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Introduction

Let $S=\{S(t):t\geqq 0\}$ be a (nonlinear) contraction semigroup on a closed
convex subset $C$ of a Hilbert space $H$. In this note we study the
asymptotic strong convergence of the orbits $S(t)x(xeC)$ of $S$ . In 1975
Bruck [5] discussed this problem for a nonlinear contraction semigroup
$S$ under the assumption that $S$ is generated by the subdifferential $\partial\varphi$ of
a proper lower semicontinuous convex functional $\varphi$ , and that $\varphi$ is even
in the sense that $\varphi(x)=\varphi(-x)$ on its effective domain $\mathfrak{D}(\varphi)=\{xeH$:
$\varphi(x)<+\infty\}$ . Since then a number of extended forms of Bruck’s condi-
tions for the asymptotic strong convergence have been obtained, for
instance, in the works of [1], [4], [7], [8] and [10]. Here some other
sufficient conditions on the generator $A$ of $S$ for the existence of strong

limits of C\‘esaro means $(1/t)\int_{0}^{t}S(\tau+h)xd\tau$ as well as those of orbits $S(t)x$

are investigated.
The present paper contains three results. The first result (Theorem 1)

provides a sufficient condition for the strong convergence of the orbit of $S$

generated by the subdifferential of a proper lower semicontinuous func-
tional $\varphi$ . This result extends the author’s previous result in [10] and so
involves the case in which $\varphi$ is even. On the other hand, if $S$ is generated
by the subdifferential of $\varphi$ which assumes a minimum in $H$ and if there
exists a real number $x>\min\varphi$ such that the set $ M_{\mu}=\{x\in D(\partial\varphi):\varphi(x)\leqq\lambda$

and $||x\Vert\leqq\mu$} is relatively compact for each $\mu>0$ , then it is proved that
$S(t)x$ converges strongly to a minimum point of $\varphi$ as $ t\rightarrow\infty$ . Our result
involves this case as well. It turns out that Theorem 1 extends the
above-mentioned two results which are of completely different types.
The second result (Theorem 2) is concerned with the asymptotic strong
convergence of the C\‘esaro means of $S$ as well as the orbits of $S$ them-
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selves. In this theorem an extended form of Gripenber ’s condition [7]
(that invo ves the oddness condition) is employed. Accordin ly, our
second result extends a result of Gripenberg in the case of Hilbert
spaces. Moreover, in Assertion $(2^{o})$ of Theorem 2, the strong convergence
of the orbits of $S$ is obtained under the so-called Tauberian condition,
by applying a result due to Lorentz [9]. These results are stated in
Section 1 along with some comments and the proofs of the theorems are
given in section 2. Finally, in section 3, we discuss the linear pertur-
bation problem for the proper lower semicontinuous even convex func-
tionals. This problem was raised in [4] by H. Brezis and closely related
to Theorem 1. Here we shall show (in Proposition 4) by presenting a
counterexample that perturbations of linear functionals to even convex
functionals are not necessarily possible as for as the asymptotic strong
convergence is concerned.

\S 1. Main results.

Throughout this paper we assume that $H$ is a real Hilbert space.
Our first result is stated as follows:

THEOREM 1. Let $\varphi$ be a proper lower semicontinuous convex func-tional on $H$ which assumes a minimum in H. Suppose that there exists
a real number $\lambda>\min\varphi$ , a Fr\’echet diferentiable operator $B$ in $H$ and
a continuous functional $\alpha:\Re(B)\times(O, \infty)\rightarrow(0,1$] satisfying the following
conditions:

(a) The domain $\mathfrak{D}(B)$ of $B$ contains the set $\{x\in \mathfrak{D}(\partial\varphi):\varphi(x)\leqq x\}$ and
the inequality

(1) $\varphi(x)\geqq\varphi(Bx-\alpha_{x}(I-B)x)$

holds for $x\in \mathfrak{D}(B)$ with $(I-B)x\neq 0$ , where $\alpha_{x}$ denotes the value $\alpha(Bx$ ,
$||(B-I)x||)$ .

(b) The set {$Bx:x\in \mathfrak{D}(\partial\varphi),$ $\varphi(x)\leqq x$ and $||x||\leqq\mu$} is relatively eompact
for all $\mu>0$ .

Then the solution $u(t)\equiv u(t, x)$ of the initial-value problem

(2) $\frac{d}{dt}u(t)\in-\partial\varphi(u(t))$ $a.e$ . $te(0, \infty)$ , $u(0)=x$

converges strongly to a minimum point (which may depend upon x) of
$\varphi$ as $ t\rightarrow\infty$ for every initial value $xecl(\mathfrak{D}(\varphi))=cl\{xeH:\varphi(x)<+\infty\}$ .

