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Introduction

In 1951, Hasse [7] started from the principal genus theorem of
Gauss and gave a class field-theoretic interpretation of the genus theory
of quadratic number fields. Subsequently, Leopoldt [11] extended the
theory to abelian fields, and Frohlich [1] generalized it to arbitrary
number fields. In his paper [11], Leopoldt studied the “Auflosung” of
groups of numerical characters and gave an ideal-theoretic characteriza-
tion of genus fields and a genus number formula of abelian fields. By
origin, the principal genus in the Gauss’ classical theory  is deﬁhed
as the kernel of numerical characters which are called the genus char-
acters. Hasse [9] asserted that Leopoldt’s characterization of genus
fields of abelian fields can restated as the following: the principal genus
of an abelian field is the kernel of norm residue symbols And recently,
Gold [3] showed that the principal genus in the wide sénse of a relative
Galois extension is also characterized as the. kernel of norm residue
symbols. On the other hand, Furuta [2], using idele, obtained a genus
number formula in the wide sense of relative Galois extensions. The
genera that the above authors except Furuta and Gold treated in thelr
papers were in the narrow sense.

The genus field, the genus number and the pr1nc1pal genus are
deﬁned as follows.

DEFINITION. Let K/k be an arb1trary extension of finite algebralc
number fields. The narrow (wide) genus field K* of K/k is the maxxmal
extension of K, which satisfies the following conditions:

(i) K* is a composite of K and an abelian extension of &,

(ii) no finite (and no infinite) prime in K ramifies in K*/K. .
The genus number of K/k is the degree [K*: K]. Clearly, the genus
field K* is a class field over K, and we call the ideal group: of K cor-
responding to K* the principal genus. ‘
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In 1971, Goldstein gave in [4] a genus number formula of relative
abelian extensions by using a method similar to Furuta [2]. Recently,
Gurak [5] extended an analogy of Leopoldt’s theory and showed that the
principal genus in the narrow sense of a relative abelian or Galois ex-
tension is characterized by norm residue symbols, and obtained a genus
number formula.

In the works mentioned above, the authors always drew a line
between the two senses, i.e., the narrow and the wide ones. We show
in the present paper that such distinction is not essential. For that
purpose, we use the generalized notation of genus fields as follows.

DEFINITION. Let K/k be an arbitrary extension of finite algebraic
number fields, M an integral divisor of K and K(M) the ray class field
of K mod IX. Let E be the maximal abelian subextension of K(IM)/k. Set

K*(IM)=KEF ,
Ixn(M)=[K*(M): K] .

We call K*(IN) the genus field and g,(M) the genus number of K/k

mod M. The principal genus is the ideal group of K corresponding to
K*(IM).

In this definition, if M is the integer ring of K (the product of all
the infinite primes of K respectively), then we have the wide (resp. the
narrow) genus fields. An idele-theoretic investigation of the above genus
fields was already made by Furuta and he obtained genus number for-
mulas (cf. Remark 2). But his results are yet unpublished. In the
present paper, we make a further study of the genus fields using ideal-
theoretic methods. Our purpose in this paper is to generalize Leopoldt-
Gurak theory to the genus field of a relative extension with modulus.
Especially, we give a generalization of “Auflosung” in Leopoldt’s paper
[11] and construct an abelian extension K**(m) over K attached to an
integral divisor m of k (see §3). By comparing the genus field K*(I) -
with K**(m), we can see that for any given abelian extension K/k and
for any integral divisor It of K, there exists an integral divisor m of
k such that K*(IR)= K**(m), i.e., the principal genus of a relative
abelian extension K/k with modulus can be completely characterized
by norm residue symbols and an integral divisor of % (Theorem 2 and
its corollary). In §1, we study groups of numerical characters of a
finite algebraic number field, in §2, we are concerned with two special
numerical character groups related to the genus fields, in §3, we in-
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troduce another generalization of genus fields determined by “Auflosung”
and in final section §4, we will compare K*(I) with K**(m) and prove
Theorem 2 and its corollary.

I express my hearty gratitude to Prof. Y. Furuta for giving me the
chance to read his notes on nilpotent extensions, and to Prof. M. Ishida
for his valuable suggestions. My gratitude also extends to Prof. T.
Hayashida, Prof. G. Fujisaki, Prof. M. Fujiwara and Prof. H. Miki for
their warm encouragements.

