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In this paper we consider some properties of exposed points in the
unit ball of function algebras. In \S 1 we give some characterizations of
exposed points in the unit ball $U$ of certain function algebras. Also we
consider conditions so that $U$ can be equal to the closed convex hull of
exposed points of $U$. In \S 2, some examples are given.

Introduction

Let $X$ be a compact Hausdorff space and $A$ a function algebra on
$X$, i.e., a uniformly closed subalgebra of $C(X)$ that contains the constants
and separates points of $X$, where $C(X)$ denotes the Banach algebra of
complex-valued continuous functions on $X$ with the supremum norm. By
$U$ we denote the unit ball of $A,$ $i.e.,$ $U=\{feA:||f||\leqq 1\}$ . We recall the
notion of exposed points of $U$. A function $f$ in $U$ is called an exposed
point of $U$ if there exists $L$ in $A^{*}$ such that $ L(f)=1=\Vert L\Vert$ and ${\rm Re} L(g)<1$

for $g\in U,$ $g\Rightarrow f$, where ${\rm Re} L(g)$ is the real part of $L(g)$ . It is clear that
every exposed point is an extreme point but the converse is not always
true.

Characterizations of exposed points have been investigated in [1],
[3], [7], [8], [9] and so on. Especially, Phelps [7] gave some interesting
results on logmodular algebras. Moreover Fisher [3] and Serizawa [8]
gave extensions of the Phelps’ results. In this paper we give some
generalizations of Phelps’ and Fisher’s results.

We here assume the following condition.

$(*)$ There exist (pairwise disjoint) closed sets $X_{i}$ in $X(i=1,2, \cdots)$

such that $A|_{X}$, is closed in $C(X_{i})$ and $\bigcup_{i=1}^{\infty}X_{l}$ is dense in $X$.
For each $i$ , we denote by $A_{i}$ the restriction of $A$ to $X_{i}$ . $M_{A}$ and

$M_{A_{i}}$ will denote the maximal ideal space of $A$ and $A_{i}$ , respectively. Then
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$A_{i}$ is a function algebra on a compact Hausdorff space $X$, and there is
a representing measure $m_{i}$ for $\varphi_{i}$ in $M_{A}$ which is supported on $X,$ ([ $6$ ;
Chap. 7, p. 166]).

\S 1. The main results.

We say that $A_{i}$ has the condition $(\alpha)$ if no non-zero function in $A_{i}$

vanishes on a set $E$ in $X_{i}$ with $m_{i}(E)>0$ .
THEOREM 1.1. Let $A$ be a function algebra on a compact Hausdorff

space $X$ with the condition $(^{*})$ . Let $A_{i}$ and $m_{i}$ be as above for each $i$ .
Suppose each $A$, has the condition $(\alpha)$ . If $feU$ and $m(F\cap X_{i})>0$ for
$i=1,2,$ $\cdots$ , then $f$ is an exposed point of $U$, where $F=\{x\in X:|f(x)|=1\}$ .

PROOF. Since $m_{l}(F\cap X_{i})>0$ for each $i$ , we define $L_{i}eA_{i}^{l}$ by

$L,(g)=\frac{1}{m_{i}(F\cap X_{i})}\int_{F\cap X}g\overline{f|_{X_{i}}}dm_{i}$ $(geA_{i})$ .

Then $ L_{i}(f|_{X_{i}})=1=||L_{i}\Vert$ . Now if $L_{i}(g)=1=||L_{l}||$ for $geA_{i},$ $||g||\leqq 1$ , then

$\int_{F\cap X_{i}}g\overline{f|_{x_{i}}}dm_{i}=m_{i}(F\cap X_{i})$ .