REMARK 1. Given an affine subspace $X$ in $H$, 8uppose that the
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inequality (1) holds with $B=Proj_{X}$ and $\alpha_{x}\equiv 1$ . Then $\varphi(x)=\varphi(Bx-(I-B)x)$

for all $x\in \mathfrak{D}(\varphi)$ , which means that $\varphi$ is symmetric with respect to the
affine subspace $X$. In particular, if $\varphi$ is even, i.e., $\varphi(x)=\varphi(-x)$ , then
our conditions (a) and (b) hold with $B=Proj_{\{0\}}=0$ and $\alpha_{x}\equiv 1$ . In the case
where $B$ is a constant mapping $B(x)\equiv x_{0}$ , Theorem 1 is reduced to the
author’s previous result [10] and is essentially contained in the work of
Gripenberg [7].

Let $A$ be a maximal monotone operator in $H$ and $S$ the contraction
semigroup generated by $-A$ .

We permit ourselves the common abbreviations, $x_{n}\rightarrow x$
’ and $x_{n}\rightarrow x$

’

in refering respectively to the strong convergence of $\{x_{n}\}$ to $x$ and the
weak convergence of $\{x_{n}\}$ to $x$ .

We now introduce a condition for the operator $A$ which is an
extended form of Gripenberg’s condition treated in [7]:

(i) There exist an element $z_{0}\in A^{-1}(0)$ and a linear projection $P$

with the following properties: For every $\epsilon e(0,1)$ , there exist constants
$c_{i}=c_{i}(\epsilon),$ $i=1,2,3$ , and

(3) $c_{1}\{(Py_{1}, x_{1}-z_{0})+(Py_{2}, x_{2}-z_{0})\}+c_{2}(P(y_{1}+y_{2}), x_{1}+x_{2}-2z_{0})$

$+c_{3}\{(y_{1}, x_{1}-z_{0})+(y_{2}, x_{2}-z_{0})\}+(y_{1}+y_{2}, x_{1}+x_{2}-2z_{0})\geqq 0$

holds for all $[x_{\dot{g}}, y_{j}]e$ $A$ with $\Vert x_{j}\Vert\leqq 1/\epsilon$ and $\Vert(I-P)(x_{j}-z_{0})\Vert\geqq\epsilon,$ $j=1,2$ .
Gripenberg treated the inequality (3) with $P=0$ . The inequality (3)

may be regarded as an extention of the condition that $A\subset H\times H$ is
symmetric with respect to $x\times\{0\}$ (i.e., $[x, y]\in A$ iff $[Proj_{X}x-$

$(I-Proj_{X})x,$ $-y$] $eA$), where $X$ is an affine subspace of $H$ with $z_{0}\in X$.
If $P=0$ then $X=\{z_{0}\}$ . In particular, if $A$ is an odd mapping (i.e., $[x, y]\in A$

iff $[-x, -y]eA$), then condition (i) holds with $P=0$ and $X=\{0\}$ . In this
sense condition (i) is an extended form of the oddness condition for $A$ .

Employing the above-mentioned condition (i), our second result is
stated as follows:

THEOREM 2. Let $x_{0}\in cl(\mathfrak{D}(A))$ . $(1^{o})$ Assume that condition (i) holds,
and that

(ii) there exists a periodic function $v$ with period $\rho$ (i.e., $v(t+\rho)=$

$v(t)$ for $t\geqq 0$ ) such that $\lim_{t\rightarrow\infty}\Vert v(t)-z_{0}||$ exists and $\lim_{t\rightarrow\infty}\Vert PS(t)x_{0}-$

$v(t)\Vert=0$ . Then we have

$s-\lim_{t\rightarrow\infty}\frac{1}{t}\int_{0}^{t}S(\tau+h)x_{0}d\tau=z\in A^{-1}(0)$ uniformly in $he(0, \infty)$ .

(2) Suppose that $ A^{-1}(0)\neq\emptyset$ , and that condition (i) holds for a
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compact linear projection P. Let
(iii) $s-\lim_{t\rightarrow\infty}\{S(t+h)x_{0}-S(t)x_{0}\}=0$ for all $h>0$ .

