Double Normals of a Compact Submanifold

Dedicated to Professor Tosiya Saito on his sixtieth birthday

Kiyoshi HAYASHI

Keio University

Introduction

Let M be a smooth (C^{∞}) submanifold of R^n . A double normal is a line segment combining two points p and q of M $(p \neq q)$ at which the segment is perpendicular to the tangent space T_pM and T_qM . N. H. Kuiper [4] showed that there are at least n double normals for convex bodies in R^n . (For generic immersions, see [10].) More generally, let L be a Riemannian manifold and M a submanifold of L. A non-constant geodesic $\gamma: [0,1] \to L$ is called an (M,M)-geodesic if $\gamma(i) \in M$ and $\dot{\gamma}(i) \perp T_{\tau(i)}M$ (i=0,1). The problem of this type is treated in A. Riede [7]. We have

THEOREM 1. Let (R^n, g) be a complete C^{∞} Riemannian manifold and M a compact C^{∞} submanifold of R^n without boundary.

Then there exist at least dim M+1 (M, M)-geodesics in \mathbb{R}^n .

In counting the number, we identify γ and its inverse $\gamma^{-1}(t) = \gamma(1-t)$.

§1. Path space and involution.

Let (R^n, g) and M be as in Theorem 1. We define

 $\Omega = \{\omega : [0, 1] \longrightarrow \mathbb{R}^n ; \omega : \text{ piecewise smooth and } \omega(0) \in M, \omega(1) \in M\}.$

 Ω is endowed with the compact open topology. We consider the involution $\xi: \Omega \to \Omega$ defined by $\xi \omega = \omega^{-1}$ and denote by Δ' the fixed point set of ξ .

In general, for a topological space X with continuous involution ξ : $X \rightarrow X$, we denote by $H_*^{\pi}(X)$ the equivariant homology group with \mathbb{Z}_2 coefficient, that is $H_*(X) = H_*(X_{\Pi})$, where X_{Π} is the orbit space of $S^{\infty} \times X$

by the involution $(\zeta, x) \mapsto (-\zeta, \xi x)$. The equivariant cohomology group is similarly defined [5].

Satz (5.5) in [7] asserts that

PROPOSITION. If there exist $b \in H_*^{\Pi}(\Omega, \Delta')$ and $\alpha_1, \alpha_2, \dots, \alpha_s \in H_{\Pi}^*(\Omega)$ with deg $\alpha_i > 0$ ($i = 1, 2, \dots, s$), such that

$$(\alpha_1 \cup \cdots \cup \alpha_s) \cap b \neq 0$$
.

Then there are at least s+1 (M, M)-geodesics.

In fact, by the naturality (for example, 5.6.16 in [8]), $\alpha_{\iota \mid (a-d')_{\pi}}$ plays the role of u_{ι} in Definition (5.4) in [7]. Remark that one of u_{ι} is 1 and take $h \in H_{\Pi}^{*}(\Omega, \Delta')$ with $\langle h, (\alpha_{1} \cup \cdots \cup \alpha_{s}) \cap b \rangle \neq 0$.

Instead of Ω , the Hilbert manifold of H^1 -curves can be used [3], since the condition (C) of Palais-Smale for our problem is also proved in [1]. So the following theorem yields Theorem 1.

THEOREM 2. Let M be a compact connected manifold without boundary with dim M=m. We put $M^2=M\times M$ and define $\xi\colon M^2\to M^2$ by

$$\xi(x, y) = (y, x)$$
.

We denote by Δ the diagonal set $\{(x, x); x \in M\}$. Then there exist $b \in H^{\Pi}_{2m}(M^2, \Delta)$ and $\theta \in H^{\Pi}_{\Pi}(M^2)$ such that $\theta^m \cap b \neq 0$ in $H^{\Pi}_{m}(M^2, \Delta)$.

The proof is given in §2.

