Tokyo J. Math. Vol. 6, No. 1, 1983

On a Differential Equation Characterizing a Riemannian Structure of a Manifold

Masahiko KANAI

Keio University (Communicated by M. Obata)

It often happens that the existence of a function on a riemannian manifold satisfying some condition gives informations about the topological, differentiable or riemannian structure of the manifold. In fact, in 1962, Obata characterized the euclidean sphere of radius $1/\sqrt{k}$ as the only complete riemannian manifold which has a nontrivial solution for the differential equation

(1) $\operatorname{Hess} f + kfg = 0$

with a positive constant k, where Hess f is a symmetric (0, 2)-tensor called the hessian of f defined by $(\text{Hess } f)(X, Y) = (\nabla_x df)(Y) = XYf - (\nabla_x Y)f$ for any vector fields X and Y, and g is the metric tensor: that is

THEOREM A (Obata [3, 4]). Let k > 0. For a C^{∞} complete riemannian manifold (M, g) of dimension $n(\geq 2)$, there is a C^{∞} nontrivial function f on M satisfying (1), if and only if (M, g) is isometric to the euclidean n-sphere $(S^n, (1/k)g_0)$ of radius $1/\sqrt{k}$, where g_0 denotes the canonical metric on S^n with constant curvature 1.

Also there is a work by Tanno [5] in which he investigated effects of some differential equations of order three on riemannian and kählerian manifolds.

In this article we give necessary and sufficient conditions for the existence of a nontrivial function f on (M, g) which satisfies (1) with a nonpositive constant k. A manifold is assumed to be of C^{∞} and connected, unless otherwise indicated. Also all tensors (including functions, vector fields, etc.) are assumed to be C^{∞} , unless otherwise indicated.

The case k=0 is reduced to the following trivial theorem:

Received February 3, 1982 Revised May 10, 1982

THEOREM B. A complete riemannian manifold (M, g) of dimension $n(\geq 2)$ has a nontrivial function f on M satisfying

Hess
$$f=0$$
,

if and only if (M, g) is the riemannian product $(\overline{M}, \overline{g}) \times (R, g_0)$ of a complete riemannian manifold $(\overline{M}, \overline{g})$ and the real line (R, g_0) , where g_0 denotes the canonical metric of R.

A proof of Theorem B will be found in e.g. [7].

It is easily verified that every nontrivial function satisfying (1) with k>0 has critical points and that any nontrivial function satisfying (1) with k=0 does not have critical points. But the case k<0 is divided into following two theorems:

THEOREM C. Suppose that (M, g) is a complete riemannian manifold of dimension $n(\geq 2)$, and that k < 0. Then there is a nontrivial function f on M with a critical point which satisfies (1), if and only if (M, g)is the simply connected complete riemannian manifold $(H^n, -(1/k)g_0)$ of constant curvature k, where g_0 is the canonical metric on the hyperbolic space of constant curvature -1.

THEOREM D. Let (M, g) and k be as in Theorem C. Then there is a function f on M without critical points which satisfies (1), if and only if (M, g) is the warped product $(\overline{M}, \overline{g})_{\xi} \times (\mathbf{R}, g_0)$ of a complete riemannian manifold $(\overline{M}, \overline{g})$ and the real line (\mathbf{R}, g_0) , warped by a function $\xi: \mathbf{R} \to \mathbf{R}$ such that $\ddot{\xi} + k\xi = 0$, $\xi > 0$, where g_0 denotes the canonical metric on \mathbf{R} ; $g_0 = dt^2$.

The notion of warped products shall be reviewed in $\S1$, and proofs of Theorem C and Theorem D are given in $\S2$ and $\S3$, respectively.

By noting that the simply connected complete *n*-dimensional riemannian manifold $(H^n, -(1/k)g_0)$ of constant curvature k $(n \ge 2, k < 0)$ is constructed as the warped product $(\mathbf{R}^{n-1}, g_0)_{\xi} \times (\mathbf{R}, g_0)$ with $\xi = e^{\pm \sqrt{-k}t}$ (see Lemma 3 in § 1), we conclude from Theorem C and Theorem D.

