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On the Number of Apparent Singularities
of a Linear Differential Equation
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Introduction

Let $M$ be a compact Riemann Surface of genus $g$ , and let $S$ be a
finite subset of $M$. When a representation $\rho$ of the fundamental group
$\pi_{1}(M-S)$ to the general linear group $GL(n, C)$ is given, we have the
so-called Riemann-Hilbert problem: Find a linear differential equation
on $M$ having $\rho$ as its monodromy group. This problem has been solved
by many mathematicians in various fashions.

In this note a linear differential equation on $M$ means a collection
of locally defined linear differential equations on $M$

$\frac{d^{n}y}{dz^{n}}+A_{1}(z)\frac{d^{n-1}y}{dz^{n-1}}+\cdots+A_{n}(z)y=0$ ,

where $z$ is a local coordinate on $M$ and $A_{i}(z)$ are meromorphic functions.
They are compatible in the sense that any two of them have the same
solutions on their common domain of definition.

Then a solution of the Riemann-Hilbert problem in this form has,
necessarily, apparent singularities besides the given singularities $S$ . The
purpose of this note is to count the number of such apparent singularities.
Our result is:

THEOREM. If the representation $\rho$ is irreducible and if the local
representation at some point of $S$ induced by $\rho$ is semi-simple, then there
exists a Fuchsian linear differential equation on $M$ which has the given
representation $\rho$ as its monodromy group and has at most

$1-n(1-g)+\frac{n(n-1)}{2}(m+2g-2)$ $(m=\# S)$

apparent singularities.
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Here the local representation induced by $\rho$ at a point $p\in S$ is defined
as follows: Let $U$ be a neighborhood of $p$ biholomorphic to the unit
disc such that $U\cap S=\{p\}$ . Then the injection $U-p\rightarrow M-S$ induces a
representation of $\pi_{1}(U-p)$ to $GL(n, C)$ . This is the local representation
at $p\in S$ induced by $\rho$ by definition.

This theorem gives answers to a problem in [2]. The totality of
representations of $\pi_{1}(M-S)$ to $GL(n, C)$ and the totality of the corre-
sponding Fuchsian differential equations form complex manifolds of di-
mension $n^{2}(m+2g-2)+1$ , and $(n^{2}(m+2g-2)/2)+(nm/2)$ , respectively. The
difference of these dimensions is equal to the above mentioned number.
So we might expect conversely that general solutions of the Riemann-
Hilbert problem have at least $1-n(1-g)+(n(n-1)/2)(m+2g-2)$ apparent
singularities.

To prove the theorem we use a solution of the Riemann-Hilbert
problem given by Deligne in [1]. In \S \S 1, 2 and 3 we will resume its
essential points and in \S 4, introducing Wronskians we will prove the
theorem.

\S 1. Outline of Deligne’s solution of the Riemann-Hilbert problem.

Let $M$ be a compact Riemann surface of genus $g$ and let $S$ be a set
of $m$ points in $M$. When a representation $\rho:\pi_{1}(M-S)\rightarrow GL(n, C)$ is
given, we can find a linear differential equation on $M$ with the mono-
dromy group isomorphic to $\rho$ . Deligne’s results are as follows:

(1) Take a local system $V$’ of n-dimensional vector spaces on $M-S$
associated with the representation $\rho$ .

(2) The local system $V$’ determines canonically a holomorphic vector
bundle $\Psi$ on $M-S$ with a holomorphic connection $\nabla$ such that $V^{\prime}=$

$\{\xi\in\pi’|\nabla’\xi=0\}$ .
(3) Extend the pair (ST’, $\nabla$ ) onto the whole space $M$ as a pair

(S7‘, $\nabla$), where er is a holomorphic vector bundle on $M$ and $\nabla$ is a mero-
morphic connection of $r$ with simple poles on $S$. Here an extention of
the pair (ST’, $\nabla’$) means that the restriction $(r|_{K-S}, \nabla|_{X-S})$ is isomorphic
to the pair (ST’, $\nabla$ ).

