Tokyo J. Math. Vol. 5, No. 1, 1982

A Local Isotopy Lemma

Takuo FUKUDA and Takao KOBAYASHI

Chiba University and Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

First of all, let us recall Thom's first isotopy lemma: Let $\pi: E \to B$ be a proper differentiable and stratified map. Then for each stratum Z of B, the restricted map $\pi: \pi^{-1}(Z) \to Z$ is a locally trivial fibration (see R. Thom [5], J. Mather [3]).

This lemma is very powerful in the topological studies of analytic sets (see T. Fukuda [1]), of Landau singularities, of Feynman integrals (see F. Pham [4]) and so on. However we meet many situations where the mapping $\pi: E \to B$ is not proper, and we can not apply the lemma to the situations.

For example, consider the function I(z) $(z = (z_1, \dots, z_4) \in C^4)$ defined by the integral

$$I(z) = \int_0^{z_1} (z_2 - 2z_3\tau + z_4\tau^2)^{-1} d\tau \; .$$

It is the solution of the Cauchy problem:

$$\left\{ \left(\frac{\partial}{\partial z_1}\right)^2 + 2z_3 \left(\frac{\partial}{\partial z_1}\right) \left(\frac{\partial}{\partial z_2}\right) + z_4 \left(\frac{\partial}{\partial z_1}\right) \left(\frac{\partial}{\partial z_3}\right) \right\} I(z) = 0$$

with initial data

$$I(0, z_2, z_3, z_4) = 0$$
, $\frac{\partial}{\partial z_1} I(0, z_2, z_3, z_4) = \frac{1}{z_2}$

Obviously I(z) is holomorphic as long as the integral path with initial point $\tau = 0$ and with terminal point $\tau = z_1$ can be continuously deformed, escaping the singularities of the integrand, $z_2 - 2z_3\tau + z_4\tau^2 = 0$. However,

Received January 12, 1981

The first author is partially supported by Australian Research Grant Commitee No. 7. L20, 205.

since the canonical projection $\pi: C_r \times C_z^4 \to C_z^4$ is not proper, we cannot apply Thom's isotopy lemma directly.

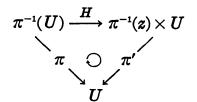
The purpose of the present note is to give a local and relative version of the lemma which works on the cases where π 's are not necessarily proper. One important application of it to the Cauchy problem with singular data in the complex domain will appear in T. Kobayashi [2]. In the above example, applying the local isotopy lemma, we can show that I(z) is holomorphically continued along any path in $C^4 \setminus (\Sigma_0 \cup \Sigma_\infty)$, where Σ_0 and Σ_∞ are given by

$$\Sigma_0: z_2(z_2-2z_3z_1+z_4z_1^2)(z_2z_4-z_3^2)=0$$
,
 $\Sigma_\infty: z_4=0$,

(see [2]).

§1. The results.

Let $\pi: E \to B$ be a continuous map, A_1, \dots, A_k subsets of E and Z a subset of B. We say that the restricted map $\pi: \pi^{-1}(Z) \to Z$ is a locally trivial fibration relative to A_1, \dots, A_k if for any point z of Z there exists an open neighborhood U of z in Z and a relative homeomorphism $H: (\pi^{-1}(U), A_1 \cap \pi^{-1}(U), \dots, A_k \cap \pi^{-1}(U)) \to (\pi^{-1}(z) \times U, (\pi^{-1}(z) \cap A_1) \times U, \dots, (\pi^{-1}(z) \cap A_k) \times U)$ such that the following diagram commutes



where π' is the canonical projection.

From now on, consider the following situation. Let $E = T \times W$ with paracompact connected manifolds T and W, $\pi: E \to W$ the canonical projection and S_1, \dots, S_k subsets of E. We assume that there exist Whitney stratifications $\mathcal{S}_1 = \mathcal{S}_1(E)$ and $\mathcal{S}_2 = \mathcal{S}_2(W)$ of at most a countable number of strata such that

- i) π is a stratified map with respect to \mathscr{S}_1 and \mathscr{S}_2 ,
- ii) S_1, \dots, S_k are stratified subsets of E.

