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This paper is concerned with the approximation of weak*-measurable
functions by means of simple functions. Let $X$ be a Banach space, $X^{*}$

the dual space of $X$, and let $(S, \Sigma, \mu)$ be a finite nonnegative complete
measure space. In this paper we mainly treat with $X^{*}$ -valued functions
defined on the set $S$ ; hence we call $(S, \Sigma, \mu)$ the base measure space in
the following. A function $f:S\rightarrow X^{*}$ is said to be weak*-measurable if
for every $x\in X$ the numerical function $\langle x, f\rangle$ is $\mu$-measurable. This
kind of definition of measurability for $X^{*}$-valued functions does not assume
the existence of approximate sequence of simple functions and is generi-
cally called a scalar measurability. On the other hand, a function
$f:S\rightarrow X^{*}$ is said to be strongly measurable if there exists a sequence
$(f_{n})$ of simple functions with $\lim||f_{n}(s)-f(s)\Vert=0$ a.e.; hence the existence
of an approximate sequence $(f_{n})$ of simple functions is involved in the
definition itself. By use of the martingale argument, it is possible to
find for every norm-bounded weak*-measurable function $f:S\rightarrow X^{*}$ a
generalized sequence $(f_{\alpha})$ of simple functions approximating $f$ in the sense
that $\lim_{\alpha}||\langle x, f_{a}\rangle-\langle x, f\rangle\Vert_{L^{1}(\mu)}=0$ for each $x\in X$. However, the $weak^{*}-$

measurability of a function $f$ does not necessarily imply the existence
of a sequence $(f_{n})$ of a countable number of simple functions that
approximate $f$ in the sense that
$(^{*})$ $\langle x, f_{n}\rangle\rightarrow\langle x, f\rangle$ a.e.
for each $x\in X$, where the null set on which the convergence does not
hold may vary with $x$ . More precisely, such sequential approximation
of weak*-measurable functions by simple functions need not be possible
unless the Banach space $X$ or else the base measure space $(S, \Sigma, \mu)$ i8
suitably chosen. We will see later that even a weakly measurable
function does not necessarily have approximate sequences if the base
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measure space is not perfect. The approximation problem as mentioned
above arised both in the study of generalized derivatives of strongly
absolutely continuous functions which take values in non-reflexive Banach
spaces (such derivatives are, in many cases, properly weak*-measurable)
and in the investigation of nonlinear differential equations in Banach
spaces. The approximation problem is not only fundamental in the vector
measure theory but also an interesting problem in the Banach space
theory in connection with the study of so-called weak Radon-Nikodym
property. In what follows, we say that an $X^{*}$-valued function $f$ on $S$

has the sequential approximation property with respect to the base
measure space $(S, \Sigma, \mu)$ if it has an approximate sequence of simple
functions satisfying $(^{*})$ .

The first purpose of this paper is to investigate some sufficient
conditions for the range space of $f$ and those for the base measure space
of $f$ in order that $f$ have the sequential approximation property. We
shall establish the following three results:

(i) If the range space $X^{*}$ has the weak Radon-Nikodym property,
then for every finite nonnegative complete measure space $(S, \Sigma, \mu)$ every
weak*-measurable function has the sequential approximation property.

(ii) If the base measure space $(S, \Sigma, \mu)$ is separable (i.e., $\Sigma$ is
generated by a denumerable number of subsets of $S$), then every $weak^{*}-$

measurable function has the sequential approximation property.
(iii) If the base measure space $(S, \Sigma, \mu)$ i8 perfect, then every norm-

bounded Pettis integrable function $f$ has the sequential approximation
property.

The proofs of the above theorems (i), (ii), (iii) are given by applying
the martingale argument under the respective assumptions as mentioned
in the statements.

Recently Geitz has given a characterization of Pettis integrable
functions on a perfect measure space in terms of sequential approxima-
tion property. In fact, he showed that a norm-bounded weakly
integrable function is Pettis integrable if and only if it has the sequential
approximation property. Hence Theorem (iii) proves the necessity of his
theorem (though our proof is different from the proof due to Geitz).
Now our second purpose is to give a characterization of Gel’fand
integrable functions in terms of sequential approximation property.
Although our results do not characterize complete classes of functions
with the sequential approximation property, we believe that these results
are general enough for the discussion of important classes of vector
measures.
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\S 1. Preliminaries.

In what follows, given a pair $x\in X$ and $x^{*}\in X^{*}$ we write $\langle x, x^{*}\rangle$

for the value $x^{*}(x)$ of $x^{*}$ at the point $x$ .
Let $(S, \Sigma, \mu)$ be a finite nonnegative complete measure space. We

say that the measure space $(S, \Sigma, \mu)$ is separable if the a-field $\Sigma$ is
generated by a countable number of subsets of $S$ . Recall that $(S, \Sigma, \mu)$

is separable iff $L^{1}(\mu)$ is a separable Banach space. Let $\Gamma$ be a linear
subset of $X^{*}$ total on $X$. A function $f:S\rightarrow X$ is said to be $\Gamma$-measurable
(resp. $\Gamma$-integrable), whenever $\langle x^{*}, f(\cdot)\rangle$ is measurable (resp. integrable)

for every $ x^{*}\in\Gamma$ . The $\Gamma$-measurability is generically called a scalar
measurability. If in particular, $X=Y^{*}$ for a Banach space $Y$ and $\Gamma=Y$,
we say that an X-valued F-measurable ( $\Gamma$-integrable) function $f$ is $weak^{*}-$

measurable (resp. weak*-integrable). If $\Gamma=X^{*}$ , then $f$ is said to be
weakly measurable (resp. weakly integrable). If $\nu:\Sigma\rightarrow X$ is a vector
measure, then $|\nu|(\cdot)$ denotes the total variation of $\nu$ . If $|\nu|$ is a-finite,
then $\nu$ is said to be of $\sigma- finite$ variation. A weak*-measurable function
$f:S\rightarrow X^{*}$ is said to be weak* uniformly bounded in the sense of Musiat
([11]) if there exists a finite number $M$ such that for every $x\in X$, we
have $|\langle x, f\rangle|\leqq M||x\Vert$ a.e..