Then $S(t)x_{0}$ converges strongly to some point of $A^{-1}(0)$ as $ t\rightarrow\infty$ .
COROLLARY 3. Suppose that the graph of $A$ is symmetric with

respect to $a$ elosed affine subspace $X\times\{0\}$ of $H\times H$ in the sense that
(4) $[x, y]\in A$ iff $[Proj_{X}x-(I-Proj_{X})x, -y]eA$ .
Then, for each $xecl(\mathfrak{D}(A))$ , we have the convergence

$s-\lim_{t\rightarrow\infty}\frac{1}{t}\int_{0}^{t}S(\tau+h)xd\tau=z_{x}eA^{-1}(0)$ uniformly in $he(0, \infty)$ .
REMARK 2. Some sufficient conditions for (ii) to hold are in order.
(A) If PS$(t)x_{0}$ converges strongly to a point $y$ as $ t\rightarrow\infty$ , then

condition (ii) is automatically satisfied with $v(t)\equiv y$ . In particular, if
$P=0$ , then PS$(t)x_{0}\equiv 0$ .

(B) Suppose that
(ii)’ $P$ is a compact linear projection, $ A^{-1}(0)\neq\emptyset$ and $S(t+h)x_{0}-$

$S(t)x_{0^{-\rightarrow}}0$ as $ t\rightarrow\infty$ for every $h>0$ .
Then it follows (see [6]) that $S(t)x_{0}$ converges weakly as $ t\rightarrow\infty$ , so that
PS$(t)x_{0}$ converges strongly as $ t\rightarrow\infty$ .

(C) Assume:
(ii)“ $A$ is demipositive (see [5]) and $P$ is a compact linear projection.

Then the weak convergence of $S(t)x_{0}$ as $ t\rightarrow\infty$ is obtained as well.
(D) Suppose that
(ii)” $P$ is a compact linear projection, $ A^{-1}(0)\neq\emptyset$ and

$\lim_{t\rightarrow\infty}(\min\{||y||:y\in AS(t)x_{0}\})\leqq\lim_{t\rightarrow\infty}(\frac{1}{h}||S(t+h)x_{0}-S(t)x_{0}||)$

for every $h>0$ .
Then $S(t)x_{0}$ converges weakly as $ t\rightarrow\infty$ (see [11; Theorem 10.5]).

REMARK 3. Assertion $(2^{o})$ of Theorem 2 and Corollary 3 were
obtained respectively in Gripenberg [6] and Baillon [1] in the case where
$P=0$ .

\S 2. Proof of theorems.

PROOF OF THEOREM 1. Let $xecl(\mathfrak{D}(\varphi))$ and let $u(t)$ be the associated
solution of the equation (2). Let $\lambda$ be a constant as mentioned in



NONLINEAR CONTRACTION SEMIGROUPS 175

Theorem 1. We recall that $u(t)e\mathfrak{D}(\partial\varphi)$ for all $t>0$ and that $\varphi(u(t))$

converges decleasingly to the minimum value of $\varphi$ as $ t\rightarrow\infty$ . Thus there
exists a point $t_{0}>0$ such that $\varphi(u(t))\leqq\lambda$ for all $t\geqq t_{0}$ . This means that
$u(t)e\mathfrak{D}(B)$ for all $t\geqq t_{0}$ . Moreover, since $\varphi$ has a minimum point $z$ in
$H$, it follows from the definition of $\partial\varphi$ that

$\frac{d}{dt}||u(t)-z||^{2}=2(u^{\prime}(t), u(t)-z)\leqq\{\varphi(z)-\varphi(u(t))\}\leqq 0$ $a.e$ . $te(0, \infty)$ .

From this we obtain 11 $u(t)\Vert\leqq||u(t_{0})||+2||z||$ for $t\geqq t_{0}$ , and so condition
(b) implies that the set $\{Bu(t):t\geqq t_{0}\}$ is relatively compact in $H$.

Assume that $\lim\inf_{t\rightarrow\infty}\Vert(I-B)u(t)\Vert=0$ . Then there exists a squence
$\{t_{n}\}$ in $(0, \infty)$ such that $ t_{n}\rightarrow\infty$ and $u(t_{n})-Bu(t_{n})\rightarrow 0$ as $ n\rightarrow\infty$ . On the
other hand, the set $\{Bu(t):t\geqq t_{0}\}$ is relatively compact in $H$, so that there
exists a subsequence $\{t_{n_{j}}\}$ of $\{t_{n}\}$ such that $\{Bu(t_{n;})\}$ converges strongly.
Therefore, the sequence $\{u(t_{n_{j}})\}$ converges strongly as $ t_{n_{j}}\rightarrow\infty$ . On the
other hand, it is well-known (see [5]) that $u(t)$ converges weakly to a
minimum point of $\varphi$ as $ t\rightarrow\infty$ . Thus $u(t)$ converges strongly to a
minimum point of $\varphi$ as $ t\rightarrow\infty$ .