REMARK. For example, when $E = C^m \times C^n$ and S_1, \dots, S_k are complex algebraic subsets of $C^m \times C^n$, there exist stratifications \mathcal{S}_1 and \mathcal{S}_2 satisfying i), ii) and

32

iii) strata of S_1 and S_2 are constructible and of a finite number (see [1]).

Let $\rho_0: T \to R$ be a smooth positive-valued and proper function and set $\overline{B(r)} = \{t \in T; \rho_0(t) \leq r\}$ (which is compact because ρ_0 is proper), $B(r) = \{t \in T; \rho_0(t) < r\}$ and $S(r) = \overline{B(r)} \setminus B(r)$ for a positive number $r > \min \rho_0(t)$.

REMARK. A manifold which is countable at infinity, hence T, admits a smooth positive-valued and proper function.

DEFINITION. Let $\rho = \rho_0 \circ \pi_T \colon E \to R$ where $\pi_T \colon E \to T$ is the canonical projection. For a point $w \in W$ and a stratum $X \in \mathscr{S}_1$, let $D_x(w)$ denote the set of all critical values of $\rho|_{X \cap \{T \times w\}}$ ($\rho(X \cap \{T \times w\})$) are also critical values when dim $X \cap \{T \times w\} = 0$). We set $D(w) = \bigcup_{X \in \mathscr{S}_1} D_X(w)$.

REMARK. By Sard's theorem, $D_x(w)$ is measure zero, hence so is D(w).

Now we can state our results.

THEOREM. For any stratum $Z \in \mathscr{S}_2(W)$, any point z° of Z and for almost every positive number r except those of $D(z^\circ)$, there is an open neighborhood $U = U(z^\circ, r)$ of z° in Z such that the canonical projection $\pi: \overline{B(r)} \times U \to U$ is a stratified map with respect to the stratifications $\mathscr{S}_1(\overline{B(r)} \times U)$ and $\mathscr{S}_2(U)$ given by

1) $\mathscr{S}_2(U) = \{U\},\$

2) $\mathscr{S}_1(\overline{B(r)} \times U) = \{X \cap (B(r) \times U), X \cap (S(r) \times U); X \in \mathscr{S}_1(E)\},\$

and $S_1 \cap (\overline{B(r)} \times U), \dots, S_k \cap (\overline{B(r)} \times U)$ are stratified subsets of $\overline{B(r)} \times U$.

COROLLARY. $\pi: \overline{B(r)} \times U \to U$ is a locally trivial fibration relative to $S_1 \cap (\overline{B(r)} \times U), \dots, S_k \cap (\overline{B(r)} \times U).$

PROOF OF COROLLARY. Since $\pi: \overline{B(r)} \times U \rightarrow U$ is a proper map, we can apply Thom's relative isotopy lemma (see [1]) to the sequence.

§2. Proof of theorem.

Set $D = \bigcup_{w \in W} \{w\} \times D(w) \subset W \times R$.

LEMMA 1. D is a closed subset of $W \times R$.

PROOF. To prove the lemma, it is enough to show that for any convergent sequence $(w_n, r_n) \in D$, the limit point $(w, r) = \lim_{n \to \infty} (w_n, r_n)$ also belongs to D. Since r_n is a critical value of $\rho|_{X \cap \{T \times w_n\}}$ for some stratum $X \in \mathcal{S}_1$, there is a critical point $c_n = (t_n, w_n) \in X$ of $\rho|_{X \cap \{T \times w_n\}}$ with