(4) When we want to have an ordinary linear differential equation
in the usual sense, take a holomorphic section $\varphi$ of the dual bundle $\ovalbox{\tt\small REJECT}^{*}$ ,
and consider the local system $\varphi(V’)$ as a subsheaf of $p_{H-S}$ . If $\varphi(V’)$ is
isomorphic to $V^{\prime}$ as local systems, then the differential equation with
solution sheaf $\varphi(V’)$ is the desired one.
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\S 2. The Chern class of an extended bundle.

Now we analyze more closely the step (3). Let $p$ be a point of $S$

and let $z$ be a local coordinate on a neighborhood $U$ of $p(z(p)=0)$ . We
assume that $U$ is biholomorphic to the unit disc and that $U\cap S=\{p\}$ .
The representation $\rho:\pi_{1}(M-S)\rightarrow GL(n, C)$ induces a representation $\rho_{U}$ :
$\pi_{1}(U-p)\rightarrow GL(n, C)$ , and the local system $V_{U}^{\prime}$ associated with the represen-
tation $\rho_{\sigma}$ is isomorphic to the restriction $V^{\prime}|_{U-p}$ of $V’$ .

On the other hand $\pi_{1}(U-p)$ is isomorphic to the infinite cyclic group
$Z$. Let 7 be the generator of $\pi_{1}(U-p)$ represented by a loop in $U-p$

rounding $p$ once counter-clockwise. Put $A=\rho_{U}(\gamma)\in GL(n, C)$ and choose
a matrix $B$ satisfying $A=\exp(-2\pi iB)$ .

Consider the trivial vector bundle $p_{U}^{f\iota}$ over $U$ and consider its mero-
morphic connection $\nabla_{U}$ with the connection matrix $(B/z)dz$ with respect
to the natural frame of $p_{U}n$ Then the pair $(p_{U}\#, \nabla_{U})$ determines a local
system $V$’ on $U-p$ . This consists of solution vectors of the equation

$\nabla_{U}\xi=d\xi+\frac{B}{z}dz\xi=0$ .

By the condition $A=\exp(-2\pi iB)$ , this local system $V^{\prime}$ is isomorphic to
$V_{U}^{\prime}=V’|_{U-p}$ .

Thus we can patch together $\ovalbox{\tt\small REJECT}^{\wedge\prime}$ and $p_{\dot{U}}$ identifying $V_{U}$ and $V^{\prime\prime}$ , and
we get an extention of the pair (ST’, $\nabla$ ) to the point $p\in S$ . Let $(\ovalbox{\tt\small REJECT}, \nabla)$

be an extention on $M$ thus obtained.

PROPOSITION. The Chern class $c(r)$ of ST is equal to

$-\sum_{peS}$ tr $(B)$

$(H^{2}(M, Z)$ being identifOed with $Z$).

The proof is easy. We recall that the trace of the connection $\nabla$ is
a connection of the determinant bundle det $(\Psi^{-})$ of ST and that $c(\ovalbox{\tt\small REJECT})$ is
equal to the Chern class $c(\det\ovalbox{\tt\small REJECT})$ by definition. In the case of a line
bundle, the sum of residues of a meromorphic connection is equal to the
Chern class of the bundle.

The matrix $B$ is arbitrary except that it satisfies the equation
exp $(-2\pi iB)=A$ . Hereafter we assume that for a point $p\in S$ the local
monodromy matrix $A$ around $p$ is semi-simple. If $A=diag(a_{1}, \cdots, a_{n})$ ,
$-2\pi iB=diag$ ($\log a_{1},$ $\cdots$ , log $a_{n}$) and we can take the values of log $a$

arbitrarily. Taking into account of the above proposition, this enables
us to give any integral value to the Chern cla8s of the extended bundle.
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\S 3. Local systems realized in $p_{K-S}$ and its Wronskian.

Let $V$’ be a subsheaf of $p_{K-S}$ , and assume that the stalk $V_{q}^{\prime}$ of $V$’

at any $q\in M-S$ is an n-dimensional vector space. We call such $V^{\prime}$ a
local system realized in $p_{F-S}$ . Clearly $V$’ itself is a local system of
vector spaces.