It is well-known (see [14]) that if $f(\cdot):S\rightarrow X$ is weakly integrable,
then for each $ E\in\Sigma$ there exists a $\nu(E)\in X^{**}$ such that $\langle x^{*}, \nu(E)\rangle=$

$\int$ $\langle x^{*}, f\rangle d\mu$ for all $x^{*}\in X^{*}$ . Such an element $\nu(E)$ is called the Dunford
$i^{E}ntegral$ of $f$ over $E$ and we write $\nu(E)=(D)-\int_{B}fd\mu$ . If in particular

$(D)-\int fd\mu\in X$ for each $ E\in\Sigma$ , then $f$ is said to be Pettis integrable and

we write $(P)-\int_{E}fd\mu$ for the integral $(D)-\int_{B}fd\mu$ . It is known (See [4].)

that if $f:S\rightarrow X^{*}$ is weak*-integrable, then for each set $ E\in\Sigma$ there is a
$\nu(E)\in X^{*}$ such that $\langle x, \nu(E)\rangle=\int_{E}\langle x, f\rangle d\mu$ for all $x\in X$. In this connec-
tion we sometimes say that $f:S\rightarrow X^{*}$ is Gel’fand integrable if it is
weak*-integrable over $S$ . The element $\nu(E)$ is called the Gel’fand
integral of $f$ over $E$; and we write

(1.1) $\nu(E)=(G)-\int_{E}fd\mu$ .

If in particular $\nu$ is of bounded variation, the integrand $f$ is called a
Gel’fand derivative of $\nu$ .

The following theorem due to Rybakov [13] will be frequently used
in our argument below:

THEOREM R. Let $(S, \Sigma, \mu)$ be a finite nonnegative complete measure
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space, $X$ a Banach space, and let $\nu;\Sigma\rightarrow X^{*}$ be a $\mu$-continuous measure
of $\sigma- finite$ variation. Then there exists a weak*-integrable function
$f:S\rightarrow X^{*}$ such that $\nu(E)=(G)-\int_{B}fd\mu$ for $ E\in\Sigma$ .

We now introduce two concepts treated in this paper.

DEFINITION 1. Let $(S, \Sigma, \mu)$ be a finite nonnegative complete measure
space and let $f$ be a weak*-measurable function from $S$ to $X^{*}$ . Then
the function $f$ is said to have the sequential approximation property
with respect to $(S, \Sigma, \mu)$ if there exists a sequence $(f_{n})$ of $X^{*}$-valued
simple functions such that for every $xeX$, we have
(1.2)

$\lim_{n\rightarrow\infty}\langle x, f_{n}\rangle=\langle x, f\rangle$ a.e. ,

where the exceptional set (i.e., the null set on which the convergence
does not hold) for (1.2) is allowed to vary with $x$ . Moreover, a dual
Banach space $X^{*}$ is said to have the sequential approximation property
if for every finite nonnegative complete measure space $(S, \Sigma, \mu)$ and
every bounded $X^{*}$-valued weak*-measurable function $f$ on $S,$ $f$ has the
sequential approximation property with respect to $(S, \Sigma, \mu)$ .

DEFINITION 2. Let $(S, \Sigma, \mu)$ be a finite nonnegative complete measure
space and let $\nu$ be a $\mu$-continuous vector measure. Then $\nu$ is said to
satisfy condition (SA) with respect to $(S, \Sigma, \mu)$ if there exists a sequence
$(f_{n})$ of $X^{*}$-valued simple functions such that for every $x\in X$,
(1.3)

$\lim_{\rightarrow\infty}\langle x, f_{n}\rangle=g_{x}$ $a.e.$ ,

where $g_{x}$ denotes the Radon-Nikodym derivative $ d/d\mu\langle x, \nu\rangle$ of the scalar-
valued measure $\langle x, \nu\rangle$ on $\Sigma$ and, in (1.3), the exceptional set is allowed
to vary with $x$ .

Suppose that a $\mu$-continuous vector measure $\nu:\Sigma\rightarrow X^{*}$ satisfies con-
dition (SA) with respect to $(S, \Sigma, \mu)$ . Let $(f_{n})$ be a sequence of simple
functions satisfying (1.3) and let $\nu_{n}$ be the indefinite Bochner integral
of $f_{n}$ . If $\nu$ has a weak*-integrable derivative $f$ such that $\nu(E)=(G)-$
$\int_{B}fd\mu$ for $ E\in\Sigma$ , then $\lim_{n}\langle x, f_{n}\rangle=\langle x, f\rangle$ a.e. for each $x\in X$; that is,
the weak*-derivative $f$ of $\nu$ has the sequential approximation property.
Moreover, if $|\langle x, f_{n}\rangle|\leqq g_{x}a.e$ . for each $x\in X$ and each $n\geqq 1$ , then
$\lim_{n}|\langle x, \nu_{n}\rangle-\langle x, \nu\rangle|(S)=0$ for each $x\in X$.