 $\rho(c_n) = r_n$. By choosing a suitable subsequence, we may assume that the sequence $c_n = (t_n, w_n)$ converges to some point c = (t, w), because for sufficiently large number n, c_n belongs to a compact set, say $\overline{B(2r)} \times \overline{V}$ where \overline{V} is a compact neighborhood of w. Since $\rho(c) = \lim \rho(c_n) = \lim r_n = r$, it is enough to see that c = (t, w) is a critical point of $\rho|_{T \cap \{T \times w\}}$, where $Y \in \mathscr{S}_1$ is the stratum containing c. Note that c is a critical point of $\rho|_{T \cap \{T \times w\}}$, where $Y \in \mathscr{S}_1$ is the stratum containing c. Note that c is a critical point of $\rho|_{T \cap \{T \times w\}}$ if and only if $\ker d\rho_o \supset T_c(Y \cap \{T \times w\})$, where $d\rho_c: T_c(E) \to T_r(R)$ is the differential of ρ at c and $T_p(M)$ is the tangent space at a point p to a smooth manifold M. Since the stratification $\mathscr{S}_1(E)$ is locally finite, by choosing a suitable subsequence we may assume that the critical points c_n belong to the same stratum $X \in \mathscr{S}_1(E)$ for all n. There are two cases to see;

- a) X=Y,
- b) $X \succ Y$, i.e., $Y \subset (\overline{X} \setminus X)$.

Case a). Since $\lim_{n\to\infty} \ker d\rho_{c_n} \subset \ker d\rho_c$ and $\lim_{n\to\infty} T_{c_n}(X \cap \{T \times w_n\}) = T_c(X \cap \{T \times w\})$, we have $\ker d\rho_c \supset T_c(X \cap \{T \times w\})$. Therefore c is a critical point of $\rho|_{X \cap \{T \times w\}}$.

Case b). Since $\lim_{n\to\infty} \ker d\rho_{c_n} \subset \ker d\rho_c$ and $\lim_{n\to\infty} T_{c_n}(X \cap \{T \times w_n\}) \supset T_c(Y \cap \{T \times w\})$ from the Whitney condition (a) for the pair (X, Y), we have $\ker d\rho_c \supset T_c(Y \cap \{T \times w\})$. Hence c is a critical point of $\rho|_{Y \cap \{T \times w\}}$. Q.E.D. of Lemma 1.

Let Z be a stratum of \mathscr{S}_2 , z° a point of Z and $r \notin D(z^\circ)$. Then from Lemma 1, there are an open neighborhood $U = U(z^\circ, r)$ of z° in Z and a positive number $\varepsilon > 0$ such that $U \times (r - \varepsilon, r + \varepsilon) \cap D = \emptyset$. Set $\mathscr{S}_2(U) = \{U\}$ and $\mathscr{S}_1(\overline{B(r)} \times U) = \{X \cap (B(r) \times U), X \cap (S(r) \times U); X \in \mathscr{S}_1(E)\}$. We will prove the theorem dividing it into two lemmas:

LEMMA 2. 1). $\mathscr{S}_2(U)$ is a Whitney stratification.

2). $\mathscr{S}_{1}(\overline{B(r)} \times U)$ is a Whitney stratification of $\overline{B(r)} \times U$ such that $S_{i} \cap (\overline{B(r)} \times U)$, $i=1, \dots, k$, are stratified subsets of $\overline{B(r)} \times U$.

LEMMA 3. $\pi: \overline{B(r)} \times U \to U$ is a stratified map with respect to $\mathscr{S}_1(\overline{B(r)} \times U)$ and $\mathscr{S}_2(U)$.

PROOF OF LEMMA 2. 1). Trivial.