The construction of a linear differential equation on $M-S$ having $V^{\prime}$

as its solution sheaf is classical. Let $\varphi_{1},$ $\cdots,$ $\varphi_{n}$ be a basis for $V$’ on an
open set $U$ of $M-S$, and let $z$ be a local coordinate on $U$. Then a
holomorphic function $y=y(z)$ on $U$ is contained in $V$’ if and only if

$\left|\begin{array}{lllll}D^{n}y & D^{n-1}y & \cdots & Dy & y\\D^{n}\varphi_{1} & D^{n-1}\varphi_{1} & \cdots & D\varphi_{1} & \varphi_{1}\\D^{n}\varphi_{n} & D^{n-1}\varphi_{n} & D\varphi_{n} & & \varphi_{n}\end{array}\right|=0$ ,

where $D$ denotes the differential operator $d/dz$ on $U$.
Expanding it, we have

$A_{0}(z)D^{n}y+A_{1}(z)D^{n-1}y+\cdots+A_{n}(z)y=0$ ,

where

$A_{0}(z)=\left|\begin{array}{llll}\varphi_{1} & D\varphi_{1} & \cdots & D^{n-1}\varphi_{1}\\\varphi_{g} & D\varphi_{2} & \cdots & D^{n-1}\varphi_{2}\\\varphi_{n} & D\varphi_{n} & \cdots & D^{n-1}\varphi_{n}\end{array}\right|$

$=\varphi\wedge D\varphi\wedge\cdots\wedge D^{n-1}\varphi$ , $\varphi={}^{t}(\varphi_{1}, \cdots, \varphi_{n})$ ,
$ A_{1}(z)=-\varphi\wedge D\varphi\wedge\cdot\cdots\wedge D^{n-2}\varphi\wedge D^{n}\varphi$ ,

Generally for a vector $\varphi={}^{t}(\varphi_{1}, \cdots, \varphi_{n})$ and for a differential operator $D$ ,
we define $ W(\varphi, D)=\varphi\wedge D\varphi\wedge\cdots\wedge D^{n-1}\varphi$ and call it the Wronskian of $\varphi$

with respect to the operator $D$ .

\S 4. The number of apparent singularities.

Let the pair $(r, \nabla)$ be a solution of the Riemann-Hilbert problem
explained in \S 1. If the dual bundle $\Psi^{*}$ of $\Psi$

’ have a holomorphic sec-
tion $\varphi\in\Gamma(M, r^{*})$ , then the local system $\varphi(V’)$ is realized in $p_{H-S}$ and
we have the exact sequence

$V^{\prime}\rightarrow^{\varphi}\varphi(V’)\rightarrow 0$ .
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The kernel of $\varphi$ is a local subsystem of $V^{\prime}$ and it corresponds to a
subrepresentation of $\rho$ . Therefore if $\rho$ is irreducible and if $\varphi(V’)$ is not
zero, then the local system $V$’ and $\varphi(V’)$ are isomorphic. The latter
condition is satisfied when $\varphi$ is not the zero section of $\nu^{\wedge*}$ . Because
$\Psi’=\beta_{H-S}\otimes_{C}V^{\prime}$ , and $\varphi(V’)=0$ implies $\varphi(\ovalbox{\tt\small REJECT}^{\prime})=0$ and $\varphi(\ovalbox{\tt\small REJECT})=0(\varphi$ is $p_{\kappa^{-}}$

linear). Thus we have

PROPOSITION. If the representation $\rho$ is irreducible, the local system
$\varphi(V’)$ is isomorphic to $V$’ for any non-zero holomorphic section $\varphi$ of $\Psi^{*}$ .

Now $\ovalbox{\tt\small REJECT}^{-*}$ has a connection dual to $\nabla$ . We also denote it by $\nabla$ . For
a section $\varphi$ of $\ovalbox{\tt\small REJECT}*$ we define the Wronskian $W(\varphi, \nabla)$ of $\varphi$ with respect
to $\nabla$ as follows: Let $U$ be an open set of $M$ and let $z$ be a local coordi-
nate on $U$. Then $\nabla_{D}\varphi=\langle d/dz, \nabla\varphi\rangle$ is a section of $\Psi^{*}$ over $U$, and we
define $ W(\varphi, \nabla_{D})=\varphi\wedge\nabla_{D}\varphi\wedge\cdots\wedge(\nabla_{D})^{n-1}\varphi$ . This is a section of det $(\Psi^{*})$

over $U$. For another coordinate $z’$ , put $D=KD’$ , where $D^{\prime}=d/dz^{\prime}$ and
$K=dz^{\prime}/dz$ . We have