Next, assume that $\lim\inf_{t\rightarrow\infty}$ I $(I-B)u(t)||_{7}^{=}\epsilon>0$ . Then there exists
a point $T\geqq t_{0}$ such that $\Vert(1-B)u(t)||\geqq\epsilon/2$ for all $t\geqq T$ , so that the sets
$\{Bu(t):t\geqq T\}$ and $\{\Vert(I-B)u(t)||:t\geqq T\}$ are relatively compact in $H$ and
$(0, \infty)$ , respectively. Thus, it follows from the continuity of the func-
tional $\alpha$ that

$\delta\equiv\min\{\alpha(Bu(t), \Vert(I-B)u(t)\Vert): t\geqq T\}>0$

Moreover there exists a sequence $\{t_{n}\}$ such that $ t_{n}\uparrow\infty$ and both $\{Bu(t.)\}$

and $\{||(I-B)u(t_{n})||\}$ converges as $ n\rightarrow\infty$ in $H$ and $R$ , respectively.
Fix an arbitraly point $t_{n}>T$ and define a functional $g:[T, t_{n}]\rightarrow R$ by

$g(t)=\frac{1+\delta}{2}\{\Vert Bu(t)\Vert^{2}-||Bu(t_{n})||^{2}+||(I-B)u(t)||^{2}-||(I-B)u(t_{n})\Vert^{2}\}$

$-\frac{\delta}{2}\Vert u(t)-u(t_{n})\Vert^{2}$ .

Then, using the definition of subdifferential, we have

$g^{\prime}(t)=(1+\delta)\{(u(t), u(t)-Bu(t))-(\frac{d}{dt}Bu(t),$ $u(t))\}-\delta(u’(t), u(t)-u(t_{n}))$

$=(u^{\prime}(t), u(t)-Bu(t_{n})+\delta(I-B)u(t_{n}))+(1+\delta)\frac{d}{dt}(u(t), Bu(t_{n})-Bu(t))$

$\leqq\varphi(Bu(t_{n})-(I-B)u(t_{n}))-\varphi(u(t))+(1+\delta)\frac{d}{dt}(u(t), Bu(t_{n})-Bu(t))$ .
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On the other hand, one obtains
(5) $\varphi(Bu(t_{n})-(I-B)u(t_{n}))\leqq\varphi(u(t_{n}))$ for $t_{n}\geqq t_{1}$ .
In fact, from the convexity of $\varphi$ together with the inequality (1), it
follows that for every $x\in \mathfrak{D}(\partial\varphi)$ with $(I-B)x\neq 0$ we have

$\varphi(Bx)=\varphi(\frac{\alpha}{1+\alpha}x+\frac{1}{1+\alpha}((1+\alpha)Bx-\alpha x))$

$\leqq\frac{\alpha}{1+\alpha}\varphi(x)+\frac{1}{1+\alpha}\varphi((1+\alpha)Bx-\alpha x)$

$\leqq\frac{\alpha}{1+\alpha}\varphi(x)+\frac{1}{1+\alpha}\varphi(x)=\varphi(x)$ ,

where $\alpha=\alpha$($Bx$, II $(I-B)x||$ ). Hence, if $ 0\leqq\delta\leqq\alpha$ , then

$\varphi(Bx-\delta(I-B)x)=\varphi(\frac{\alpha-\delta}{\alpha}Bx+\frac{\delta}{\alpha}(Bx-\alpha(I-B)x))$

$\leqq\frac{\alpha-\delta}{\alpha}\varphi(Bx)+\frac{\delta}{\alpha}\varphi(Bx-\alpha(I-B)x)$

$\leqq\frac{\alpha-\delta}{\alpha}\varphi(x)+\frac{\delta}{\alpha}\varphi(x)=\varphi(x)$ .

Now, by virtue of the inequality (5) and the fact that $\varphi(u(t))$ is
monotone nonincleasing, we have

$g^{j}(t)\leqq(1+\delta)\frac{d}{dt}(u(t), Bu(t_{n})-Bu(t))$ $a.e$ . $te[t_{1}, t_{n}]$ .