PROOF OF THEOREM 1. Let $\Phi: M^2 \to \Omega$ be the function defined by $\Phi(x, y)(t) = x + t(y - x)$. Clearly Φ is a homotopy equivalence and we can take the homotopy to be equivariant. Also $\Phi(\Delta)$ is a deformation retract of Δ' . Thus naturally we have

$$H^{\Pi}_*(M^2, \Delta) \cong H^{\Pi}_*(\Omega, \Phi(\Delta)) \cong H^{\Pi}_*(\Omega, \Delta')$$

and

$$H_{II}^*(M^2) \cong H_{II}^*(\Omega)$$
.

Therefore, by the naturality, Theorem 2 gives the assumption of the proposition, putting s=m. This proves Theorem 1. Q.E.D.

§2. Proof of Theorem 2.

Let M, Δ and $\xi: M^2 \to M^2$ be as in Theorem 2 and $\pi: S^{\infty} \times M^2 \to M_{\pi}^2$ the covering projection. By the Künneth formula, we identify

(1)
$$H_*(M^2) = H_*(S^{\infty} \times M^2)$$
 and $H^*(M^2) = H^*(S^{\infty} \times M^2)$.

Let $\pi_1: H^*(M^2) \to H^*_{\Pi}(M^2)$ be the transfer. The following lemma is easily proved.

LEMMA 1.

$$\pi_*(\beta \cap \pi^!(b)) = \pi_!(\beta) \cap b$$

where $\pi_*: H_*(M^2, \Delta) \to H_*^{\Pi}(M^2, \Delta)$, $\pi^!: H_*^{\Pi}(M^2, \Delta) \to H_*(M^2, \Delta)$ and $\beta \in H^*(M^2)$, $b \in H_*^{\Pi}(M^2, \Delta)$.

(ii)
$$\pi^*\pi_1(\alpha \times \beta) = \alpha \times \beta + \beta \times \alpha \text{ for } \alpha, \beta \in H^*(M)$$
.

Let $p: M_H^2 \to P^\infty = \mathbb{R}P^\infty$ be the mapping derived from the projection $p': S^\infty \times M^2 \to S^\infty$, and $\theta \in H_H^1(M^2)$ the characteristic class $p^*(\omega)$, where $\omega \in H^1(P^\infty)$ is the generator. Let $P: H^k(M) \to H_H^{2k}(M^2)$ be the external square operation (§4 in [6] or [5]) and $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$ a basis for $H^*(M)$. Then Steenrod Isomorphism Theorem (Theorem 4 in [6] or Theorem 20.2 in [5]) gives

LEMMA 2. $\theta^i \cup P(\alpha_j)$ $(i=0,1,\cdots; j=1,2,\cdots,s)$ and $\pi_1(\alpha_i \times \alpha_j)$ $(1 \le i < j \le s)$ form a basis for $H^*_{II}(M^2)$.

Let $d: M \rightarrow M^2$ be the diagonal map, that is, d(x) = (x, x). We identify by d

$$(2) M=\Delta \text{ and } \Delta_{\Pi}=P^{\infty}\times M,$$

and denote by d^* the restriction $H_{II}^*(M^2) \to H_{II}^*(\Delta) = H^*(P^{\infty} \times M)$. We have

LEMMA 3.

- (i) $d^*(\theta) = \omega \times 1$,
- (ii) $d^*\pi_1 = 0: H^*(M^2) \to H^*_{\Pi}(\Delta),$
- (iii) $d^*P(\alpha) = \sum_{i+j=g} \omega^i \times Sq^j \alpha \ (\alpha \in H^g(M)).$

PROOF. (i) is easy. (ii) is given by Lemma 4.1 in Chapter VII of [9] (or the proof of (ii) of Theorem 20.3 in [5]). (iii) is Theorem 5 in Q.E.D.

We put $m = \dim M$, $g_i = \deg \alpha_i$ and assume $g_i \leq g_j$ if i < j, so that $\alpha_1 = 1$ and $\alpha_s = \sigma \in H^m(M)$, the generator.

LEMMA 4. $d^*(\theta^k)$, $d^*(\theta^{k-2g_2} \cup P(\alpha_2))$, \cdots , $d^*(\theta^{k-2g_r} \cup P(\alpha_r))$ are linearly independent in $H^k_{II}(\Delta)$ $(k-2g_r \ge 0)$.