$\nabla_{D}\varphi=K\nabla_{D^{\prime}}\varphi$ ,
$(\nabla_{D})^{2}\varphi=\nabla_{D}(K\nabla_{D^{\prime}}\varphi)$

$=D(K)\nabla_{D}\varphi+K^{2}(\nabla_{D^{\prime}})^{2}\varphi$ .
Thus

$\varphi\wedge\nabla_{D}\varphi\wedge(\nabla_{D})^{2}\varphi=K^{3}\varphi\wedge\nabla_{D^{\prime}}\varphi\wedge(\nabla_{D^{\prime}})^{2}\varphi$ .
Repeating this procedure, we have

$W(\varphi, \nabla_{D})=K^{n(n-1)/2}W(\varphi, \nabla_{D^{\prime}})$ .
Thus $W(\varphi, \nabla_{D})$ defines a section of det $(r^{*})\otimes\Omega^{n(n-1)/2}$ . We call it the

Wronskian of $\varphi$ with respect to $\nabla$ and denote it by $W(\varphi, \nabla)$ . Here $\Omega$

denote the canonical sheaf of $M$ and $\Omega^{k}$ is the k-times tensor product.

Let $\xi_{1},$ $\cdots,$
$\xi_{n}$ be a C-basis for $V‘\subset\Psi^{\prime}$ over $U$. Then we have $\nabla\xi_{i}=0$

for $i=1,$ $\cdots,$ $n$ . For a global holomorphic section $\varphi$ of $\Psi^{*},$ $\langle\varphi, \xi_{1}\rangle,$ $\cdots$ ,
$\langle\varphi, \xi_{n}\rangle\in\Gamma(U, \beta)$ is a C-basis for $\varphi(V^{\prime})$ over $U$. The differential equa-
tion with the solution sheaf $\varphi(V’)$ is

$\left|\begin{array}{llllll}\langle\varphi & \xi_{1}\rangle & \cdots & \langle\varphi & \xi_{n}\rangle & y\\D\langle\varphi & \xi_{1}\rangle & \cdots & D\langle\varphi & \xi_{n}\rangle & Dy\\\cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ D^{n-1}\langle\varphi,\xi_{1}\rangle & \cdots & \cdots & \cdots & D^{n-1}\langle\varphi,\xi_{n}\rangle & D^{n-1}y\\D^{n}\langle\varphi,\xi_{1}\rangle & \cdots & \cdots & \cdots & D^{n}\langle\varphi,\xi_{n}\rangle & D^{n}y\end{array}\right|=0$ .
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But $ D^{k}\langle\varphi, \xi\rangle=\langle\nabla_{D}^{k}\varphi, \xi_{l}\rangle$ for any $k$ because of the general identity $D\langle\varphi, \xi\rangle=$

$\langle\nabla_{D}\varphi, \xi\rangle+\langle\varphi, \nabla_{D}\xi\rangle$ . Therefore

$\left|\begin{array}{llllll}\langle\varphi & \xi_{1}\rangle & \cdots & \langle\varphi,\xi_{n}\rangle & & y\\\langle\nabla\varphi & \xi_{1}\rangle & \cdots & \langle\nabla\varphi & \xi_{n}\rangle & Dy\\\langle\nabla^{n}\varphi & \xi_{1}\rangle & \cdots & \langle\nabla^{n}\varphi & \cdots\xi_{n}\rangle & \cdots D^{n}y\end{array}\right|=0$ .

Expanding this, we have

$A_{0}D^{n}y+A_{1}D^{n-1}y+\cdots+A_{n}y=0$ ,

where

$ A_{0}=\langle W(\varphi, \nabla), \xi_{1}\wedge\cdots\wedge\xi_{n}\rangle$ ,
$ A_{1}=-\langle\varphi\wedge\nabla\varphi\wedge\cdots\wedge\nabla^{n-2}\varphi\wedge\nabla^{n}\varphi, \xi_{1}\wedge\cdots\wedge\xi_{n}\rangle$

Dividing by $\xi_{1}\wedge\cdots\wedge\xi_{n}\neq 0$ , we see that our differential equation has
singularities only at the zeros and poles of the Wronskian $W(\varphi, \nabla)$ .