Integrating both sides of this inequality over $[t_{l*}, t_{n}](m<n)$ , we obtain

(6) $\frac{1+\delta}{2}\{-||Bu(t_{n}.)||^{2}+||Bu(t_{n})||^{2}-||(I-B)u(t_{n})||^{2}+||(I-B)u(t_{n})||^{2}\}$

$+\frac{\delta}{2}||u(t_{n})-u(t_{n})||^{2}$

$\leqq-(1+\delta)(u(t_{n}), Bu(t_{n})-Bu(t_{n}))$ .
Let $n,$ $ m\rightarrow\infty$ in (6). Then the convergence of the sequences $\{Bu(t.)\}$

and $\{\Vert(I-B)u(t_{n})\Vert\}$ and the boundedness of $\{u(t.)\}$ together yield that
11 $u(t_{n*})-u(t_{n})||\rightarrow 0$ . Thus $\{u(t_{n})\}$ is a Cauchy sequence in $H$. Consequently,
recalling that $u(t)$ converges weakly to a minimum point of $\varphi$ as $ t\rightarrow\infty$ ,
we conclude that $u(t)$ converges strongly to a minimum point of $\varphi$ as
$ t\rightarrow\infty$ .
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PROOF OF THEOREM 2. Let $x_{0}\in \mathfrak{D}(A)$ and put $u(t)\equiv S(t)x_{0}$ . We may
assume without loss of generality that $z_{0}=0\in A^{-1}(0)$ . Then we have

$\frac{d}{dt}\Vert u(t)||^{2}=2(u^{j}(t)-0, u(t)-O)\leqq 0$ , and

$\frac{d}{dt}\Vert u(t+h)-u(t)||^{2}=2(u^{\prime}(t+h)-u’(t), u(t+h)-u(t))\leqq 0$

for all $h>0$ and a.e. $te(0, \infty)$ . These relations imply that

(7) $||u(t)||\downarrow d_{1}$ and $\Vert u(t+h)-u(t)\Vert\downarrow\delta_{h}$ as $ t\rightarrow\infty$

for some nonnegative numbers $d_{1}$ and $\delta_{h}$ .
Condition (ii) implies that $||v(t)\Vert\equiv const$ . and

$||Pu(t)\Vert\rightarrow\Vert v(0)||$ as $ t\rightarrow\infty$ .
Hence, by (7), we obtain the convergence

$||(I-P)u(t)||\rightarrow d_{l}\equiv(d_{1}^{2}-||v(0)||^{g})^{1/2}$ as $ t\rightarrow\infty$ .
At this point there are two casev to check. Suppose that $d_{2}=0$ . In
this case condition (ii) yields that $u(t)\rightarrow v(t)$ as $ t\rightarrow\infty$ , and hence
$(1/t)\int_{0}^{t}u(\tau+h)d\tau$ converges strongly to $(1/\rho)\int_{0}^{\rho}v(\tau)d\tau(=z)$ , uniformly for
$he(0, \infty)$ as $ t\rightarrow\infty$ . Next, assume that $d_{2}>0$ . Then there exists a
constant $T\geqq 0$ such that

$||(I-P)u(t)||\geqq\frac{d_{2}}{2}$ for $t\geqq T$ .
Put $\epsilon=\min\{d_{2}/2,1/||u(0)||\}>0$ . Since $[u(t), -u^{\prime}(t)]\in A$ for a.e. $t$ and

$||u(t)||\leqq||u(0)||\leqq\frac{1}{\epsilon}$ $\Vert(I-P)u(t)||\geqq\epsilon$ for $t\geqq T$ ,

we infer from (3) that

$c_{1}\{\frac{d}{dt}||Pu(t+h)||^{2}+\frac{d}{dt}||Pu(t)||^{2}\}+c_{2}\frac{d}{dt}||Pu(t+h)+Pu(t)\Vert^{2}$

$+c_{a}\{\frac{d}{dt}\Vert u(t+h)\Vert^{2}+\frac{d}{dt}\Vert u(t)\Vert^{2}\}+c_{2}\frac{d}{dt}\Vert u(t+h)+u(t)\Vert^{2}\leqq 0$

for every $h\geqq 0$ and a.e. $t\in[T,$ . $\infty$ ).
Integrate thiv inequality over $(j\rho, j\rho+k\rho)$ (where $j$ and $k$ are

arbitrary positive integers with $j\rho\geqq T$) to obtain
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$c_{1}\{||Pu(h+(1+k)\rho)||^{2}-||Pu(h+j\rho)||^{2}+||Pu((j+k)\rho)||-||Pu(j\rho)||^{2}\}$

$+c_{2}\{||Pu(h+(j+k)\rho)+Pu((j+k)\rho)||^{2}-||Pu(h+j\rho)+Pu(j\rho)||\}$

$+c_{\epsilon}\{||u(h+(j+k)\rho)||^{2}-||u(h+j\rho)\Vert^{2}+||u((j+k)\rho)||^{2}-\Vert u(j\rho)\Vert^{2}\}$