COROLLARY E. Let (M, g) and k be as in Theorem C. Then there is a nontrivial function f on M satisfying (1), if and only if (M, g) is the warped product $(\overline{M}, \overline{g})_{\epsilon} \times (\mathbf{R}, g_0)$ of a complete riemannian manifold $(\overline{M}, \overline{g})$ and the real line (\mathbf{R}, g_0) , warped by a function $\xi: \mathbf{R} \to \mathbf{R}$ such that $\xi + k\xi = 0, \xi > 0.$

Combining the theorems mentioned above and Lemma 3 in §1, we have

144

COROLLARY F. Suppose that (M, g) is a complete riemannian manifold of dimension 2 and that k is any constant. If there is a nontrivial function f on M which satisfies (1), then (M, g) is of constant curvature k.

In §4, we will briefly discuss conformal vector fields on a riemannian manifold as an application of the above theorems, and generalize a theorem of Yano and Nagano [7] for (not necessarily complete) conformal vector fields on a complete Einstein manifold.

The author thanks Prof. M. Obata for his valuable suggestions.

§1. Warped products.

In this section, we review briefly the fundamental formulas for warped products (see, for detail, Bishop-O'Neill [1]).

Let I be an open interval in R. For a riemannian manifold $(\overline{M}, \overline{g})$ and a function $\xi: I \to \mathbb{R}$ with positive values, the warped product $(M, g) = (\overline{M}, \overline{g})_{\xi} \times (I, g_0)$ of $(\overline{M}, \overline{g})$ and the interval (I, g_0) warped by ξ , is defined by

$$M = \overline{M} imes I$$
 , $g = \xi^2 \overline{g} + g_0$,

where g_0 is the canonical metric of I. Note that any vector field X on \overline{M} is lifted onto M uniquely. Unless confusions may happen, the lift of X is also denoted by the same symbol X. Let ∇ and $\overline{\nabla}$ be the riemannian connections of (M, g) and $(\overline{M}, \overline{g})$, respectively. Then the following lemma is easily verified, where T denotes the lift of the vector field d/dt on I.

LEMMA 1. For any vector fields X, Y on \overline{M} ,

(a) $\nabla_{x} Y = \overline{\nabla}_{x} Y - \xi \xi \overline{g}(X, Y) T$

(b) $\nabla_T X = \nabla_X T = (\dot{\xi}/\xi) X$

(c) $\nabla_T T = 0.$

A proof is found in [1]. This lemma implies

COROLLARY 2. For any riemannian manifold $(\overline{M}, \overline{g})$, the warped product $(M, g) = (\overline{M}, \overline{g})_{\xi} \times (R, g_0)$ with $\xi - \xi = 0$, $\xi > 0$, has a solution of the equation Hess f - fg = 0 without critical points.

PROOF. Take a function $F: \mathbb{R} \to \mathbb{R}$ as $\dot{\xi}\dot{F} - \xi F = 0$. Then the function $f: \overline{M} \times \mathbb{R} \to \mathbb{R}$ defined by $f(\overline{p}, t) = F(t)$ $(\overline{p} \in \overline{M}, t \in \mathbb{R})$ is a solution of the above equation without critical points.

Next, we calculate the curvature tensor and the Ricci curvature of a

warped product. Let R be the curvature tensor of $(M, g) = (\overline{M}, \overline{g})_{\varepsilon} \times (I, g_0)$ and \overline{R} the curvature tensor of $(\overline{M}, \overline{g})$ (here we adopt the sign convention $R(X, Y) = [\nabla_x, \nabla_y] - \nabla_{[x,y]}$). Also let *Ric* and *Ric* be the Ricci tensors of (M, g) and $(\overline{M}, \overline{g})$, respectively.

LEMMA 3. For any vector fields X, Y and Z on \overline{M} , the following hold:

- (a) $R(X, Y)Z = \overline{R}(X, Y)Z + \dot{\xi}^2 \{\overline{g}(X, Z)Y \overline{g}(Y, Z)X\}$
- (b) R(X, Y)T=0
- (c) $g(R(T, X)T, Y) = \ddot{\xi}\xi \bar{g}(X, Y).$

LEMMA 4. If X is a vector field on \overline{M} , then the following hold:

- (a) $Ric(X, X) = \overline{Ric}(X, X) \{\ddot{\xi}/\xi + (n-1)(\dot{\xi}/\xi)^2\}g(X, X)$
- (b) $Ric(T, T) = -n(\ddot{\xi}/\xi)$

where n is the dimension of \overline{M} .

