Tokyo J. MATH.
VoL. 5, No. 2, 1982

Double Normals of a Compact Submanifold

Dedicated to Professor Tosiya Saito on his sixtieth birthday

Kiyoshi HAYASHI

Kero University

Introduction

Let M be a smooth (C*) submanifold of R*. A double mormal is a
line segment combining two points p and ¢ of M (p+#q) at which the
segment is perpendicular to the tangent space T,M and T ,M. N. H.
Kuiper [4] showed that there are at least n double normals for convex
bodies in R*. (For generic immersions, see [10].) More generally, let
L be a Riemannian manifold and M a submanifold of L. A non-constant
geodesic 7: [0, 11— L is called an (M, M)-geodesic if Y(i)e M and (3) L
T;owM (1=0,1). The problem of this type is treated in A. Riede [T7].
We have

THEOREM 1. Let (R", g) be a complete C* Riemannian manifold and
M a compact C° submanifold of R without boundary.
Then there exist at least dim M+1 (M, M)-geodesics in R".

In counting the number, we identify ¥ and its inverse v7'(t)=7(1—1%).

§1. Path space and involution.
Let (R*, 9) and M be as in Theorem 1. We define
Q={w: [0, 1]— R"; w: piecewise smooth and w(0)e M, w(1)e M}.

2 is endowed with the compacf open topology. We consider the involu-
tion &: 2—Q defined by tw=w™* and denote by 4’ the fixed point set
of &.

In general, for a topological space X with continuous involution ¢&:
X— X, we denote by HI(X) the equivariant homology group with Z,
coefficient, that is H,(X)=H, (X)), where X, is the orbit space of S*x X
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by the involution ({, x)r—(—¢, ¢x). The equivariant cohomology group
is similarly defined [5].
Satz (5.5) in [7] asserts that

PROPOSITION. If there exist be HY(2, 4') and «a, a,, -+, a,€ H(Q)
with deg a,>0 (=1, 2, ---, s), such that

(aIU AR Ua.)nb#o .
Then there are at least s+1 (M, M)-geodesics.

In fact, by the naturality (for example, 5.6.16 in [8]), ) o_s, . blays
the role of u, in Definition (5.4) in [7). Remark that one of u, is 1 and
take he H{(R, 4) with <k, (q,U---Ua,)Nb) 0.

Instead of 2, the Hilbert manifold of H!-curves can be used [3],
since the condition (C) of Palais-Smale for our problem is also proved
in [1]. So the following theorem yields Theorem 1.

THEOREM 2. Let M be a compact connected mantifold without
boundary with dim M=m. We put M*=MxM and define &: M*— M? by
&z, y)=(y, =) .

We denote by 4 the diagonal set {(x, x); x€ M}. Then there exist be
HE.(M?, 4) and 6 € Hy(M? such that 6"Nb+0 in HE(M? 4).
The proof ‘is given in §2.

PROOF OF THEOREM 1. Let @: M*— 2 be the function defined by
O(x, y)(t)=x+t(y—=x). Clearly @ is a homotopy equivalence and we can
take the homotopy to be equivariant. Also #(4) is a deformation retract
of 4’. Thus naturally we have

HI(M*, H)=H(2, 0(4)=H(Q, 4

and
Hi(M»=H};(Q) .
Therefore, by the naturality, Theorem 2 gives the assumption of
the proposition, putting s=m. This proves Theorem 1. Q.E.D.

§2. Proof of Theorem 2.

Let M, 4 and & M*— M* be as in Theorem 2 and 7: S=x M*— M}
the covering projection. By the Kiinneth formula, we identify

(1) H,M»)=H,(8S*xM? and H*(M*)=H*(S*xM? .
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Let #: H*(M?* — H}(M?* be the transfer. The following lemma is
easily proved.

LEMMA 1.

(1) T(BNT®)=m(B)NDb

where 7t,: H (M?, 4)—HI(M?, 4), *: HI(M?, 4)—H (M?, 4) and B8 H*(M?),
be HI(M?, 4).

(ii) T*r(axB)=axB+Bxa for a, BeH*(M).

Let p: M} — P>=RP> be the mapping derived from the projection
p': 8 x M*— 8=, and 6e Hy(M? the characteristic class p*(w), where
w € H'(P>) is the generator. Let P: H*(M)— H#¥(M?* be the external
square operation (§4 in [6] or [5]) and {a, a,, ---, a,} a basis for H*(M).
Then Steenrod Isomorphism Theorem (Theorem 4 in [6] or Theorem 20.2
in [5]) gives

LEMMA 2. 6*UP(a;) (:=0,1, ---; j=1,2, ---,3) and m(a;xXa;) A=
1<J=8) form a basis for H}(M?.

Let d: M— M?* be the diagonal map, that is, d(x)=(x, x). We identify
by d

(2) M=4 and 4,=P°xXM,
and denote by d* the restriction H}(M?»— H}(AH)=H*(P*xM). We have

LEMMA 3.

(i) d*@)=wx1,

(ii) d*m=0: H*(M*— H};(4),

(1ii) d*Pla)=>D\1j=; ®* X S¢’a (a € H*(M)).

PrROOF. (i) is easy. (ii) is given by Lemma 4.1 in Chapter VII of
[9] (or the proof of (ii) of Theorem 20.3 in [5]). (iii) is Theorem 5 in
[6]. » Q.E.D.

We put m=dim M, g¢=d’eg o; and assume ¢,=g¢g; if 1<j, so that
a,=1 and a,=o€ H"(M), the generator.

LEMMA 4. d*(6%), d*(6* U P(ay)), -+ -, d*(@**rU P(a,)) are linearly
independent in HE(M) (k—29,=0).