We here mention the relationship between the sequential approxima-
tion property for weak*-measurable functions and condition (SA) for
vector measures.
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PROPOSITION 1.1. Let $f:S\rightarrow X^{*}$ be weak*-integrable and let $\nu$ be the
Gel’fand indefinite integral defined through $f$ by (1.1). Then $f$ has the
sequential approximation property if and only if $\nu$ satisfies condition
(SA).

Next, let $f:S\rightarrow X^{*}$ be weak*-measurable. Then one can find by use
of the lattice properties of $L^{1}(\mu)$ a disjoint family of measurable sets
$\{S_{\iota}\in\Sigma, m\geqq 1\}$ such that $S=\bigcup_{m=1}^{\infty}S_{m}$ and, for each $m,$ $\chi_{s_{n}}.f(=f^{(m)})$ is weak*
uniformly bounded in the sense of Musial [11]. Let $\Sigma(S_{n*})=\{Ee\Sigma:E\subseteqq S_{n}\}$

and let $\tilde{\nu}_{m}:\Sigma(S_{\iota})\rightarrow X^{*}(m\geqq 1)$ be vector measures defined respectively
through $f^{(m)}$ by (1.1), i.e., $\nu_{m}\sim(E)=(G)-\int_{B}f^{(m)}d\mu$ for $Ee\Sigma(S.)$ . Now
suppose that there exists a sequence $(f_{m,n})$ of simple functions such that
the support of each $f_{r.n}$ is contained in $S_{m}$ and $\lim_{n}\langle x, f_{n,n}\rangle=\langle x, f^{(fn)}\rangle=$

$d/d\mu\langle x, \sim\nu_{m}\rangle a.e$ . for each $x\in X$. Then, by putting $f_{n}=\sum_{m=1}^{n}f_{m,n}$ , we have
$\lim_{n}\langle x, f_{n}\rangle=\langle x, f\rangle$ a.e. for each $x\in X$. So, in order to find an approximate
sequence of simple functions for a given weak*-measurable function $f$,
we may assume without loss of generality that $f$ is weak*-uniformly
bounded on $S$ ; and it suffices to show that the associated vector measure
$\nu$ satisfies condition (SA) with respect to $(S, \Sigma, \mu)$ .

Therefore, we will treat in the following only the approximation of
$\mu$-continuous vector measure $\nu$ in the sense of Definition 2, rather than
that of weak*-measurable function $f$ in the sense of Definition 1.

Finally, in connection with the study of Banach spaces with the
sequential approximation property, we list three kinds of Radon-Nikodym
properties. A Banach space $X$ is said to have the Radon-Nikodym
property (denoted simply as RNP) if for every finite nonnegative complete
measure space $(S_{f}\Sigma, \mu)$ and every $\mu$-continuous X-valued measure
$\nu:\Sigma\rightarrow X$ of bounded variation, there exists a strongly measurable func-
tion $f:S\rightarrow X$ such that $\nu(E)=(B)-\int_{B}fd\mu,$ $ E\in\Sigma$ , where $(B)-$ means
that the integral is taken in the sense of Bochner. A Banach space $X$

has the weak Radon-Nikodym property (hereafter denoted WRNP) if
every X-valued measure $\nu$ on $(S, \Sigma, \mu)$ which is $\mu$-continuous and of
bounded variation has a Pettis integrable derivative $f:S\rightarrow X,$ $i.e.,$ $\nu(E)=$

$(P)-\int_{B}fd\mu$ for $ E\in\Sigma$ . The RNP is properly stronger than WRNP and
a general dual Banach space does not necessarily have WRNP. Likewise,
we may define the weak* Radon-Nikodym property (denoted as $W^{*}RNP$),
namely: A dual Banach space $X^{*}$ has the weak* Radon-Nikodym
property if every $X^{*}$-valued measure on $(S, \Sigma, \mu)$ which is $\mu$-continuous
and of bounded variation has a Gel’fand integrable derivative $f:S\rightarrow X^{*}$ ,
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i.e. $\nu(E)=(G)-\int_{B}fd\mu$ for $ E\in\Sigma$ . But, as is seen from Theorem (R) as
mentioned above, every dual space $X^{*}$ possesses $W^{*}RNP$ and it is
meaningless to discuss the $W^{*}RNP$ for dual Banach spaces.

\S 2. Characterizations of the sequential approximation property.

Throughout this section, let $(S, \Sigma, \mu)$ be a finite, nonnegative complete
measure space. In this section we shall give some general criteria for
the sequential approximation property. By a separable $\sigma$-subfield $\Sigma_{0}$ of
$\Sigma$ we mean a $\sigma- field$ generated by a denumerable number of elements of
$\Sigma$ (see [2]).