PROOF. $d^*(\theta^{k-2g_q} \cup P(\alpha_q)) = \sum_{i+j=k-g_q} \omega^i \times Sq^j \alpha_q$ $(1 \le q \le r)$ contains the term $\omega^{k-g_q} \times \alpha_q$ (j=0), and for other terms (j>0), $\deg Sq^j \alpha_q > g_q$. This yields the lemma. Q.E.D.

COROLLARY 5. $d^*: H_{II}^k(M^2) \cong H_{II}^k(\Delta)$ if $k \geq 2m$. Hence $H_{II}^k(M^2, \Delta) = 0$ if k > 2m.

LEMMA 6. In the exact sequence

$$H_{II}^{2m-1}(M^2) \xrightarrow{d^*} H_{II}^{2m-1}(\Delta) \xrightarrow{\delta^*} H_{II}^{2m}(M^2, \Delta) \xrightarrow{} 0$$
 ,

 $H_{II}^{2m}(M^2, \Delta) \cong \mathbb{Z}_2$ and $\delta^*(\omega^{m-1} \times \sigma)$ is the generator.

PROOF. dim $H_{II}^{2m-1}(\Delta)=s$, dim (Im d^*)=s-1 by Lemma 4 and $\omega^{m-1}\times \sigma \notin \text{Im } d^*$. Q.E.D.

LEMMA 7. $\pi^!: H_{2m}^{II}(M^2, \Delta) \cong H_{2m}(M^2, \Delta) \cong \mathbb{Z}_2$.

PROOF. For the inclusion $j: M^2 \subset (M^2, \Delta)$, it is easily seen $j^*: H^{2m}(M^2, \Delta) \cong H^{2m}(M^2)$.

In the commutative diagram

$$egin{align*} H^{2m-1}_{II}(arDelta) & \longrightarrow & H^{2m-1}(arDelta) \ \delta^* igg| & igg| 0 \ H^{2m}_{II}(M^2, arDelta) & \stackrel{\pi^*}{\longrightarrow} & H^{2m}(M^2, arDelta) & \stackrel{\pi_!}{\longrightarrow} & H^{2m}_{II}(M^2, arDelta) \ & igg| j^* \ & H^{2m}(M^2) \ , \end{gathered}$$

we have $\pi^*\delta^*(\omega^{m-1}\times\sigma)=0$. By Lemma 6, $\operatorname{Im} \pi^*=0$, hence $\pi_!$ is one-to-one. Since $\dim H^{2m}(M^2,\Delta)=\dim H^{2m}_{II}(M^2,\Delta)=1$, the lemma is proved. Q.E.D.

Let $b \in H^{\Pi}_{2m}(M^2, \Delta)$ be the generator. This b and θ shall give Theorem 2.

Let $V_i \in H^i(M)$ be the Wu class, that is

(3)
$$\alpha \cup V_i = Sq^i\alpha \text{ for any } \alpha \in H^{m-i}(M).$$

$$V_0 = 1 \text{ and } V_i = 0 \text{ for } i > m/2.$$

We shall prove Theorem 2 by different ways corresponding to

the first case: $V_i = 0$ for any i > 0,

and

the second case: $V_i \neq 0$ for some i > 0.

In the exact sequence

$$(4) H_{II}^{m}(M^{2}, M^{2}-\Delta) \xrightarrow{j_{1}^{*}} H_{II}^{m}(M^{2}) \xrightarrow{i_{1}^{*}} H_{II}^{m}(M^{2}-\Delta) ,$$

where $i_1: M^2 - \Delta \subset M^2$ and $j_1: M^2 \subset (M^2, M^2 - \Delta)$, let $U_{II} \in H_{II}^m(M^2, M^2 - \Delta) \cong \mathbb{Z}_2$ be the generator and $U_{II}' = j_1^*(U_{II}) \in H_{II}^m(M^2)$ the equivariant diagonal cohomology class for the trivial action on M.