Since $g\overline{f|_{x_{i}}}\in C(X_{i})$ and $|g\overline{f|_{x_{i}}}|\leqq 1$ on $X_{i},$ $g\overline{f|_{X_{i}}}=1$ a.e. on $F\cap X_{i}$ . So
$g=f$ a.e. on $F\cap X_{i}$ . By the condition $(\alpha)$ of $A_{i},$ $g=f$ on $X_{i}$ . Hence
$f|_{X}$, is an exposed point of the unit ball of $A_{i}$ for each $i$ . Furthermore
if we put

$L(g)=\sum_{i=1}^{\infty}\frac{1}{2^{l}}L_{i}(g|_{x_{i}})$ $(geA)$ ,

then $LeA^{*}$ and $L(f)=1=||L||$ . For any $ge$ $A$ with $||g||\leqq 1$ and $g\fallingdotseq f$,
$g\fallingdotseq f$ on $X_{\dot{f}}$ for some $j,$ $ 1\leqq j<\infty$ . In fact, if $g=f$ on $X_{i}$ for all $i,$ $g=f$

on $X$ because of the density of $\bigcup_{i=1}^{\infty}X_{i}$ in $X$. So for the bounded linear
functional $L_{j}$ as above,

${\rm Re} L_{j}(g|_{x_{j}})<1$ .
Then ${\rm Re} L(g)={\rm Re}\sum_{l=1}^{\infty}(1/2^{i})L_{i}(g|_{X_{i}})<1$ . Consequently, $f$ is an exposed
point of the unit ball $U$ of $A$ .

Next we consider conditions so that $U$ can be the closed convex hull
of its exposed points.

THEOREM 1.2. Let $A$ be a function algebra, generated by its inner
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functions, on a compact Hausdorff space $X$ with the condition $(^{*})$ . Let
$A_{i}$ and $m_{i}$ be as above for each $i$ . Suppose each $A_{i}$ has the condition
$(\alpha)$ . Then $U$ is the closed convex hull of its exposed points.

PROOF. Since $A$ is generated by inner functions, a theorem in [2]
(Theorem 2.2) implies that $U$ is the closed convex hull of its inner
functions. Now by Theorem 1.1, every inner function is an exposed
point and thus the assertion holds.

A representing measure $m$ for $\varphi\in M_{A}$ is said to be dominant if any
representing measure for $\varphi$ is absolutely continuous with respect to $m$

([4; Chap. 2, p. 44]).

In particular, we consider Theorem 1.2 under the following condition
$(^{**})$ .

$(^{**})$ There exists a finite family $\{X_{i}\}_{i=1}^{n}$ of maximal antisymmetric
sets of $A$ with $X=\bigcup_{i=1}^{n}X_{i}$ .

Then we obtain the following result.

THEOREM 1.3. Let $A$ be a function algebra on a compact Hausdorf
space $X$ with the condition $(^{**})$ . Let $A_{i}=A|_{x_{l}}$ . Let $m_{i}$ be a dominant
representing measure for $\varphi_{i}\in M_{A_{i}}(1\leqq i\leqq n)$ . Suppose each $A_{i}$ has the
condition $(\alpha)$ . Then $U$ is the closed convex hull of its exposed points.

PROOF. Let $U_{i}$ be the unit ball of $A_{i}$ and $\exp U_{i}$ be the set of ex-
posed points of $U_{i}$ for each $i$ . A same method as Fisher [3; Theorem 3]
shows that $U_{i}$ is the closed convex hull of exp $U_{i}$ . For any $g\in U$, then
$g|_{x_{i}}\in U_{l}$ for each $i$ . Given $\epsilon>0$ . We can choose the functions $f_{1}^{(i)},$ $\cdots$ ,
$ f_{k(i)}^{(l)}\in$ exp $U_{l}$ and the constants $\lambda_{1}^{(l)},$

$\cdots,$
$\lambda_{k(i)}^{(i)}$ such that $\lambda_{\dot{f}}^{(i)}\geqq 0,$ $\sum_{j=1}^{k(i)}\lambda_{\dot{f}}^{\langle i)}=1$

and
$\Vert g|_{x_{i}}-\sum_{j=1}^{k(\cdot)}\lambda_{j}^{(i)}f_{j}^{(l)}\Vert<\epsilon$ ,

for $i=1,2,$ $\cdots,$ $n$ . (The number $k(i)$ depends on index $i.$ ) Define the
functions $\tilde{f}_{j_{1}\cdots j_{n}}$ and the constants $\nu_{j_{1}\cdots j_{n}}$ as follows:

