } \xi \eta \geqq 0} \\
a_{\lambda}(\xi, \eta) & \text { if } \xi \leqq 0 \text { and } \eta \geqq 0 \\
-a_{\lambda}(\xi, \eta) & \text { if } \xi \geqq 0 \text { and } \eta \leqq 0 .\end{cases}
\end{aligned}
$$

It is easy to check that a_{λ} is linear, while b_{λ} is even. We then demonstrate that $c_{\lambda} \equiv b_{\lambda}-a_{\lambda}$ is a nonnegative convex functional on R^{2} provided that $\lambda \geqq 1$. According to [1], c_{λ} is a convex functional on $R^{+} \times R^{+}$if $\lambda \geqq 1$. On the other hand, c_{2} is differentiable, on $R^{2} \backslash\{0\}$ and

$$
\operatorname{grad} c_{2}(\xi, 0)=2 a_{\lambda} \text { for } \xi>0
$$

Hence, from the defining inequality for the subdifferential, we have

$$
c_{2}(\xi, \eta) \geqq 2 a_{\lambda}(\xi, \eta), \quad(\xi, \eta) \in \boldsymbol{R}^{+} \times \boldsymbol{R}^{+}
$$

But this inequality shows that $c_{\lambda} \geqq 0$ on R^{2}, and that c_{λ} is a convex functional on \boldsymbol{R}^{2}.

Now put

$$
\begin{equation*}
\lambda_{i}=\frac{\pi^{2}}{8} \frac{b}{b-1} b^{i} \quad(b=1 / \log 2), \quad i=1,2,3, \cdots, \tag{11}
\end{equation*}
$$

and, for $\alpha=\left(\alpha_{i}\right)_{i \geq 1}\left(\alpha_{i}>0\right)$, define f_{α} and ψ_{α} by

$$
\begin{aligned}
& f_{\alpha}(x)=\alpha_{1} a_{\lambda_{1}}\left(x_{1}, x_{2}\right)+\cdots+\alpha_{n} a_{\lambda_{n}}\left(x_{n}, x_{n+1}\right)+\cdots \\
& \psi_{\alpha}(x)=\alpha_{1} b_{\lambda_{1}}\left(x_{1}, x_{2}\right)+\cdots+\alpha_{n} b_{\lambda_{n}}\left(x_{n}, x_{n+1}\right)+\cdots
\end{aligned}
$$

where $x=\left(x_{i}\right)_{i \geq 1} \in l^{2}$. Then, $\min \left(\psi_{\alpha}-f_{\alpha}\right)=0$ and ψ_{α} is even for every $\alpha=\left(\alpha_{i}\right)_{t \geq 1}$.

Next, let $T_{1} \geqq 1, \cdots, T_{n} \geqq n, \cdots$ and $\beta_{1}, \beta_{2}, \cdots, \beta_{n}, \cdots>0$ be as in Lemma 6 of [2] and put $\varphi_{\alpha} \equiv \psi_{\alpha}-f_{\alpha}$ and $\varepsilon=1 / 4$ in Lemma 6. Then, as is mentioned in [2], it follows that for every $n \geqq 1$ one has

$$
\begin{equation*}
\left\|S_{\alpha}\left(T_{i}\right) x_{1}-x_{i+1}\right\| \leqq \varepsilon+\cdots+\varepsilon^{i} \quad i=1,2, \cdots, n \tag{12}
\end{equation*}
$$

whenever $\alpha=\left(\alpha_{i}\right)_{i \geq 1}$ satisfies that $\alpha_{i}=\beta_{i}, i=1, \cdots, n$, where S_{α} refers the semigroup generated by $\partial \varphi_{\alpha}$ and $x_{i} \in l^{2}(i \geqq 1)$ are as follows:

$$
\begin{aligned}
& x_{1}=(1,0,0, \cdots) \\
& x_{2}=\left(0, \exp \left(-\frac{\pi^{2}}{8} \frac{1}{\lambda_{1}}\right), 0,0, \cdots\right) \\
& x_{i}=\left(0,0, \cdots, 0, \exp \left[-\frac{\pi^{2}}{8}\left(\frac{1}{\lambda_{1}}+\cdots+\frac{1}{\lambda_{i-1}}\right)\right], 0,0, \cdots\right)
\end{aligned}
$$

Since $a_{\lambda_{i}}(i \geqq 1)$ are linear functional on \boldsymbol{R}^{2}, so is f_{α} with $\mathfrak{D}\left(f_{\alpha}\right) \subset l^{2}$. But a sequence $\alpha^{\prime}=\left(\alpha_{i}^{\prime}\right)_{t \geq 1}$ of positive numbers can be chosen so that $D\left(f_{\alpha^{\prime}}\right)=l^{2}$ and $f_{\alpha^{\prime}} \in l^{2}$. Put

$$
\begin{equation*}
\alpha_{1}=\min \left\{\beta_{1}, \alpha_{1}^{\prime}\right\} \quad \text { and } \quad \alpha_{i}=\min \left\{\beta_{i} \alpha_{i-1}, \alpha_{i}^{\prime}\right\} \quad \text { for } \quad i \geqq 2 . \tag{13}
\end{equation*}
$$