At any point $qeM-S,$ $W(\varphi, \nabla)$ is holomorphic. At $peS$, with respect
to the natural frame of $p_{U}$ let $\varphi$ be represented by ${}^{t}(\varphi_{1}, \cdots, \varphi_{n})$ . Then

$\nabla_{D}\varphi=D\varphi+\frac{B}{z}\varphi$

$(\nabla_{D})^{2}\varphi=D^{2}\varphi+2\frac{B}{z}D\varphi-\frac{B}{z^{2}}\varphi+\frac{B^{2}}{z^{2}}\varphi$

$\varphi$ A $\nabla_{D}\varphi$ A $(\nabla_{D})^{2}\varphi=\varphi\wedge\frac{B}{z}\varphi$ A $(-\frac{B}{z^{2}}+\frac{B^{2}}{z^{2}})\varphi+\cdots$

$=\varphi\wedge\frac{B}{z}\varphi$ A $\frac{B^{2}}{z^{2}}\varphi+\cdots$

where . . . are terms of higher power of $z$ . Repeating this procedure,
we have at last

$\varphi\wedge\nabla_{D}\varphi\wedge\cdots$ A $(\nabla_{D})^{n-1}\varphi=\varphi\wedge\frac{B}{z}\varphi\wedge\cdots\wedge\frac{B^{n-1}}{z^{n-1}}\varphi+\cdots$ ,

that is,

$W(\varphi, \nabla_{D})=z^{-n(n-1)/2}$($\varphi\wedge B\varphi\wedge\cdots$ A $ B^{n-1}\varphi+\cdots$ ).

Thus $W(\varphi, \nabla)$ has a pole at peS of order at most $n(n-1)/2$ , and the
zeros are apparent singularities of our differential equation.
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The Wronskian $W=W(\varphi, \nabla)$ being a meromorphic section of
$\nu^{r*}\otimes\Omega^{n(n-1)/2}$ ,

$\#$(Zeros of $W$) $-\#$($Poles$ of $W$) $=c(\ovalbox{\tt\small REJECT}^{*})+\frac{n(n-1)}{2}c(\Omega)$

$=c(\ovalbox{\tt\small REJECT}^{*})+\frac{n(n-1)}{2}(2g-2)$ .

$\#$(Zeros of $W$) $\leqq c(\nu^{\sim*})+\frac{n(n-1)}{2}(m+2g-2)$ $(m=\# S)$ .

On the other hand, by the Riemann-Roch theorem for vector bundles,
we have

dim $\Gamma(M, \ovalbox{\tt\small REJECT}^{*})\geqq c(\Psi^{*})+n(1-g)$ .
If we choose an extention ST of $\ovalbox{\tt\small REJECT}$ with $c(\Psi^{*})=1-n(1-g)$ , the number
of zeros of $W(\varphi, \nabla)$ does not exceed

$1-n(1-g)+\frac{n(n-1)}{2}(m+2g-2)$ .

THEOREM. Let $M$ be a compact Riemann surface of genus $g$ and let
$S$ be a set of $m$ points on M. Assume that an irreducible representation
$\rho:\pi_{1}(M-S)\rightarrow GL(n, C)$ is given and that the induced local representation
at some point of $S$ is semi-simple. Then there exists a Fuchsian linear
differential equation on $M$ having the given representation $\rho$ as its
monodromy group and at most

$1-n(1-g)+\frac{n(n-1)}{2}(m+2g-2)$

apparent singularities.

References

[1] P. DELIGNE, Equations Diff\’erentielles \‘a Points Singuliers R\’eguliers, Lecture Notes in
Math., 163, Springer, 1970.

[2] K. OKAMOTO, On a problem of Fuchs, Kansuhoteishiki, 25 (1974) (in Japanese).

Present Address:
DEPARTMENT OF MATHEMATICS
TSUDA COLLEGE
TSUDA-MACI, KODAIRA, TOKYO 187