Let $C=(c_{ij})$ be the inverse matrix of $Y=(y_{ij})$, where $y_{ij}=\langle \alpha_i \cup \alpha_j, [M] \rangle \in \mathbb{Z}_2$ ($[M] \in H_m(M)$ is the fundamental homology class). It is known that [2 or Theorem 22.1 in 5]

$$U_{II}' = \sum_{i=0}^{[m/2]} \theta^{m-2i} P(V_i) + \sum_{i < j} (c_{ij} + c_{ii}c_{jj}) \pi_1(\alpha_i \times \alpha_j)$$
.

So for the first case, we have

$$U_{II}'=\theta^m+\pi_1(\beta)$$

where

$$\beta = \sum_{i < j} (c_{ij} + c_{ii}c_{jj})\alpha_i \times \alpha_j \in H^m(M^2).$$

Then we have

LEMMA 8. $\pi_1(\beta) \cap b \neq 0$ in $H_m^{\Pi}(M^2, \Delta)$.

PROOF. Assume that

(7)
$$\pi_*(\beta \cap \pi^!(b)) = \pi_!(\beta) \cap b = 0$$

(see (i) in Lemma 1). Consider the commutative diagram

$$eta \cap [M^2] \in H_m(M^2) \stackrel{j_*}{\longrightarrow} H_m(M^2, \Delta)$$

$$\downarrow^{\pi_*} \qquad \downarrow^{\pi_*}$$

$$H_m^{\Pi}(\Delta) \stackrel{d_*}{\longrightarrow} H_m^{\Pi}(M^2) \stackrel{\bar{j}_*}{\longrightarrow} H_m^{\Pi}(M^2, \Delta)$$

Lemma 7 gives $\pi'(b) = j_*[M^2]$, so $\beta \cap \pi'(b) = \beta \cap j_*[M^2] = j_*(\beta \cap [M^2])$. From (7), $\bar{j}_*\pi_*(\beta \cap [M^2]) = 0$, hence

(8)
$$\pi_*(\beta \cap [M^2]) = d_*(e)$$
 for some $e \in H_m^{II}(\Delta)$.

Now, by the definition, $c_{i,s}=1$ and $c_{i,j}=0$ $(1 \le j < s)$, hence

$$(9) (\sigma \times 1) \cup \beta = (\sigma \times 1) \cup (1 \times \sigma) = \sigma \times \sigma \in H^{2m}(M^2).$$

And, since deg $\alpha_j > 0$ if j > 1, we have

$$(10) (1 \times \sigma) \cup \beta = 0.$$

Therefore

$$\langle \pi_{1}(1 \times \sigma), \pi_{*}(\beta \cap [M^{2}]) \rangle$$

$$= \langle \pi^{*}\pi_{1}(1 \times \sigma), \beta \cap [M^{2}] \rangle$$

$$= \langle 1 \times \sigma + \sigma \times 1, \beta \cap [M^{2}] \rangle$$
 (by (ii) in Lemma 1)
$$= \langle (1 \times \sigma + \sigma \times 1) \cup \beta, [M^{2}] \rangle$$

$$= \langle \sigma \times \sigma, [M^{2}] \rangle$$
 (by (9) and (10))
$$= 1.$$

On the other hand

$$\langle \pi_1(1 \times \sigma), \pi_*(\beta \cap [M^2]) \rangle$$

$$= \langle \pi_1(1 \times \sigma), d_*(e) \rangle \qquad \text{(by (8))}$$

$$= \langle d^*\pi_1(1 \times \sigma), e \rangle$$

$$= 0 \qquad \qquad \text{(by (ii) in Lemma 3)}.$$

This is a contradiction.

Q.E.D.

PROOF OF THEOREM 2.

The first case: Let N be a tubular neighborhood of Δ in M^2 which is invariant under ξ . Then

$$H^{\pi}_{*}(M^2, \Delta) \cong H^{\pi}_{*}(M^2, N) \cong H^{\pi}_{*}(M^2-\Delta, N-\Delta)$$
.