Proofs are found in [1].

§2. Proof of Theorem C.

In this section, we give a proof of Theorem C. We begin with the following lemma.

LEMMA 5. Suppose that (N, g) is a (not necessarily complete) riemannian manifold of dimension $n(\geq 2)$, and that f is a function on (N, g)without critical points. If f satisfies the equation

(2)
$$\operatorname{Hess} f - fg = 0,$$

then the following hold:

(a) If ν is the vector field on N defined by $\nu = (1/|\operatorname{grad} f|)\operatorname{grad} f$, then $\nabla_{\nu}\nu = 0$, i.e., any integral curve of ν is a geodesic.

(b) Every hypersurface $f^{-1}(a)$ is totally umbilic; in fact, if h is the second fundamental form of $f^{-1}(a)$ with ν as its unit normal vector field, then $h = -(f/|\operatorname{grad} f|)g$.

PROOF. To prove (a) it suffices to show that $\nabla_{\text{grad}f}$ grad f is linearly dependent on grad f. By the definition of the hessian, we have (Hess f) $(X, \text{grad} f) = \langle \nabla_{\text{grad}f} \text{grad} f, X \rangle$ for any tangent vector X, where $g = \langle \cdot, \cdot \rangle$. This implies, with (2), that $\nabla_{\text{grad}f} \text{grad} f = f \text{grad} f$. Thus we have (a).

Next we prove (b). For any vector fields X, Y tangent to $f^{-1}(a)$, we have, by Weingarten's formula for hypersurfaces, that

A DIFFERENTIAL EQUATION

$$-h(X, Y) = \langle \nabla_X \nu, Y \rangle = -\langle \nu, \nabla_X Y \rangle = -\frac{1}{|\operatorname{grad} f|} (\nabla_X Y) f$$

On the other hand, (2) implies that $(\nabla_x Y)f + f\langle X, Y \rangle = 0$. Thus we conclude (b).

PROOF OF THEOREM C. It suffices to prove Theorem C with k=-1. Also it is obvious that (H^n, g_0) , the simply connected *n*-dimensional complete riemannian manifold of constant curvature -1, has a nontrivial function f with a critical point which satisfies Hess $f-fg_0=0$. In fact, if we choose any point p in H^n , the function f on H^n defined by $f(q) = \cosh r$, where $r = \operatorname{dist}(p, q)$, is a nontrivial solution of the above equation with a critical point p. Now we shall show that the converse is also true. Let (M, g) be a complete riemannian manifold of dimension $n(\geq 2)$, and f a nontrivial function on (M, g) with a critical point which satisfies

Note that if $\gamma: \mathbf{R} \to M$ is a geodesic with unit speed, then the equation (3) is written down, on γ , as

$$(4) \qquad \frac{d^2}{dt^2}(f\circ\gamma)-f\circ\gamma=0.$$

This is a second order ordinary differential equation, so $f \circ \gamma$ is determined uniquely by the values $f \circ \gamma(0)$ and $df \circ \gamma(0)$. Without loss of generality, we may assume f(p)=1 and df(p)=0. Also we have easily that

(5)
$$f(q) = \cosh |X| \text{ for } q = \exp_p X$$

by (4). On the other hand, by joining p and q by a minimizing geodesic, we have

(6)
$$f(q) = \cosh r$$
, where $r = \operatorname{dist}(p, q)$.

By (5) and (6), any geodesic through p is minimizing, and therefore,

(7)
$$\exp_p: T_p M \longrightarrow M$$
 is bijective.