THEOREM 2.1. Let $\nu:\Sigma\rightarrow X^{*}$ be a bounded $\mu$-continuous measure.
Then $\nu$ satisfies condition (SA) with respect to $(S, \Sigma, \mu)$ if and only if
there exists a separable a-subfield $\Sigma_{0}$ of $\Sigma$ such that all of the $\mu$-null
sets are contained in $\Sigma_{0}$ and the Radon-Nikodym derivative $ g_{x}=d/d\mu\langle x, \nu\rangle$

is $\Sigma_{0}$-measurable for each $x\in X$.
PROOF. The necessity: Let $(f_{n})$ be a sequence of simple functions

such that for each $x\in X,$ $\langle x, f_{n}\rangle\rightarrow g_{\$}$ a.e. as $ n\rightarrow\infty$ . Let $f_{n}=\sum_{Ae\pi},$ $x_{n,A}^{*\chi_{\Delta}}$ ,
where $x_{n,A}^{*}$ are elements of $X^{*}$ and $\pi_{n}$ is a partition of $S$ . Let $\Sigma_{n}$ be
the a-subfield generated by $\pi_{n}$ and let $\Sigma_{0}$ be the a-subfield generated by
$\bigcup_{n=1}^{\infty}\Sigma_{n}$ . Then it follows that $\Sigma_{0}$ is a separable $\sigma$-subfield of $\Sigma$ and for
each $xeX,$ $g$. is $\Sigma_{0}$-measurable.

The sufficiency: Let $\Sigma_{0}$ be a separable a-subfield of $\Sigma$ such that $g_{x}$

is $\Sigma_{0}$-measurable for each $x\in X$. Then an increasing sequence $(\pi_{n})$ of $\Sigma_{0}-$

partitions of $S$ can be chosen so that $\Sigma_{0}$ may be generated by $\bigcup_{n=1}^{\infty}\pi_{n}$ . Let
$\Sigma_{n}$ be the $\sigma$-subfield generated by $\pi_{n}$ and put $f_{n}=f_{\pi_{\hslash}}=\sum_{Ae\pi_{\hslash}}(\nu(A)/\mu(A))\chi_{A}$ .
Then, the sequence $\{\langle x, f_{n}\rangle, \Sigma_{n}, n\geqq 1\}$ form a martingale for each $x\in X$.
Moreover, since $(f_{n})$ is $L^{1}$-bounded and $\int_{r}|\langle x, f_{n}\rangle|d\mu\leqq|\langle x, \nu\rangle|(E)$ for each
$E\in\Sigma_{n}(|\langle x, \nu\rangle|(E)$ being the total variation of the measure $\langle x, \nu(\cdot)\rangle$ over
$E)$ , one has $\lim_{\mu(B)\rightarrow 0 ,Ee\Sigma}\int_{B}|\langle x, f_{n}\rangle|d\mu=0$ . Now by the martingale mean
convergence theorem (See e.g., [4, V. 2.4 and V. 2.8].) there exists a
conditional expectation $\tilde{g}_{x}=E(g_{l}|\Sigma_{0})$ of $g_{l}$ relative to $\Sigma_{0}$ such that
$\langle x, f_{n}\rangle\rightarrow g_{l}\sim$ in $L^{1}(\mu)$ as $ n\rightarrow\infty$ . Since $g_{x}$ is also $\Sigma_{0}$-measurable, we have
$ g_{l}=g_{x}\sim$ a.e.. Hence $\langle x, f_{n}\rangle\rightarrow g_{x}$ in $L^{1}(\mu)$ , and so $\langle x, f_{n}\rangle\rightarrow g_{x}$ a.e. by Theorem
V. 2.8 of [4]. This means that $\nu$ satisfies condition (SA) with respect
to $(S, \Sigma, \mu)$ . q.e.d.

REMARK. We note that the above proof shows that, whenever $\nu$
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satisfies condition (SA) with respect to $(S, \Sigma, \mu)$ , we can take an ap-
proximate sequence $(f_{n})$ of simple functions in such a way that for each
$x\in X,$ $\langle x, f_{n}\rangle\rightarrow g_{x}$ a.e. and the range of each $f_{n}$ is contained in the closed
linear subspace spanned by $\nu(\Sigma)$ . The following result is obvious from
the above theorem:

THEOREM 2.2. If $(S, \Sigma, \mu)$ is a separable measure space, then every
$X^{*}$ -valued $\mu$-continuous measure of bounded variation $sati\epsilon fies$ condition
(SA).

We next list some well-known facts (See [6, VI. 8.1].) which will be
used in the sequel:

Let $(S, \Sigma, \mu)$ be a measure space and let $T$ be any bounded linear
operator of the Banach space $X$ into $L^{1}(\mu)$ . Then there is a uniquely
determined set function $\nu:\Sigma\rightarrow X^{*}$ such that

(2.1) for every $x$ in $X$ the set function $\langle x, \nu\rangle$ is $\mu$-continuous and
countably additive on $\Sigma$ , and

(2.2) $ Tx=d/d\mu\langle x, \nu\rangle$ for $x$ in $X$ .
Moreover the norm of $T$ satisfies

(2.3) $\sup_{Be\Sigma}||\nu(E)||\leqq\Vert T\Vert\leqq 4\cdot\sup_{Be\Sigma}\Vert\nu(E)\Vert$

Conversely, if $\nu:\Sigma\rightarrow X^{*}$ is a vector measure satisfying (2.1) and if $T$ is
defined by (2.2), then $T$ becomes a bounded linear operator from $X$ into
$L^{1}(\mu)$ which satisfies (2.3). Furthermore, $T$ is weakly compact if and
only if $\nu(\cdot)$ is countably additive on $\Sigma$ with respect to the strong
topology of $X^{*}$ .