$\tilde{f}_{\dot{f}_{1}}\ldots j_{n}=\left\{\begin{array}{ll}f_{\dot{f}_{1}}^{(1)} & on X_{I}\\f_{j_{*}}^{(n)} & on X_{n}\end{array}\right.$

and
$\nu_{j_{1}\cdots j_{n}}=\lambda_{j_{1}}^{(1)}\cdots\lambda_{\dot{J}_{\hslash}}^{(n)}$ ,
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where $1\leqq j_{1}\leqq k(1),$ $\cdots$ , and $1\leqq j_{n}\leqq k(n)$ . Then $f_{J\iota J_{\hslash}}eC(X)$ and $\tilde{f}_{j_{1}\cdots j}.|_{X}e$

$A_{i}$ for $1\leqq i\leqq n$ . So $\tilde{f}_{j_{1}\cdots j_{\tau\iota}}eA$ and $||\tilde{f}_{j_{1}\cdots j}.||\leqq 1$ . Furthermore $\tilde{f}_{j_{1}\cdots;}.|_{X_{i}}$

are in exp $U_{l}$ for each $i$ . Thus $\tilde{f}_{j_{1}\cdots j},$. are exposed points of U. (This
can be showed by the same argument as the proof of Theorem 1.1.)
On the other hand, $\nu_{j_{1}\cdots;_{n}}$ are positive constants and $\sum_{\dot{g}_{1},\cdots.j}.\nu_{j_{1}\cdots j}=1$ .
So

$\sum\nu_{j_{1}\cdots j_{*}}\tilde{f}_{j_{1}\cdots j}.|_{X}=\sum\nu_{j_{1}\cdots j}f_{\dot{g}_{i}}^{(i)}$

$=\sum_{j=1}^{k(i)}\lambda_{\dot{f}}^{(i)}f_{j}^{(i)}$ .
Hence

$||g-\sum\nu_{j_{1}\cdots j},\tilde{f}_{j_{1}\cdots j_{*}}\Vert\leqq\max_{1\leq i\leq n}||g-\sum\nu_{\dot{g}_{1}\cdots j}\tilde{f}_{j_{1}\cdots j_{\hslash}}\Vert_{X}$,
$<\epsilon$ .

As $\epsilon$ is arbitrary, the theorem holds.

We obtain the Fisher’s theorem as a special case of Theorems 1.1
and 1.3.

COROLLARY 1.4 ([3]). Let $A$ be a function algebra on a compact
Hausdorf space $X$ and $m$ a dominant representing measure for $\varphi eM_{A}$ .
Suppose that $m(\{g=0\})>0,$ $geA$ , implies $g=0$ . Then a function $feU$
with $m(\{|f|=1\})>0$ is an exposed point of $U$ and $U$ is the closed convex
hull of exposed $ point\epsilon$ of $U$.

PROOF. It is sufficient to show that $A$ is an antisymmetric algebra,
i.e., every real-valued function in $A$ is constant. If $ge$ $A$ is real on $X$,
then $g$ is real on the closed support $S_{*}$ of $m$ . By the antisymmetric
property of $S_{n}$. ([6; Chap. 3, Theorem 6]), $g$ is constant on $S_{n}$ . By the
assumption, $g$ is constant on $X$. Thus $A$ is antisymmetric and so this
case is reduced to Theorems 1.1 and 1.3 where $i=1$ .

If $m$ is dominant, Serizawa’s condition is equivalent to Fisher’s.
There is an algebra with a dominant representing measure which does
not satisfy Serizawa’s condition. (E.g., Example 2 in \S 2.)

Under the condition $(^{**})$ we consider the converse of Theorem 1.1.