Let $\gamma: [0, \infty) \to M$ be an arbitrary geodesic such that $\gamma(0) = p$, $|\dot{\gamma}| \equiv 1$, and J a Jacobi field along γ such that J(0) = 0, $|\dot{J}(0)| = 1$ and that $\langle J, \dot{\gamma} \rangle \equiv 0$. We shall show that

$$|J(r)| = \sinh r , \quad \text{for all} \quad r \in [0, \infty) .$$

Fix $r \in (0, \infty)$. Then $\overline{M} = f^{-1} (\cosh r)$ is a hypersurface in M, and ν , the

restriction of $(1/|\operatorname{grad} f|)$ grad f to \overline{M} , is a unit normal vector field of \overline{M} . Note that J(r) is tangent to \overline{M} . Let h be the second fundamental form of \overline{M} . Then, by Lemma 5 and Weingarten's formula, we have

$$\frac{1}{2} \frac{d}{dt} \Big|_{t=r} \langle J, J \rangle = \langle J, \nabla_{\nu} J \rangle|_{t=r} = \langle J, \nabla_{J} \nu \rangle|_{t=r}$$
$$= -h(J(r), J(r)) = \frac{f}{|\operatorname{grad} f|} \langle J, J \rangle|_{t=r} = \frac{\cosh r}{\sinh r} \langle J, J \rangle|_{t=r}$$

Thus (8) holds. By (8), we conclude that γ has no conjugate points of $p = \gamma(0)$. Combining this fact with (7), we have

(9)
$$\exp_p: T_p M \longrightarrow M$$
 is a diffeomorphism.

(8) and (9) show that $M \setminus \{p\}$ is isometric to the warped product $(S^{n-1}, g_0)_{\xi} \times (I, g_0)$ with $I=(0, \infty)$, $\xi(t)=\sinh t$. In fact, identifying (S^{n-1}, g_0) with $\{X \in T_p M: |X|=1\}$, we can construct an isometry of $(S^{n-1}, g_0)_{\xi} \times (I, g_0)$ onto (M, g) by $(X, t) \mapsto \exp_p t X$, $X \in T_p M$, |X|=1; $t \in I$. But, by Lemma 3, $(S^{n-1}, g_0)_{\xi} \times (I, g_0)$ is of constant curvature -1, and therefore, $M \setminus \{p\}$ is of constant curvature -1. Because of the continuity of the curvature, M is of constant curvature -1. Thus, with (9), we conclude that (M, g) is isometric to (H^n, g_0) . This completes the proof of Theorem C.

§3. Proof of Theorem D.

In this section, we give a proof of Theorem D. Without loss of generality, we may assume k=-1.

PROOF OF THEOREM D. We have already seen in Corollary 2 that a half of Theorem D holds. So it is sufficient to show that the converse is also true.

Suppose that (M, g) is a complete riemannian manifold of dimension $n(\geq 2)$, and that f is a function on M without critical points which satisfies (3). We shall show that (M, g) is isometric to the warped product $(\overline{M}, \overline{g})_{\xi} \times (\mathbf{R}, g_0)$ of some complete riemannian manifold $(\overline{M}, \overline{g})$ and the real line (\mathbf{R}, g_0) warped by a function $\xi: \mathbf{R} \to \mathbf{R}$ with $\xi > 0$, $\xi - \xi = 0$. Put $\nu = (1/|\operatorname{grad} f|)\operatorname{grad} f$. Fix $a \in \mathbf{R}$ so that $\overline{M} = f^{-1}(a) \neq \emptyset$, and let \overline{g} be the induced metric of \overline{M} . Also let φ be the flow of ν and define the map $\Psi: \overline{M} \times \mathbf{R} \to M$ by $\Psi(\overline{p}, t) = \varphi_t(\overline{p})$ for $\overline{p} \in \overline{M}$ and $t \in \mathbf{R}$. It is obvious that Ψ is a diffeomorphism. So \overline{M} is connected. Moreover $X \cdot \langle \operatorname{grad} f, \operatorname{grad} f \rangle = 2(\operatorname{Hess} f)(X, \operatorname{grad} f) = 0$ for any tangent vector X of \overline{M} , so $|\operatorname{grad} f|$ is constant on \overline{M} . Since the value of f at $\Psi(\overline{p}, t)$ is determined by the

148

A DIFFERENTIAL EQUATION

values of f and df at \bar{p} , f is given by

(10)
$$f \circ \Psi(\bar{p}, t) = Ae^t - Be^{-t}, \quad \bar{p} \in \bar{M}, \quad t \in R,$$

where A and B are constants such that A, $B \ge 0$, $A^2 + B^2 \ne 0$. Put $\xi(t) = (Ae^t + Be^{-t})/(A+B)$. Now we prove that Ψ is an isometry from $(\overline{M}, \overline{g})_{\xi} \times (R, g_0)$ onto (M, g). To see this, it suffices to show that for each fixed $r \in \mathbf{R}, \ \psi = \Psi \mid_{\overline{M} \times \{r\}} \max (\overline{M}, \overline{g})$ into (M, g) in such a way that

(11)
$$\{\xi(r)\}^2 \bar{g} = \psi^* g$$
.