Now the sequential approximation property is characterized in terms
of the above-mentioned linear operator $T$ in the following way:

THEOREM 2.3. Let $\nu:\Sigma\rightarrow X^{*}$ be a bounded $\mu$-continuous vector
measure. Let $T$ be a continuous linear operator from $X$ to $L^{1}(\mu)$ defined
through $\nu$ by (2.2). Then $\nu$ satisfies condition (SA) with respect to
$(S, \Sigma, \mu)$ if and only if $T$ has a $no\gamma m- sepa\gamma able$ range.

PROOF. The necessity: Suppose that $\nu$ satisfies condition (SA) with
respect to $(S, \Sigma, \mu)$ . Then, in virtue of a remark mentioned before
Theorem 2.2, one finds a countably generated a-subfield $\Sigma_{0}$ of $\Sigma$ such
that each $g\in T(X)$ is $\Sigma_{0}$-measurable. Hence $T(X)\subseteqq L^{1}(S, \Sigma_{0}, \mu|\Sigma_{0})$ . On the
other hand, $L^{1}(S, \Sigma_{0}, \mu|\Sigma_{0})$ is norm-separable; hence so is $T(X)$ .
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The sufficiency: Suppose that $T(X)$ is separable. Then there exists
a countable subset $D$ of $T(X)$ such that $D$ is norm-dense in $T(X)$ , and
so there is a countably generated a-subfield $\Sigma_{0}$ of $\Sigma$ such that each $g\in D$

is $\Sigma_{0}$-measurable. Hence for each $g\in T(X)$ there is a sequence $(g_{n})\subseteqq D$

with $\Vert g_{n}-g\Vert_{1}\rightarrow 0$ as $ n\rightarrow\infty$ . Now one can choose a subsequence $(g_{n_{k}})$ of
$(g_{n})$ such that $g_{n_{k}}\rightarrow g$ a.e.. Since each $g_{n_{k}}(k\geqq 1)$ is $\Sigma_{0}$-measurable, $g$ is also
$\Sigma_{0}$-measurable. Thus, $T(X)\subseteqq L^{1}(S, \Sigma_{0}, \mu|\Sigma_{0})$ . Consequently, it follows
from Theorem 2.1 that $\nu$ satisfies condition (SA) with respect to
$(S, \Sigma, \mu)$ . q.e.d.

Let us consider the class $\mathfrak{M}$ of all the $X^{*}$-valued vector measures
which are bounded and $\mu$-continuous with respect to a fixed finite non-
negative measure space $(S, \Sigma, \mu)$ . The next result shows that the sub-
class consisting of $X^{*}$-valued measures satisfying condition (SA) with
respect to $(S, \Sigma, \mu)$ is closed in $\mathfrak{M}$ under the weak* convergence.

THEOREM 2.4. Let $(\nu_{n})$ be a sequence of $X^{*}$-valued $\mu$-continuous and
bounded vector measure on $\Sigma$ satisfying condition (SA) with respect to
$(S, \Sigma, \mu)$ . Suppose that for each $ E\in\Sigma$ the sequence $(\nu_{n}(E))$ is weak*
convergent. If we define a set function $\nu:\Sigma\rightarrow X^{*}$ by $\nu(E)=w^{*}-\lim_{n}\nu_{n}(E)$

for each $ E\in\Sigma$ , then $\nu$ becomes an $X^{*}$ -valued, $\mu$-continuous and bounded
vector measure satisfying condition (SA).

PROOF. Let $T_{n}$ and $T$ be linear operators from into $L^{1}(\mu)$ associated
respectively through (2.2) with $\nu_{n}$ and $\nu$ . For each $E\in\Sigma,$ $\nu_{n}(E)\rightarrow\nu(E)$

in the weak* topology, so that $\sup_{n}$ Il $\nu_{n}(E)||<+\infty$ for each $ E\in\Sigma$ . Hence
from Nikodym’s boundedness theorem ([4, p. 14]) it follows that
$\sup_{n}\Vert\nu_{n}||(S)(=M)<+\infty$ , where $\Vert\nu_{n}\Vert(S)$ denotes the semi-variation of $\nu_{n}$

(see [4], p. 2). Also, 1 $ T_{n}x\Vert_{1}=|\langle x, \nu_{n}\rangle|(S)\leqq\Vert\nu_{n}\Vert(S)\Vert x\Vert\leqq M\Vert x\Vert$ , and hence
$(T_{n}x)$ is $L^{1}$-bounded for each $x\in X$. This means that $(T_{n}x)$ converges to
$Tx$ in the weak topology of $L^{1}(\mu)$ (see [6], IV. 8.7). Let $Y=\overline{sp}(\bigcup_{n=1}^{\infty}T_{n}(X))$ .
$Y$ is separable since each $T_{n}(X)$ is separable. So, $ Tx\in$ Y. Consequently,
$T(X)\subseteqq Y$ and $T(X)$ turns out to be norm-separable. q.e. $d$ .

\S 3. Scalarly measurable functions on perfect measure spaces.

In this section we discuss some sufficient conditions on the base
measure space $(S, \Sigma, \mu)$ in order that vector measures on $\Sigma$ satisfy
condition (SA). If the range space $X^{*}$ of functions under consideration
is supposed to be arbitrary, the sequential approximation property
depends upon the choice of the base measure spaces.

Firstly, if $(S, \Sigma, \mu)$ is separable, then every $X^{*}$-valued, $\mu$-continuous
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vector measure of bounded variation satisfies condition (SA) with respect
to $(S, \Sigma, \mu)$ . In view of this we may give a characterization of Gel’fand
integrable functions in terms of sequential approximation property.