If $b' \in H_*^{\Pi}(M^2 - \Delta, N - \Delta)$ is corresponding to b, then $U'_{\Pi \mid (M^2 - \Delta)_{\Pi}} \cap b'$ corresponds to $U'_{\Pi} \cap b$, which is 0, for $U'_{\Pi \mid (M^2 - \Delta)_{\Pi}} = 0$. Therefore

$$\theta^m \cap b = -\pi_1(\beta) \cap b$$
 (by (5))
 $\neq 0$ (by Lemma 8).

The second case: In this case,

$$Sq^i\alpha = \alpha \cup V_i = \sigma$$
 for some $\alpha \in H^{m-i}(M)$ $(0 < i \le m/2)$.

We consider the exact sequence

$$H_{II}^{2m-1}(M^2) \xrightarrow{d^*} H_{II}^{2m-1}(\Delta) \xrightarrow{\delta^*} H_{II}^{2m}(M^2, \Delta) \longrightarrow 0$$
.

For $\theta^{2i-1} \cup P(\alpha) \in H_{\pi}^{2m-1}(M^2)$, we have

$$d^*(\theta^{2i-1} \cup P(\alpha))$$

$$= \omega^{m+i-1} \times Sq^0 \alpha + \omega^{m+i-2} \times Sq^1 \alpha + \cdots + \omega^{m-1} \times Sq^i \alpha$$

$$= (\omega^m \times 1) \cup (\omega^{i-1} \times \alpha + \omega^{i-2} \times Sq^1 \alpha + \cdots + 1 \times Sq^{i-1} \alpha) + \omega^{m-1} \times \sigma.$$

Put

$$\beta' = \omega^{i-1} \times \alpha + \cdots + 1 \times Sq^{i-1}\alpha \in H_{II}^{m-1}(\Delta) = H^{m-1}(P^{\infty} \times M).$$

Since we have $\delta^*((\omega^m \times 1) \cup \beta' + \omega^{m-1} \times \sigma) = \delta^* d^*(\theta^{2i-1} \cup P(\alpha)) = 0$, the element $\delta^*((\omega^m \times 1) \cup \beta') = \delta^*(\omega^{m-1} \times \sigma) \in H^{2m}_{II}(M^2, \Delta)$ is the generator by Lemma 6. Therefore

$$1 = \langle \delta^*((\omega^m \times 1) \cup \beta'), b \rangle$$

$$= \langle (\omega^m \times 1) \cup \beta', \partial_* b \rangle$$

$$= \langle \beta', (\omega^m \times 1) \cap \partial_* b \rangle$$

$$= \langle \beta', d^* \theta^m \cap \partial_* b \rangle$$
 (by (i) in Lemma 3)
$$= \langle \beta', \partial_* (\theta^m \cap b) \rangle$$
.

In particular, $\theta^m \cap b \neq 0$. This completes the proof of Theorem 2. Q.E.D.

References

- [1] K. GROVE, Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesics, J. Differential Geometry, 8 (1973), 207-223.
- [2] A. HAEFLIGER, Points multiples d'une application et produit cyclique reduit, Amer. J. Math., 83 (1961), 57-70.
- [3] W. KLINGENBERG, Lectures on Closed Geodesics, Springer, Berlin-Heidelberg-New York,
- [4] N. H. Kuiper, Double normals of convex bodies, Israel J. Math., 2 (1964), 71-80.
- [5] M. NAKAOKA, Fudoten Teiri to Sono Shuhen, Iwanami, Tokyo, 1977 (in Japanese).
- [6] M. NAKAOKA, Generalizations of Borsuk-Ulam theorem, Osaka J. Math., 7 (1970), 423-441.
- [7] A. RIEDE, Lotgeodätische, Arch. Math., 19 (1968), 103-112.
- [8] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
- [9] N. STEENROD, Cohomology Operations, Ann. of Math. Studies, 50, Princeton Univ. Press, Princeton 1962.
- [10] F. TAKENS and J. WHITE, Morse theory of double normals of immersions, Indiana Univ. Math. J., 21 (1971), 11-17.

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU, YOKOHAMA 223