Fix $\overline{p} \in \overline{M}$ and put $\gamma(t) = \Psi(\overline{p}, t)$, $\overline{p} \in \overline{M}$, $t \in \mathbb{R}$. Recall that γ is a geodesic in M. Let J be a Jacobi field along γ such that J(0) is tangent to \overline{M} . Then, by Weingarten's formula, Lemma 5 and (10), we have

$$\frac{1}{2} \frac{d}{dt} \Big|_{t=r} \langle J, J \rangle = \langle J, \nabla_J \nu \rangle|_{t=r} = -h(J(r), J(r))$$
$$= \frac{f}{|\operatorname{grad} f|} \langle J, J \rangle|_{t=r} = \frac{Ae^r - Be^{-r}}{Ae^r + Be^{-r}} \langle J, J \rangle|_{t=r},$$

where h is the second fundamental form of the hypersurface $f^{-1}(f \circ \gamma(r))$. Thus $|J(r)|^2 = \{\xi(r)\}^2 |J(0)|^2$, and, therefore, $|\psi_*J(0)|^2 = |J(r)|^2 = \{\xi(r)\}^2 |J(0)|^2$. Thus (11) holds. This completes the proof of Theorem D.

§4. Conformal vector fields.

In [7], Yano and Nagano established the fact that if a complete Einstein manifold of dimension $n(\geq 3)$ admits a complete nonhomothetic conformal vector field then the manifold is isometric to a sphere of constant curvature. Recall that a vector field V on a riemannian manifold (M, g) is said to be *conformal* if it satisfies

$$(12) L_v g = 2fg$$

with some function f on M, where $L_V g$ denotes the Lie derivative of g with respect to V. Especially if (12) holds for a constant function f (resp. $f \equiv 0$), then V is said to be homothetic (resp. isometric). Also a vector field on a manifold M is said to be complete if its flow $\varphi_t(p), p \in M$, is defined for all $t \in \mathbf{R}$ and $p \in M$. In this section, we investigate conformal vector fields which is not necessarily complete. We begin with some examples.

EXAMPLES. (1) Let f be a nontrivial function on a riemannian manifold (M, g) satisfying (1) with $k \neq 0$. Since $L_{\text{grad}f} g = 2$ Hess f, the

gradient vector field grad f is nonhomothetic and conformal. But for k < 0, grad f is not complete even if (M, g) is complete (cf. [7]).

(2) A vector field V on the $n(\geq 2)$ dimensional euclidean space (\mathbf{R}^n, g_0) defined by

$$V = x^n \left(x^1 \frac{\partial}{\partial x^1} + \cdots + x^{n-1} \frac{\partial}{\partial x^{n-1}} \right) + \frac{1}{2} (x^n)^2 \frac{\partial}{\partial x^n}$$

is nonhomothetic and conformal, where (x^1, \dots, x^n) is the canonical coordinates. But V is not complete.

THEOREM G. An $n(\geq 3)$ dimensional complete Einstein manifold (M, g) with scalar curvature n(n-1)k admits a (not necessarily complete) nonhomothetic comformal vector field if and only if one of the following conditions holds:

(i) k>0 and (M, g) is isometric to the euclidean n-sphere $(S^n, (1/k)g_0)$ of radius $1/\sqrt{k}$.

(ii) k=0 and (M, g) is isometric to the n-dimensional euclidean space (\mathbf{R}^n, g_0) .

(iii) k < 0 and (M, g) is isometric to the warped product $(\overline{M}, \overline{g})_{\xi} \times (R, g_0)$ of a complete Einstein manifold $(\overline{M}, \overline{g})$ of scalar curvature $4(n-1)(n-2)kC_1C_2$ and the real line (R, g_0) , warped by $\xi(t) = C_1e^{\sqrt{-k}t} + C_2e^{-\sqrt{-k}t}$, where C_1 and C_2 are nonnegative constants.