THEOREM3.1. Let $(S,\Sigma,\mu)beaseparablemeasurespaceandf:S\rightarrow X^{*}$

be a norm-bounded function. Then $f$ is Gel’fand integrable if and only
if there exists a sequence $(f_{n})$ of simple functions such that $\langle x, f_{n}\rangle\rightarrow\langle x, f\rangle$

$a.e$ . for each $x\in X$.
Secondly, we consider the case in which $(S, \Sigma, \mu)$ is perfect. A finite

nonnegative complete measure space $(S, \Sigma, \mu)$ is said to be perfect if forevery $\mu$-measurable function $\phi:S\rightarrow R$ there is a Borel set $B$ in $R$ such
that $B\subseteqq\phi(S)$ and $\mu(\phi^{-1}(B))=\mu(S)$ . Perfect measure spaces play an
important role in the measure theory; and it should be noted that the
class of perfect measure spaces is considerably broad.

We begin by stating a slight modification of a result due to Stegall
[8], Proposition $8J$ .

THEOREM S. Let $(S, \Sigma, \mu)$ be a perfect measure space and let
$\nu:\Sigma\rightarrow X^{**}$ be an $X^{**}$-valued Lipschitz $\mu$-continuous measure, i.e.,
$\sup_{Be\Sigma}\Vert\nu(E)\Vert/\mu(E)(=M)<+\infty$ . Let $K=\{d/d\mu\langle x^{*}, \nu\rangle:x^{*}\in X^{*}, \Vert x^{*}||\leqq 1\}$ .Suppose that the space $R^{s}$ is endowed with the pointwise topology, and
that the following condition $(^{**})$ holds:

$(^{**})$ Every sequence in $K$ has a $\mu$-measurable cluster point in $R^{s}$ .
Then $\nu(.\Sigma)$ is relatively compact in $X^{**}$ . In $part\dot{w}$ular, if the Gel’fandderivative of $\nu$ is an X-valued function, then condition $(^{**})$ is automati-
cally satisfied and $\nu(\Sigma)$ is always relatively compact in $X^{**}$ .

. PROOF. First we show that $K$ is relatively compact in $L^{1}(\mu)$ . Tothis end it suffices to prove a sequence $(g_{n})$ in $K$ has a $L^{1}(\mu)$-convergence
subsequence. First $K$ is relatively compact in the topology of convergence
in measure by [7], Corollary $2G$ . Hence there exists a subsequence $(g)$
of $(g_{n})$ and an element $g\in L^{1}(\mu)$ such that $g_{n}\rightarrow g$ in measure. By thekdominated convergence theorem (See [6, III. $7].$ )

$k$

we have $g$ $\rightarrow g$ in $L^{1}(\mu)$

and so $K$ is relatively compact in $L^{1}(\mu)$ . Thus the operator $n\tau^{k}:X^{*}\rightarrow L^{1}(\mu)$

defined by $ Tx^{*}=d/d\mu\langle x^{*}, \nu\rangle$ is compact, and so is $T^{*}:$ $L^{\infty}(\mu)\rightarrow X^{**}$ . Thus,
$*$

$\{\nu(E):E\in\Sigma\}=\{T(\chi_{B}):E\in\Sigma\}$ is relatively compact in $X^{**}$ . Next, suppose
that the Gel’fand derivative of $\nu$ is an X-valued function . th$1on,$ $1.e_{f}$ ere
exists a function $f:S\rightarrow X$ such that $\nu(E)=(G)-\int fd\mu$ for every $ E\in\Sigma$ .
Then condition $(^{**})$ is automatically satisfied. In $fa^{B}ct$ , let $(g_{n})$ be a sequence
in $K$. Then we can write $ g_{n}=\langle x_{n}^{*}, f\rangle$ for some $x_{n}^{*}$ with $||x_{n}^{*}||\leqq 1$ for
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each $n\geqq 1$ . If $\mathscr{L}^{-}$ is non-principal ultrafilter on $N$, then $\lim_{n\rightarrow\Gamma}x_{n}^{*}$

converges in the weak* topology. Let $x_{0}^{*}$ be its weak* limit in $X^{*}$ .
Then $\lim_{n\rightarrow\Gamma}g_{n}(s)=\langle x_{0}^{*}, f(s)\rangle(=g(\epsilon))$ for every $s\in S$, and so $(g_{n})$ has a
$\mu$-measurable cluster point $g$ in the space $R^{s}$ . This means that condition
$(^{**})$ is satisfied. q.e. $d$ .

From this fact and Theorem 2.3 we obtain the next theorem.

THEOREM 3.2. Let $(S, \Sigma, \mu)$ be a perfect measure space and let
$f:S\rightarrow X^{*}$ be norm-bounded and Pettis integrable. Set $\nu(E)=(P)-\int_{B}fd\mu$

in $X^{*}$ . Then $\nu$ satisfies condition (SA) with respect to $(S, \Sigma, \mu)$ .
PROOF. First the assumption implies that $\nu(\Sigma)$ is relatively compact.