$-||u(h+(j+k)\rho)-u((j+k)\rho)\Vert+||u(h+j\rho)-u(j\rho)||+2||u(h+(j+k)\rho)||^{2}$

$+2||u((j+k)\rho)||^{2}-2||u(h+j\rho)||^{2}-2||u(j\rho)||^{2}\leqq 0$

Moreover, we see from condition (ii) that

(10) Pu$(h+n\rho)\rightarrow v(h)$ as $ n\rightarrow\infty$ for each $h\geqq 0$ .
Let $ k\rightarrow\infty$ in (9). Then, application of (7) and (10) yields

$\delta_{h}^{2}\leqq||u(h+j\rho)-u(j\rho)||^{2}$

$\leqq\delta_{i}^{2}-c_{1}\{2||v(h)||^{2}-||Pu(h+j\rho)||^{2}-||Pu(j\rho)||^{2}\}$

$-c_{2}\{||v(h)+v(0)||^{2}-||Pu(h+j\rho)+Pu(j\rho)||\}$

$-c_{8}\{2\phi-||u(h+j\rho)||^{2}-\Vert u(j\rho)||^{2}\}-4d_{1}^{2}+2||u(h+j\rho)||^{2}+2||u(j\rho)||^{2}$ .
Hence, (7) and (10) yield that $\lim_{\dot{g}\rightarrow\infty}$ Il $u(h+j\rho)-u(j\rho)$ Il $=\delta_{h}$ uniformly in
$h\geqq 0$ , so that the convergence $\lim_{\rightarrow\infty}||u(h+t)-u(t)||=\delta_{\iota}$ holds uniformly
in $h\geqq 0$ . Thus, by a result of Kobayasi and Miyadera [8] we have

$s-\lim_{\infty}\frac{1}{t}\int_{0}^{\iota}S(\tau+h)x_{0}d\tau=zeA^{-1}(0)$ uniformly in $h\geqq 0$ .

It is easy to see that this convergence also hold8 for $x_{0}ecl(\mathfrak{D}(A))$ .
Thus, we proved Assertion $(1^{o})$ .

By virtue of $(A)$ and $(B)$ of Remark 2, Assertion $(2^{o})$ is a direct
consequence of Assertion $(1^{o})$ and Lorentz [9].

PROOF OF COROLLARy 3. Since $A$ is a maximal monotone operator
and $cl(\mathfrak{D}(A))$ is a convex subset of $H$, condition (4) yields that {$Proj_{X}x$ :
$xecl(\mathfrak{D}(A))\}=X\cap cl(\mathfrak{D}(A))\subset A^{-1}(0)$ . Hence, for $xecl(\mathfrak{D}(A)),$ $Proj_{X}S(t)x$

$(=Proj_{X\cap ot\{\mathfrak{D}(A))}S(t)x)$ converges strongly as $ t\rightarrow\infty$ . This is obtained in the
same way as in the derivation of the convergence of $Proj_{A^{-1_{(0)}}}S(t)x$ (cf.,
[10; Lemma 9.2]).

Fix an arbitraly point $z_{0}eX\cap cl(\mathfrak{D}(A))$ and define a linear projection
$P$ by $P=Proj_{X-\iota_{0}}$ . Then, by (4), we have

$(y_{1}-(-y_{2}), x_{1}-(2Px_{2}-x_{2}+2z_{0}-2Pz_{0}))\geqq 0$ , and
$(y_{2}-(-y_{1}), x_{2}-.(2Px_{1}-x_{1}+2z_{0}-2Pz_{0}))\geqq 0$

for $[x_{i}, y]eA,$ $i=1,2$ . Here we have used the fact that $Proj_{X}x=$

$Proj_{X-e_{0}}(x-z_{0})+z_{0}=Px-Pz_{0}-z_{0}$ . Summing up these inequalities, one
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obtains
$(y_{1}+y_{2}, x_{1}+x_{2}-2z_{0})-(y_{1}+y_{2}, Px_{1}+Px_{2}-2Pz_{0})\geqq 0$ .

Thus, condition (i) holds with $c_{1}=c_{8}=0$ and $c_{2}=-1$ . Moreover, since
PS$(t)x(=Proj_{X}x+Pz_{0}+z_{0})$ converges vtrongly as $ t\rightarrow\infty$ , it follows from
$(A)$ of Remark 2 that condition (ii) holds for each $xecl(\mathfrak{D}(A))$ .