Then, since $0<\alpha_{i} \leqq \alpha_{i}^{\prime}$ for $i \geqq 1$, we have $f_{\alpha} \in l^{2}$ again.
Finally, we show that the solution of the equation

$$
d u / d t+\partial \psi_{\alpha}(u) \ni f_{\alpha}, \quad u(0)=(1,0,0, \cdots)
$$

does not converge strongly as $t \rightarrow \infty$. According to the selection of T_{i}, $\beta_{i}(i \geqq 1)$ as mentioned in the proof of Lemma 6 of [2], we infer from (12) and (13) that

$$
\begin{equation*}
\left\|u\left(T_{n}^{\prime}\right)-x_{n-1}\right\| \leqq \varepsilon+\cdots+\varepsilon^{n} \quad \text { for } \quad n \geqq 1 \tag{14}
\end{equation*}
$$

where $T_{n}^{\prime}=\left(\beta_{1} / \alpha_{1}\right) T_{1}+\left(\beta_{2} / \alpha_{2}\right)\left(T_{2}-T_{1}\right)+\cdots+\left(\beta_{n} / \alpha_{n}\right)\left(T_{n}-T_{n-1}\right)$. Since $\varepsilon=1 / 4$ and $\left\|x_{n}\right\|=\exp \left[-\left(\pi^{2} / 8\right)\left(\left(1 / \lambda_{1}\right)+\cdots+\left(1 / \lambda_{n-1}\right)\right)\right]$, the estimate (14) together with (11) yields

$$
\liminf _{n \rightarrow \infty}\left\|u\left(T_{n}^{\prime}\right)\right\| \geqq \exp \left[-\frac{\pi^{2}}{8}\left(\frac{8}{\pi^{2}} \frac{b-1}{b} \frac{b}{b-1}\right)\right]-\frac{\varepsilon}{1-\varepsilon}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

Since $T_{n}^{\prime} \geqq T_{n} \geqq n$, this means that $u(t)$ does not converge strongly to 0 as $t \rightarrow \infty$. On the other hand, $\varphi_{\alpha}(x) \equiv \psi_{\alpha}(x)-\left(f_{\alpha}, x\right) \geqq 0$, and $\varphi_{\alpha}(x)=0$ iff $x=0$. Thus we infer with the aid of the result of [5] that w $\lim _{t \rightarrow \infty} u(t)=0$. Consequently, $u(t)$ does not converge strongly as $t \rightarrow \infty$.

Acknowledgement. The author would like to thank Professors Y. Kōmura, S. Oharu and K. Kobayasi for their comments.

References

[1] J. B. Baillon, Quelques propriétés de convergence asymptotique pour les contractions impaires, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), 587-590.
[2] J. B. BAillon, Un example concernant le comportement asymptotique de la solution du problème $d u / d t+\partial \varphi(u) \ni 0$, J. Functional Analysis, 28 (1978), 369-376.
[3] J. B. Baillon et H. Brezis, Une remarque sur le comportement asymptotique des semi groupes nonlinéaies, Houston J. Math., 2 (1976), 5-7.
[4] H. Brezis, Asymptotic behavior of some evolution systems, Nonlinear Evolution Equations (ed. by M. Crandall), 141-154, Academic Press, New York, 1978.
[5] R. E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Functional Analysis, 18 (1975), 15-26.
[6] R. E. Bruck, On the almost-convergence of iterates of non-expansive mapping in Hilbert space and structure of the ω-limit set, Israel J. Math., 29 (1978), 1-16.
[7] G. Gripenberg, On the asymptotic behavior of nonlinear contraction semigroups, Math. Scand., 44 (1979), 385-397.
[8] K. Kobayasi and I. Miyadera, On the strong convergence of the Cèsaro means of contractions in Banach spaces, Proc. Japan Acad., 56 (1980), 245-249.
[9] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80
(1948), 167-190.
[10] H. OкоснI, A note on asymptotic strong convergence of nonlinear contraction semigroups, Proc. Japan Acad., 56 (1980), 83-84.
[11] A. Pazy, Semigroups of nonlinear contractions and their asymptotic behavior, Nonlinear Analysis and Mechanics; Heriot-Watt Symposium vol 3 (ed. by R. J. Knops), Pitman, San Fransisco, 1978, 36-134.

Present Address:
Department of Mathematics
School of Sciences and Engineerings
Waseda University
Nishiokubo, Shinjuku-ku, Tokyo 160

[^0]: Received March 25, 1981