Let $T:X\rightarrow L^{1}(\mu)$ be an operator defined through $\nu$ by (2.2). We demon-
strate that the dual operator $T^{*}:$ $L^{\infty}(\mu)\rightarrow X^{*}$ is compact. To this end,
it is sufficient to show that the set $ P=\{(g):\sum_{i=1}^{n}\alpha_{i}\in\Sigma$ ;
$E_{i}\cap E_{j}=\emptyset(i\neq j),$ $n\geqq 1$ } is contained in co $\nu(\Sigma)$ , the closed convex hull
of $\nu(\Sigma)$ . Suppose $g=\sum_{i=1}^{n}\alpha_{i}\chi_{B_{i}}$ , where $E_{1},$

$\cdots,$
$E_{n}$ are pairwise disjoint

members of $\Sigma$ and $0\leqq\alpha_{1}\leqq\alpha_{2}\leqq\cdots\leqq\alpha_{n}\leqq 1$ . Then $T^{*}(g)=\sum_{i=1}^{n}\alpha_{i}\nu(E)=$

$\alpha_{1}\nu(\bigcup_{i=1}^{n}E_{i})+(\alpha_{2}-\alpha_{1})\nu(\cup^{n}=2E_{i})+(\alpha_{\epsilon}-\alpha_{2})\nu(\cup^{n}=\S E_{\ell})+\cdots+(\alpha_{n}-\alpha_{n-1})\nu(E_{n})\in$

co $\nu(\Sigma)$ since $\alpha_{1}+\sum_{=2}^{n}$ (a $i^{-\alpha_{\ell-1})=\alpha_{n}\leqq 1}$ So, by Schauder’s theorem, $T$ is
compact as well. Thus, we infer from Theorem 2.3 that $\nu$ satisfies
condition (SA) with respect to $(S, \Sigma, \mu)$ . q.e.d.

REMARK. Eventually, a stronger result holds:

THEOREM 3.2’. If $(S, \Sigma, \mu)$ is a perfect measure space and $f:S\rightarrow X^{*}$

$i8$ norm-bounded and Pettis integrable, then there exists a sequence $(f_{n})$ of
$X^{*}$-valued simple functions such that for each $x^{**}in$ $X^{**}\lim_{n\rightarrow\infty}\langle x^{**}, f_{n}\rangle=$

$\langle x^{**}, f\rangle$ a.e..

In fact, the function $f$, viewed as an $X^{***}$-valued function $(X^{***}$

being the third dual of $X$), is also Pettis integral. Thus $\nu:\Sigma\rightarrow X^{***}$

satisfies condition (SA) with respect to $(S, \Sigma, \mu)$ by Theorem 2.1. On the
other hand $\nu$ is an $X^{*}$-valued vector measure: hence by Remark mentioned
before Theorem 2.2 there exists a sequence $(f_{n})$ of $X^{*}$-valued simple
functions such that for every $x^{**}$ in $X^{**}$

$\lim_{n\rightarrow\infty}\langle x^{**}, f_{n}\rangle=\langle x^{**}, f\rangle$ a.e. .

Furthermore, a close inspection of the above proof reveals that there
is no necessity for the function $f$ to be the dual space valued function.
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It turns out that we obtain (as a Corollary to the previous result) a
more general conclusion:

COROLLARY 3.3. Let $(S, \Sigma, \mu)$ be a perfect measure space and $f$ a
bounded function from $S$ into X. If $f$ is Pettis integrable, then there
exists a sequence $(f_{n})$ of X-valued simple functions such that for each $x^{*}$

in $X^{*}$ ,

(3.1)
$\lim_{n\rightarrow\infty}\langle x^{*}, f_{n}\rangle=\langle x^{*}, f\rangle$ a.e.

After the first draft of this paper was prepared, the author was
informed by R. Geitz [9] that the converse of Corollary 3.3 holds,
namely: If there exists a sequence $(f_{n})$ of X-valued simple functions
satisfying (3.1), then $f$ is Pettis integrable. He obtains the same conclu-
sion as in Corollary 3.3. But our proof gives another proof of one
direction of his theorem.

Finally, we give a counterexample which shows that Theorem 3.2
does not necessarily hold if the base measure space $(S, \Sigma, \mu)$ is not perfect.
The example we are going to show below was implicitly given by Fremlin
and Talagrand [8]. They constructed a function $f$ such that the range
of an indefinite Pettis integral is not relatively compact; and it is seen
from Theorem $S$ that the base measure space is not perfect. In fact,
their function provides a concise example of vector measures without
condition (SA).

EXAMPLE. Let $W$ be an uncountable set and $\ovalbox{\tt\small REJECT} W$ the power set of
$W$. On $\ovalbox{\tt\small REJECT} W$ a natural compact Hausdorff topology can be given by
employing sub-basic open sets $\{a:t\in a\}$ and $\{a:t\not\in a\}$ where $t$ runs through
$W$. Let $Z_{2}$ be an Abelian group under an additional operation of integers
modulo a prime number 2. If $\ovalbox{\tt\small REJECT} W$ is identified with $(Z_{2})^{W}$, then $\ovalbox{\tt\small REJECT} W$

is understood to be a topological group. Therefore, there exists a
unique normalized Haar measure $\lambda$ such that $\lambda(\{a\subseteqq W:b\subseteqq a\})=2^{-card(b)}$ for
all finite $b\in\ovalbox{\tt\small REJECT} W$. Now as a special case of Theorem 10 of [14], one finds
an extention $\overline{\lambda}$ of $\lambda$ to a $\sigma- field$ of subsets of $\ovalbox{\tt\small REJECT} W$ that contains all
filters $\mathscr{F}^{-}$ on $W$ such that $\overline{\lambda}(\mathscr{F})=1$ whenever $\lambda^{*}(\mathscr{G}^{-})=1$ , where $\lambda^{*}(\cdot)$

denotes the outer measure induced from $\lambda$ . Let $\mu=\overline{\lambda}\times\overline{\lambda}$ be the product
measure on $\ovalbox{\tt\small REJECT} W\times\ovalbox{\tt\small REJECT} W$ and define $f:\ovalbox{\tt\small REJECT} W\times\ovalbox{\tt\small REJECT} W\rightarrow l^{\infty}(W)$ by