Therefore, the assertion follows from Assertion $(1^{o})$ of Theorem 2.

REMARK 4. The relationship between Theorems 1 and 2 may be
stated as follows: If the operator $B$ in Theorem 1 is a compact linear
projection, then Theorem 1 can be derived from Assertion $(2^{o})$ of
Theorem 2 (cf., [7]).

\S 3. Linear perturbation to even convex functionals.

Assume that $\psi$ is a proper l.s.c. even convex functional and let $feH$

be such that $\min_{z\in H}\{\psi(z)-(f, z)\}$ is achieved. Let $u(t)$ be the solution
of $du/dt+\partial\psi(u)\ni f,$ $u(O)=x$ . Brezis raised in [3] the problem as to
whether $u(t)$ converges strongly as $ t\rightarrow\infty$ .

In virtue of Theorem 1, $u(t)$ converges strongly if $\varphi\equiv\psi-f$ satisfies
conditions (a) and (b) with $B=Proj_{X}$ and $X=\{\gamma f:r\in R\}$ .

But, in general, $u(t)$ need not be strongly convergent, as stated
below.

PROPOSITION 4. There exists a proper l.s.c. convex functional $\psi$ and
$f\in H$ such that (i) $\psi$ is even; (ii) $\psi-f$ assumes a minimum in $H$; but
(iii) the solution $u(t)$ of the initial-value problem

$du/dt+\partial\psi(u)\ni f$ , $u(0)=x$

does not converge strongly as $ t\rightarrow\infty$ for some $x\in \mathfrak{D}(\psi)$ .
The above-mentioned fact is asserted by the following example (which

is motivated by that of Baillon):

EXAMPLE. We construct the aimed $\psi$ and $f$ in the space $H=l^{2}$ . Let
$a_{\lambda}$ and $b_{\lambda}$ be functionals on $R^{2}$ defined by

$ a_{\lambda}(\xi, \eta)=-\frac{1}{2}(\frac{\pi}{2})^{\lambda}\xi+\frac{\lambda}{2}(\frac{\pi}{2})^{\lambda-1}\eta$ ,

$b_{\lambda}(\xi, \eta)=\left\{\begin{array}{ll}[\tan^{-1}(|\xi|/|\eta|)]^{\lambda}\cdot(\xi^{2}+\eta^{2})^{1/2}+a_{\lambda}(|\xi|, |\eta|) & if \xi\eta\geqq 0\\a_{\lambda}(\xi, \eta) if \xi\leqq 0 an & \eta\geqq 0\\-a_{\lambda}(\xi, \eta) if \xi\geqq 0 an & \eta\leqq 0.\end{array}\right.$
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It iv easy to check that $a_{\lambda}$ is linear, while $b_{\lambda}$ is even. We then
demonstrate that $c_{\lambda}\equiv b_{\lambda}-a_{\lambda}$ is a nonnegative convex functional on $R^{2}$

provided that $\lambda\geqq 1$ . According to [1], $c_{\lambda}$ is a convex functional on
$R^{+}\times R^{+}$ if $\lambda\geqq 1$ . On the other hand, $c_{\lambda}$ is differentiable, on $R^{2}\backslash \{0\}$ and

grad $c_{\lambda}(\xi, 0)=2a_{\lambda}$ for $\xi>0$ .
Hence, from the defining inequality for the subdifferential, we have

$c_{\lambda}(\xi, \eta)\geqq 2a_{\lambda}(\xi, \eta)$ , $(\xi, \eta)eR^{+}\times R^{+}$ .
But this inequality shows that $c_{\lambda}\geqq 0$ on $R^{2}$ , and that $c_{\lambda}$ is a convex
functional on $R^{2}$ .

Now put

(11) $x_{i}=\frac{\pi^{2}}{8}\infty^{b}b-1i$ $(b=1/\log 2)$ , $i=1,2,3,$ $\cdots$ ,

and, for $\alpha=(\alpha_{i})\geq 1(\alpha>0)$ , define $f_{\alpha}$ and $\psi_{\alpha}$ by

$ f_{\alpha}(x)=\alpha_{1}a_{\lambda_{1}}(x_{1}, x_{2})+\cdots+\alpha_{n}a_{\lambda}.(x_{n}, x_{n+1})+\cdots$

$\psi_{\alpha}(x)=\alpha_{1}b_{\lambda_{1}}(x_{1}, x_{t})+\cdots+\alpha_{*}b_{\lambda}(x_{n}, x_{n+1})+\cdots$ ,

where $x=(x)_{i\geq 1}el^{2}$ . Then, min $(\psi_{\alpha}-f_{\alpha})=0$ and $\psi_{a}$ is even for every
$\alpha=(\alpha)\geq 1$