PROOF. It is an immediate consequence of Theorem A, Corollary E and the above examples that (M, g) admits a nonhomothetic conformal vector field if (i), (ii) or (iii) holds. So we shall prove that the converse is also true. Let V be a nonhomothetic conformal vector field on (M, g)with $L_Vg=2fg$. Since (M, g) is an Einstein manifold with Ric=(n-1)kg, we have Hess f+kfg=0 (see [6], pp. 160-161). We continue the proof dividing into three cases.

(a) k>0: In this case, (M, g) is isometric to $(S^n, (1/k)g_0)$, by Theorem A.

(b) k < 0: If f has a critical point, then Theorem C implies that (M, g) is isometric to $(H^n, -(1/k)g_0) = (\mathbb{R}^{n-1}, g_0)_{\xi} \times (\mathbb{R}, g_0), \ \xi(t) = e^{\pm \sqrt{-kt}}$, and therefore, the condition (iii) holds. Now, suppose that f has no critical points. Since (M, g) has a nontrivial function f satisfying Hess f + kfg = 0, (M, g) is isometric to a warped product $(\overline{M}, \overline{g})_{\xi} \times (\mathbb{R}, g_0)$ with $\ddot{\xi} + k\xi = 0$, by Theorem D. Let Ric and \overline{Ric} be the Ricci tensors of (M, g) and $(\overline{M}, \overline{g})$, respectively. (M, g) is an Einstein manifold with Ric = (n-1)kg and, hence, we have $\overline{Ric} = (n-2)(k\xi^2 + \dot{\xi}^2)\overline{g}$, by Lemma 4.

(c) k=0: Since Hess f=0 holds, (M, g) is isometric to a riemannian

150

product $(\overline{M}, \overline{g}) \times (R, g_0)$ and f is defined by $f(\overline{p}, t) = At + B$, $\overline{p} \in \overline{M}$, $t \in R$, by Theorem B. Decompose V as $V = \overline{V} + W$, where $V|_{\overline{M} \times \{t\}}$ is tangent to $\overline{M} \times \{t\}$ and $W|_{(\overline{p}) \times R}$ is tangent to $\{\overline{p}\} \times R$ for each fixed $\overline{p} \in \overline{M}$, $t \in R$. Then for each fixed t and any vector fields X, Y tangent to $\overline{M} \times \{t\}$, $(L_{\overline{v}}\overline{g})(X, Y) =$ $2(At + B)\overline{g}(X, Y)$. Hence $\overline{M} \times \{t\}$ admits a nonisometric homothetic vector field $\overline{V}|_{\overline{M} \times \{t\}}$, for each fixed t such that $At + B \neq 0$. It is known that a complete riemannian manifold which admits a nonisometric homothetic vector field is isometric to the euclidean space ([2]). So (M, g) is isometric to $(R^{n-1}, g_0) \times (R, g_0) = (R^n, g_0)$. This completes the proof of Theorem G.

ADDED IN PROOF. Just before this article comes to be published, I was announced by Prof. Y. Tashiro that our results (especially Theorem C and Theorem D mentioned in the introduction) had been already established in his paper [8; Theorem 2] where he investigated equations more general than those considered here. But his treatments seem to be different from ours in some points. I express my gratitude to Prof. Tashiro for his kind suggestions.

References

- R. L. BISHOP and B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
- [2] S. ISHIHARA and M. OBATA, Affine transformations in a Riemannian manifold, Tôhoku Math. J., 7 (1955), 146-150.
- [3] M. OBATA, Certain conditions for a Riemannian manifold isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
- [4] M. OBATA, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. of U.S.-Japan Seminor in Differential Geometry, Kyoto, Japan, 1965, 101-114.
- [5] S. TANNO, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan, 30 (1978), 509-531.
- [6] K. YANO, The Theory of Lie Derivatives and Its Applications, North Holland, 1957.
- [7] K. YANO and T. NAGANO, Einstein spaces admitting a one parameter group of conformal transformations, Ann. of Math., **69** (1959), 451-465.
- [8] Y. TASHIRO, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117 (1965), 251-275.

Present Address: DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223 JAPAN