$f(a, b)=x_{a^{-}}x_{b}$ ,

where $\chi_{a},$ $\chi_{b}$ denote characteristic functions of $a,$
$b$ , respectively. Then,

as shown in Example $2D$ of [8], $f$ is Pettis integral. Let $T$ be a bounded
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linear operator from $l^{1}(W)$ to $L^{1}(\mu)$ defined by $ T\phi=\langle\phi, f\rangle$ for $\phi\in l^{1}(W)$ .
We then demonstrate that $T(l^{1}(W))$ is non-separable. In fact, let $t_{1},$ $t_{2}\in W$,
$t_{1}\neq t_{2}$ , and let

$A=\{(a, b):t_{1}ea, t_{2}\not\in a;t_{1}eb, t_{2}eb\}$ .
Then, by use of the basic properties of Haar measure, one gets

$\Vert T\delta_{t_{t}}-T\delta_{t_{2}}\Vert_{1}\geqq\mu(A)=\overline{\lambda}(\{a:t_{1}ea, t_{2}\not\in a\})\times\overline{\lambda}(\{b:t_{1}\in b, t_{2}\in b\})$

$=\lambda(\{a:t_{1}\in a, t_{2}\not\in a\})\times x(\{b:t_{1}\in b, t_{2}\in b\})$

$=\frac{1}{4}\times\frac{1}{4}=\frac{1}{16}>0$ ,

where $\delta_{t}$ denotes the element of $l^{1}(W)$ which takes the value 1 at $t$ and
the value $0$ elsewhere. This means that $T(l^{1}(W))$ is non-separable since
$W$ is uncountable. Consequently, we infer from Theorem 2.2 that $f$ has
no approximate sequences of simple functions.

\S 4. Banach spaces with the sequential approximation property.

As is seen from Theorem 2.3, if $X$ is separable then $X^{*}$ has the
sequential approximation property. More generally, if $X$ is a weakly
compactly generated space (that is, a Banach space with a weakly com-
pact fundamental set and is simply called a WCG space), then $X^{*}$ has
the sequential approximation property. Note that the class of WCG
spaces is much broader than that of reflexive spaces.

THEOREM 4.1. If a Banach space $X$ is WCG, then the dual space $X^{*}$

has the sequential approximation property.

PROOF. Let $W$ be a weakly compact fundamental subset of $X$.
Then, in view of Theorem 2.3, it is sufficient to show that $T(W)$ is
relatively compact in $L^{1}(\mu)$ . To this end, take any sequence $(g_{n})$ with
$g_{n}\in T(W)$ . Then for each $n\geqq 1$ there exists an $x_{n}$ in $W$ such that
$Tx_{n}=g_{n}$ . Since $W$ is weakly compact, there is a weakly convergent sub-
sequence of $(x_{n})$ . For simplicity in notation we assume that $(x_{n})$ itself
is weakly convergence and $x_{0}$ is the weak limit. Then $Tx_{n}$ $(=g_{n})$

converges as $ n\rightarrow\infty$ . Now let $(S, \Sigma, \mu)$ be any measure space and
$\nu;\Sigma\rightarrow X^{*}$ any $\mu$-continuous measure of bounded variation. Let $f:S\rightarrow X^{*}$

be a Gel’fand derivative of $\nu$ . Since $\langle x_{n}, f(s)\rangle\rightarrow\langle x_{0}, f(s)\rangle$ for all $s$ in $S$,
we may apply Theorem IV 8.12 of [6] to get the norm convergence of
$(Tx_{n})$ in $L^{1}(\mu)$ . Hence $T(W)$ is norm-compact. q.e. $d$ .
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If $X^{*}$ has RNP, then it is clear that $X^{*}$ has the sequential approxi-
mation property. More generally, we have the following result:

THEOREM 4.2. If $X^{*}$ has WRNP, then $X^{*}$ has the sequential ap-
proximation property.

PROOF. Suppose that $X^{*}$ has WRNP. Then $X$ can not contain any
isomorphic copy of $l^{1}$ by Janicka’s Theorem (see [10] or [11]). Since each
$X^{*}$ -valued measure of bounded variation has a relatively compact range
(See Musial [11], Corollary 10.), we obtain the desired result from
Theorem 2.2. $q$ . e.d.

COROLLARY 4.3. Let $(S, \Sigma, \mu)$ be a finite nonnegative complete
measure space. If $X^{*}$ has WRNP, then every weak*-measurable function
has the sequential approximation property with respect to $(S, \Sigma, \mu)$ .

PROOF. Employ a countable partition $\{S_{m}:m\geqq 1\}$ of $S$ as mentioned
after Proposition 1.1. q.e. $d$ .

Finally we give another characterization of Gel’fand integrable
functions in terms of sequential approximation property.

THEOREM 4.4. Let $f:S\rightarrow X^{*}$ be norm-bounded. If $X^{*}$ has WRNP,
then $f$ is Gel’fand integrable if and only if there exists a sequence $(f_{n})$

of simple functions such that $\langle x, f_{n}\rangle\rightarrow\langle x, f\rangle a.e$ . for each $x\in X$.
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