2). Elements of $\mathscr{S}_1(\overline{B(r)} \times U)$ are smooth manifolds: Each element of $\mathscr{S}_1(\overline{B(r)} \times U)$ is of the form

$$X_{\scriptscriptstyle B}\!=\!X\!\cap (B(r)\! imes U)$$
 ,

34

which is obviously a manifold, or of the form

 $X_s = X \cap (S(r) \times U)$,

which is also a manifold because X and $S(r) \times U$ intersect transversally. (Remember that r is not a critical value of $\rho|_{x \cap \{T \times z\}}$ for any $z \in U =$ $U(z^{\circ}, r).)$

 $\mathscr{S}_1(\overline{B(r)} \times U)$ satisfies the frontier condition: Since $Y_B \cap (\bar{X}_S \setminus X_S) = \emptyset$ for any strata X, $Y \in \mathcal{S}_1(E)$, it is enough to see the following three cases:

 $Y_{B}\cap(\bar{X}_{B}\backslash X_{B})\neq\emptyset,$ i)

 $Y_{s}\cap(\bar{X}_{B}\backslash X_{B})\neq\emptyset,$ ii)

 $Y_{s} \cap (\overline{X}_{s} \setminus X_{s}) \neq \emptyset$. iii)

In any case, it is easily follows from the frontier condition of $\mathscr{S}_{1}(E)$ that $Y. \subset (\bar{X}_* \setminus X_*)$. Incidentally we can see that a pair (\tilde{X}, \tilde{Y}) of $\mathscr{S}_1(\overline{B(r)} \times U)$ is $\widetilde{X} \succ \widetilde{Y}$ only if $(\widetilde{X}, \widetilde{Y})$ is one of the following:

a) $\tilde{X} = X_{B}$, $\tilde{Y} = X_{S}$ for the same $X \in \mathcal{S}_{1}(E)$.

b) $\widetilde{X} = X_B$, $\widetilde{Y} = Y_B$ with $X \succ Y$.

c) $\widetilde{X} = X_B$, $\widetilde{Y} = Y_S$ with $X \succ Y$. d) $\widetilde{X} = X_S$, $\widetilde{Y} = Y_S$ with $X \succ Y$.

Every pair (\tilde{X}, \tilde{Y}) of elements of $\mathscr{S}_1(\overline{B(r)} \times U)$ satisfies the Whitney conditions (a) and (b): There are four cases a), b), c) and d) above to check. In any case, one can see easily that (\tilde{X}, \tilde{Y}) satisfies the Whitney conditions.

 $S_i \cap (\overline{B(r)} \times U), i=1, \dots, k, are stratified subsets:$ Trivial.

Q.E.D. of Lemma 2.

PROOF OF LEMMA 3. It is enough to prove that $\pi|_{\widetilde{x}}: \widetilde{X} \to U$ is a submersion for each stratum $\widetilde{X} \in \mathscr{S}_{1}(\overline{B(r)} \times U).$

If \widetilde{X} is of the form $\widetilde{X} = X \cap (B(r) \times U)$, then $\pi|_{\widetilde{X}} : \widetilde{X} \to U$ is a submersion, for $\pi|_{x}: X \rightarrow Z$ is a submersion.

If X is of the form $\widetilde{X} = X \cap (S(r) \times U)$, to see that $\pi|_{\widetilde{X}} : \widetilde{X} \to U$ is a submersion it is enough to see that $\pi imes
ho: X o Z imes R$, defined by $\pi imes$ $\rho((t, w)) = (w, \rho(t, w)) = (w, \rho_0(t))$, is submersive. But this is obvious from the form of $\pi \times \rho$ and from the fact that $\pi|_x : X \to Z$ is a submersion and r is not a critical value of the function $\rho|_{x \cap \{T \times z\}}$. Q.E.D. of Lemma 3.

References

- [1] T. FUKUDA, Types topologiques des polynômes, Publ. Math. I. H. E. S., 46 (1976), 87-106.
- [2] T. KOBAYASHI, On the singularities of the solution to the Cauchy problem with singular data in the complex domain, to appear.

- [3] J. MATHER, Notes on topological stability, Lecture Notes, Harvard University, 1970.
- [4] F. PHAM, Introduction à l'étude topologique de singularités de Landau, Mémor. Sci. Math., 164.
- [5] R. THOM, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75 (1960), 240-284.

Present Address: DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF SYDNEY SYDNEY AUSTRALIA AND DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA-KU, TOKYO 158