PROPOSITION 1.5. Let $A$ be a function algebra on a compact Hausdorf
space $X$ with the condition $(^{**})$ . Let $A_{i}=A|_{X}$ . Let $m_{i}$ be a repre8enting
measure for $\varphi_{i}eM_{A}$,. Assume the property: if $\mu$ is a measure on $X_{i}$

orthogonal to $A_{i},$ $\mu$ is absolutely continuous to $m_{i}$ for each $i$ . Then, if
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$feU$ is an exposed point of $U,$ $m(F\cap X_{i})>0$ for $1\leqq i\leqq n$ , where $F=$

$\{xeX:|f(x)|=1\}$ .
PROOF. Suppose $m_{j}(F\cap X_{\dot{f}})=0$ for some $j,$ $1\leqq j\leqq n$ . Let $\mu$ be a

measure on $X_{j}$ orthogonal to $A_{j}$ . Then $\mu(Fnx)=0$ . So if $f$ is an ex-
posed point of $U$, for $f|_{X_{j}}eA_{j}$ there is a function $g\in A_{j}$ such that $g=f$

on $F\cap X_{j},$ $g\rightarrow f$ on $X_{j}$ and $||g\Vert=||f|_{F\cap X_{j}}\Vert$ ([5]). Now let $L(f)=1=\Vert L||$

for $LeA^{*}$ . Then there is a non-negative Baire measure $v$ on $X$ such
that $v(X)=1$ ,

$L(h)=\int_{s}h\overline{f}dv$ $(heA)$ ,

where the closed support $S$ of $\nu$ is contained in $F$. Put

$h=\left\{\begin{array}{ll}g & on X_{j}\\f & otherwise.\end{array}\right.$

Then $heC(X)$ and $h|_{X_{5}}eA|_{x_{i}},$ $1\leqq i\leqq n$ . So $heA,$ $||h\Vert\leqq 1$ and $h\rightarrow f$ on
X. On the other hand,

$L(h)=\int_{s}h\overline{f}dv$

$=\sum_{=1}^{n}\int_{snx_{i}}$ hfdv

$=\sum_{i\neq\dot{g}}\int_{snx_{i}}|f|^{2}d\nu+\int_{s\cap X_{\dot{f}}}$ gfdv

$=\int|f|^{2}d\nu=1$ .

Consequently, $f$ is not an exposed point of $U$.

NOTE. In Theorem 1.1, suppose that $X$ is separable and $A=C(X)$ .
Then, there is a countable dense set $\{x_{\alpha(1)}, x_{\alpha(2)}, \cdots\}$ in $X$. Let $X,=\{x_{\alpha(i)}\}$ ,
$A_{i}=C(X)|_{x_{i}}=C(X_{i})$ and $m_{i}$ be the unit point mass at $x_{\alpha(i)}$ . Each $X_{i}$ is a
maximal set of antisymmetry of $A$ . Then, if $feC(X)$ is a unimodular
function, $f$ is an exposed point of $U$ and so $f$ is an extreme point. On
the other hand, Phelps [7] established the following: if there is a diffuse
measure on $X$, the sets of extreme points and exposed points of $U$ are
equal. Indeed, in this case, $\mu=\sum_{=1}^{\infty}(1/2^{i})m_{i}$ is a diffuse measure. More-
over, if there is a diffuse measure on $X$, the unit ball of $C(X)$ is the
closed convex hull of its exposed points.
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\S 2. Examples.

EXAMPLE 1. Let $A$ be the disk algebra or $R(K)$ , where $K$ is a
compact subset of $C$ and its interior is connected. By the theorems and
proposition in \S 1, exposed points of both algebras can be completely
characterized.