PROOF. d*(0* %« U P(a,))=iirj=k—0, @' X S¢’a, (1=g=7) contains the
term w* ‘% xa, (j=0), and for other terms (j>0), deg S¢’a,>g,. This
yields the lemma. Q.E.D.
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COROLLARY 5. d*: HY(M*»=HE(4) +f k=2m.
Hence HE(M?, 4)=0 if k>2m.

LEMMA 6. In the exact sequence

Hy- M) -2 m2-0) -2 H (M2, 4)—0
Hi*(M?* N)=Z, and 6*(@™*x0) is the generator.

ProoF. dim H}*'(4)=s, dim (Im d*)=s3—1 by Lemma 4 and w™!'Xx
o¢lmd*. Q.E.D.

LemMmA 7. #n': HL(M? 4)=H,,(M?, 4)=Z,.

ProoF. For the inclusion j: M*c(M? 4), it is easily seen j*:
H*™(M?, 4)=H*™(M?.
In the commutative diagram

i (4) — H™7(4)

o ) o

Hi (M2, 4) —— H™(M?, 4) — Hir(M?, 4)
|
HZm(Mz) ,

we have 7*0*(w™*x0)=0. By Lemma 6, Im 7*=0, hence =, is one-to-
one. Since dim H**(M?, 4)=dim H{(M?, 4)=1, the lemma is proved.
Q.E.D.

Let be HZ(M?* 4) be the generator. This b and 6 shall give
Theorem 2.
Let Ve H(M) be the Wu class, that is

(8) alU V,=8¢’a for any ac H™ (M) .
Vo=1 and V,=0 for i>m/2.
We shall prove Theorem 2 by different ways corresponding to

the first case: ;=0 for any >0,

and
the second case: V,;#0 for some 1>0.

In the exact sequence
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(4) Hy (M, M — ) 25 Hp 0y - Hp (M — 1)

where 4,: M*—Ac M? and j,: M*c(M? M*—4), let U, Hy(M?, M*—4)=Z,
be the generator and U;,=j*(U,)e Hp(M? the equivariant diagonal
cohomology class for the trivial action on M.

Let C=(c;;) be the inverse matrix of Y=(y), Wwhere y,;=
{a;Ua;, [M]) € Z, (M]e H,(M) is the fundamental homology class). It
is known that [2 or Theorem 22.1 in 5]

[m/2]
U;1= izo 0M—21P( Vi) +§4 (0t5+0uc,-,-)7t1(a, ><aj) .
= ]

So for the first case, we have

(5) Up=0"+m(R)
where
(6) B=Z(ci,--i-c“c_,-,-)aixa,-eﬂ’"(Mz) .

g

Then we have
LEMMA 8. m(B)Nb+=0 in HI(M?, 4).
PROOF. Assume that '
(7) T (BN7T'(b)=m(B)Nb=0
(see (i) in Lemma 1). Consider the commutative diagram

B0 [M*] e Ha(M?) -2 H (M, 4)
H(4) -2 gn (s 2 H1or, 4) .

Lemma 7 gives 7'(b)=j,[M?®], so gN7'®)=LN j.[M*]=7.(8N[M?]). From
(D), 7.7«(BN[M*])=0, hence

(8) T.(BN[M?])=d,(e) for some ecHn(d).
Now, by the definition, cl,=1‘ and ¢,;=0 (1=j<s), hence
(9) (exDHUB=(ex1)U(lxX0o)=0x%x0c€ H™M? .

And, since deg a;>0 if j>1, we have
(10) 1xo)UB=0.
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Therefore

(m\(1X0), T (BN [M]))
={(z*m(1 X o), BN[M°]>
={dxo+0ox1, gN[M]) (by (ii) in Lemma 1)
=1 Xoc+ox1)Ug, [M*])
={o X o, [M*]) (by (9) and (10))
=1.

On the other hand
{mi(1 X 9), m, (BN [M?]))
={m(1X0a),d.(e) (by (8)
={d*m,(1x0), €)
=0 (by (ii) in Lemma 3) .

This is a contradiction. Q.E.D.

PROOF OF THEOREM 2.

The first case: Let N be a tubular neighborhood of 4 in M* which
is invariant under ¢. Then '

H{(M*, A)=Hi(M*, Ny =HI(M?*—4, N—4) .

If b'e H{(M*—4, N—4) is corresponding to b, then Uniwra, N0
corresponds to U,Nbd, which is 0, for Uniur—a;=0. Therefore

"Nb=—m(B)Nd  (by (5))
#0 (by Lemma 8).

The second case: In this case,
S¢‘a=aU V,=0 for some acH™ ‘(M) 0<t=m/2) .

We consider the exact sequence

* t 3
Hr (M) -2 i) -2 Hin M2, 4)—0 |
For 6*~'UP(a)e Hy**(M?, we have

d* (02{—1 U P(a))
="' X S¢°a+ o™t x Sg'a+ - - - + 0™ X Sq'ar
=(@"X1)U(o"'Xa+w'*xS¢ga+---+1xS¢" 'a)+ 0™ X0 .
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B=w*xa+---+1xSq¢"'aec Hp '(4)=H™(P*x M) .

Since we have *(W"x1)ULR +w™*x0o)=0*d*(6**UP(a))=0, the
element 0*((w™x1)UR)=06*(w™*x0)e H(M? 4) is the generator by
Lemma 6. Therefore

1={*(@™x 1)U g, b
={(@"x1)U g’ a,b)
=<{g&’, (™ x1)Na,b>
={B', d*9™Nd,b) (by (i) in Lemma 3)
= <B'; a*(ﬁm N b)> .

In particular, ™ Nb=<0. This completes the proof of Theorem 2. Q.E.D.
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