Next, let $T_{1}\geqq 1,$
$\cdots,$

$T_{n}\geqq n,$ $\cdots$ and $\beta_{1},$ $\beta_{2},$
$\cdots,$ $\beta_{n},$ $\cdots>0$ be as in

Lemma 6 of [2] and put $\varphi_{\alpha}\equiv\psi_{\alpha}-f_{\alpha}$ and $\epsilon=1/4$ in Lemma 6. Then, as
is mentioned in [2], it follows that for every $n\geqq 1$ one has

(12) $||S_{\alpha}(T)x_{1}-x_{+1}||\leqq\epsilon+\cdots+\epsilon$ $i=1,2,$ $\cdots,$ $n$

whenever $\alpha=(\alpha)\geq 1$ satisfies that $\alpha=\beta,$ $i=1,$ $\cdots,$ $n$ , where $S_{\alpha}$ refers the
semigroup generated by $\partial\varphi_{\alpha}$ and $x_{i}el^{2}(i\geqq 1)$ are as follows:

$x_{1}=(1,0,0, \cdots)$

$x_{2}=(0$, exp $(-\frac{\pi^{2}}{8}\frac{1}{\lambda_{1}}),$ $0,0,$ $\cdots)$

$x=(0,0,$ $\cdots,$
$0$ , exp $[-\frac{\pi^{2}}{8}(\frac{1}{h_{1}}+\cdots+\frac{1}{\lambda_{-1}})],$ $0,0,$ $\cdots)$

Since $a_{\lambda}(i\geqq 1)$ are linear functional on $R^{2}$ , so is $f_{\alpha}$ with $\mathfrak{D}(f_{\alpha})\subset l^{2}$ .
But a sequence $\alpha’=(\alpha_{i}^{\prime})_{i\geq 1}$ of positive numbers can be chosen so that
$D(f_{\alpha},)=l^{2}$ and $f_{\alpha^{\prime}}el^{2}$ . Put



NONLINEAR CONTRACTION SEMIGROUPS 181

(13) $\alpha_{1}=\min\{\beta_{1}, \alpha_{1}^{\prime}\}$ and $\alpha_{i}=\min\{\beta_{i}\alpha_{i-1}, \alpha_{i}^{j}\}$ for $i\geqq 2$ .
Then, since $0<\alpha_{i}\leqq\alpha_{i}^{\prime}$ for $i\geqq 1$ , we have $f_{\alpha}el^{2}$ again.

Finally, we show that the solution of the equation

$du/dt+\partial\psi_{\alpha}(u)\ni f_{\alpha}$ , $u(O)=(1,0,0, \cdots)$

does not converge strongly as $ t\rightarrow\infty$ . According to the selection of $T_{i}$ ,
$\beta(i\geqq 1)$ as mentioned in the proof of Lemma 6 of [2], we infer from
(12) and (13) that

(14) $\Vert u(T^{\prime},)-x_{n-1}\Vert\leqq\epsilon+\cdots+\epsilon^{n}$ for $n\geqq 1$ ,

where $Ta=(\beta_{1}/\alpha_{1})T_{1}+(\beta_{2}/\alpha_{2})(T_{2}-T_{1})+\cdots+(\beta_{n}/\alpha_{n})(T_{n}-T_{n-1})$ . Since $\epsilon=1/4$

and $|x_{n}\Vert=\exp[-(\pi^{2}/8)((1/x_{1})+\cdots+(1/x_{n-1}))]$ , the estimate (14) together
with (11) yields

$\lim_{n\rightarrow}\inf_{\infty}\Vert u(T_{n}^{\prime})\Vert\geqq\exp[-\frac{\pi^{2}}{8}(\frac{8}{\pi^{2}}\frac{b-1}{b}\frac{b}{b-1})]-\frac{\epsilon}{1-\epsilon}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$ .

Since $T^{\prime},\geqq T_{n}\geqq n$ , this means that $u(t)$ does not converge strongly to $0$

as $ t\rightarrow\infty$ . On the other hand, $\varphi_{\alpha}(x)\equiv\psi_{\alpha}(x)-(f_{\alpha}, x)\geqq 0$ , and $\varphi_{a}(x)=0$ iff
$x=0$ . Thus we infer with the aid of the result of [5] that $w-$

$\lim_{t\rightarrow\infty}u(t)=0$ . Consequently, $u(t)$ does not converge strongly as $ t\rightarrow\infty$ .
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