EXAMPLE 2 ([7]). Let $X_{1}=\{z:|z|=1\},$ $X_{2}=\{z:|z-3|=1\}$ and $X=X_{1}\cup X_{2}$ .
Let $A$ be the algebra of functions which are continuous on $X$ having
continuously analytic extensions to $\{z:|z|<1\}\cup\{z:|z-3|<1\}$ . Let $m_{1}$ and
$m_{2}$ be a representing measure on $X$ for $z=0$ and $z=3$ , respectively.
Then each $X_{i}$ is a maximal set of antisymmetry of $A$ , because $X_{i}$ is
the closed support of $m_{:}$ for $i=1,2$ . So a function $fe$ $A$ with $\Vert f||\leqq 1$

is exposed point if and only if $m_{i}(F\cap X_{i})>0$ for $i=1,2$ , where $F=$

$\{z:|f(z)|=1\}$ . And the unit ball of $A$ is the closed convex of its exposed
points.

EXAMPLE 3. Let $X=\{(z, t):|z|=1,0\leqq t\leqq 1\}$ and $A$ be a function alge-
bra generated by $z,$ $t(|z|=1,0\leqq t\leqq 1)$ . It is known that $X_{\alpha}=\{(z, t_{\alpha}):|z|=1\}$

is a maximal set of antisymmetry of $A$ for each $t_{\alpha},$ $0\leqq t_{\alpha}\leqq 1$ . As the
interval $[0,1]$ is separable, there exists a countable dense set $\{t_{\alpha(1)},$ $t_{\alpha(2)}$ ,

$\}$ in $[0,1]$ . Put $X_{i}=\{(z, t_{\alpha(i)}):|z|=1\}$ . Then $\bigcup_{i=1}^{\infty}X$, is dense in $X$. Let
$A_{i}=A|_{x_{i}}$ and $m_{i}$ be a (unique) representing measure for $(0, t_{\alpha(i)})$ for each
$i$ . So $X$ satisfies the condition $(^{*})$ and each $A_{i}$ has the condition $(\alpha)$ .
Thus Theorem 1.1 holds. And we can easily see that $A$ is generated
by inner functions $z,$

$e^{it}$ and $e^{-it}(|z|=1,0\leqq t\leqq 1)$ . Thus Theorem 1.2 also
holds.

EXAMPLE 4. Let $X_{1}=\{z:|z|=1\},$ $X_{2}=\{z:2\leqq z\leqq 3\}$ and $X=X_{1}\cup X_{2}$ . Let
$A$ be the algebra of functions which are continuous on $X$ and can be
extended to be analytic in $\{z:|z|<1\}$ . There is a countable dense set
$\{t_{\alpha(1)}, t_{\alpha(2)}, \cdots\}$ in $X_{2}$ . Now put $K_{0}=\{z:|z|=1\}$ and $K_{i}=\{t_{\alpha(’)}\}(i\geqq 1)$ . Then
each $K_{i}(i\geqq 0)$ is a maximal set of antisymmetry of $A$ and $\cup^{\infty}=0K_{i}$ is
dense in $X$. So $X$ has the condition $(^{*})$ . Let $A_{i}=A|_{K_{i}},$ $m_{0}$ the normalized
Lebesgue measure and $m_{i}$ the unit point mass at $t_{\alpha(t)}(i\geqq 1)$ . Each $A_{i}$

has the condition $(\alpha)$ . Now put the functions $w_{i}(1\leqq i\leqq 6)$ as follows:
$w_{1}=z$ on $X_{1}$ and $w_{1}=1$ on $X_{2},$ $w_{2}=z$ on $X_{1}$ and $w_{2}=-1$ on $X_{2},$ $w_{\epsilon}=1$ on
$X_{1}$ and $w_{\theta}=e^{t}$ on $X_{2},$ $w_{4}=-1$ on $X_{1}$ and $w_{4}=e^{it}$ on $X_{2},$ $w_{b}=1$ on $X_{1}$ and
$w_{\iota}=e^{-}‘$ on $X_{2},$ $w_{6}=-1$ on $X_{1}$ and $w_{0}=e^{-,t}$ on $X_{2}$ . Then $A$ is generated
by inner functions $w_{l},$ $i=1,$ $\cdots,$

$6$ . So Theorems 1.1 and 1.2 hold.

EXAMPLE 5. Let $X_{1}=\{(z, 0):|z|=1\},$ $X_{2}=\{(0, t):0\leqq t\leqq 1\}$ and $X=X_{1}\cup X_{2}$ .
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Let $A$ be the algebra of functions which are continuous on $X$ and which
can be extended to be analytic in $\{(z, 0):|z|<1\}$ . Then $A$ is a function
algebra on $X$. Since $[0,1]$ is separable, there is a countable dense set
$\{t_{\alpha\{1)}, t_{\alpha(2)}, \cdots\}$ in $[0,1]$ , where $t_{\alpha(l\rangle}=0$ . Then put

$K_{1}=\{(z, 0):|z|=1\}\cup\{(0, t_{\alpha(1)})\}$

$K_{2}=\{(0, t_{\alpha(2)})\}$

$K_{l}=\{(0, t_{\alpha(t\}})\}$

We can see that each $K_{i}$ is a maximal set of antisymmetry of $A$ and
$\bigcup_{i=1}^{\infty}K_{i}$ is dense in $X$. So $X$ has the condition $(^{*})$ . Let $A_{i}=A|_{K_{i}}$ . Let
$m_{1}$ be a (unique) representing measure for $(a, 0)$ in $M_{A},$ $0\leqq|a|<1$ and $m_{i}$

$(i\geqq 2)$ the point mass at $(0, t_{\alpha(i)})$ . Then each $A_{i}$ has the condition $(\alpha)$ .
Thus Theorem 1.1 holds. But the unit ball of $A$ is not the closed
convex hull of its exposed points ([7]). In this case, if $f\in A$ is inner,
$f$ must be a constant of modulus 1 on $X_{1}$ . $A$ is not generated by inner
functions.

EXAMPLE 6. Let (X, $\mathfrak{U},$ $m$) be a probability measure space. Recall
that a $weak_{-}^{*}Dirichlet$ algebra $A$ is an algebra of $L^{\infty}(m)$ such that (i)

the constant functions lie in $A$ ; (ii) $A+\overline{A}$ is $weak-*dense$ in $L^{\infty}(m)$ ; (iii)

$m$ is multiplicative on $A$ . Let $H^{\infty}(m)$ be the $weak-*closure$ of $A$ in
$L^{\infty}(m)$ . As $H^{\infty}(m)$ is antisymmetric, we can apply the same method as
Theorems 1.1 and 1.2 in \S 1 for $i=1$ . Then our statement is: Let $A$

be a $weak-*Dirichlet$ algebra such that $(\beta)$ no non-zero function in $H^{\infty}(m)$

vanishes on a set of positive measure. For $f\in H^{\infty}(m)$ with lfll $\leqq 1$ ,
$m(\{|f|=1\})>0$ implies that $f$ is an exposed point of the unit ball $U$ of
$H^{\infty}(m)$ . Moreover $U$ is the closed convex hull of its exposed points (cf.

[10]).
The assumption $(\beta)$ of $H^{\infty}(m)$ is necessary. Let $A$ be the algebra

of continuous functions on the torus $T^{2}=\{(z, w):|z|=1, |w|=1\}$ which are
uniform limits of polynomials in $z^{n}w^{m}$ , where $(n, m)e\{(n, m):m>0\}\cup$

$\{(n, 0):n\geqq 0\}$ . Denote by $m$ the normalized Haar measure on $T^{2}$ . Then
$A$ is a $weak-*Dirichlet$ algebra of $L^{\infty}(m)$ that does not satisfy the as-
sumption $(\beta)$ . Now take a function $g=zw$ in $H^{\infty}(m)$ and a subset $E$ of
$T^{2}$ with $0<\neq m(E)_{\neq}<1$ . Let $\chi_{B}$ be a characteristic function of $E$. We put
$f=x_{B}g$ . Then $f$ lies in the unit ball of $H^{\infty}(m)$ and $m(\{|f|=1\})>0$ . But
$f$ is not an exposed point (indeed, not an extreme point).
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