We use the following notations in this paper.
k, K and L: finite algebraic number fields.

b, P and P,: prime of k, K and L respectively such that P and P,
divide p.

Ly, (or simply L when the prime 9, is fixed): the completion of L
at P;.

M (resp. My or simply M): the maximal abelian subextension of Kk
(resp. Ky/k,). o L

G(K/k) (resp. G(K/k)): the Galois group of K/k (resp. K/k) when
the extension is Ga101s

G(K/k) (resp. G(K/k)): the character group of G(K/k) (resp. G(K/k))
when the extension is abelian.

__f(KJk) (resp. f(K/k)): the conductor of an abelian extension K/k (resp.
K/k).

O,: the integer ring of k.

U,: the unit group of k.

k*={a € k*: a=1(mod m)} for an integral divisor m of k.

A"={a e A: a=1(mod m)} for a subset A4 of k.

(A);: the elements of A which are relatively prime to an integral
divisor f of k, where A is a subset of k.

P,: for fixed k, a full representative set of the primes of %, con-
sisting of primes of L such that for any prime p of k there is a unique
prime P in P, dividing p.

We call P, (or simply P when there is no confusmn) a P-set of L.

I.: the group of all the fractional ideals of k.

H(L/K): the ideal group of K corresponding to an abelian extension
L/K. )

i(a)=(a): the principal ideal of k generated by an element a of %.

S,(m)=i(k™): the ray mod m of k.

k(m): the ray class field of & mod m.

U,(,—"-{a e k: a=1(mod p)}.

(1)

Vza={0 € G(K/k): a’=a(mod ') for all a € K}: the i-th ramification
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group of a Galois extension Kik.
Jrw(w): the Hasse’s function for a Galois extensmn K/Ic of non-
archimedean local fields (see §2).

§1. Nunierical characters of an algebraic number field.

Let { be an integral divisor of ‘4. A mapping X: (k*),—C is called
a numerical character of Zmodf{ when the following conditions are
satisfied.

(i) X(x)#0 for any 2z in (k*),,

(ii) if x=y(mod{), then X(x)=A(y),

(iii) A(xy)=X(@)X(y).

Let X be a numerical character of %k mod f, then for any { which is
divided by f, X is also a numerical character modf’. For any proper
divisor f, of f, if there are « and y in (%4*), such that x=y(mod f,) and
A(x)#X(y), then f is called the conductor of X and symbolized by f(X).
Let ® be an arbitrary group of numerical characters of £k modf. Put

f(G)=lc.m.{fX): X e (55} .

We call {(®) the conductor of &.
For a group © of numerical characters of k mod f, set the restnctlon
of ® to k»

G.={X|m:Xe@),
and set _
a(®,)={re (k™);: X(x)=1 for all Xec@}.

The restriction G, of a numerical character group ® mod f can be regarded
as a character group of Of, where the notation Or stands for the sub-
group of (O./f)* which is generated by the classes represented by the
elements of ©OF. By the duality, there is an inverting correspondence
between the subgroups of Of and ®,’s, and the correspondence is given
by

@m4———»a(®- ’
where a(®,) is the classes of 5}‘:‘ represented by the elements of

a(®,).
Lemma 1 below is elementary.

LEMMA 1. Let @ and & be groups of mwmerical characters of k.



GENUS FIELD 367

Put i=1(@), {'={®"). If G,08, on (k*)y, then { divides 1. c.m.(f, m).
Therefore, in that case,

G006, on (k).
PrROOF. Put |
n=L c. m.(f, m)=T] p*,
v

f=TIp".

»

Suppose that there is a prime p such that s,<¢,. Then, by the definition
of the conductor of numerical character groups, we can take a character
X in @ and an element a of (k*) such that

(1) . a=1(mod g. c. d.(f, n)) ,
(2) | | X()#1 .

From the congruence (1), it follows that there is an element g8 in k*
such that \

(3) B=a (modf),
(4) B=1 (modn) .

Clearly, g is in (k*),. Therefore, the kcongruence (4) and: the assumbtion
of the lemma imply X(B8)=1. From (2) and (3), it follows that X(8)#1.
It is a contradiction.. Thus we have s,=¢,. And the lemma was proved.

In the next section, we will be concerned with two special numerical
character groups of k& related to the genus fields.

§ 2. The groups &(K), and G*(K; Px)m.

In this section, we will give a generalization of “Auflosung” in
Leopoldt’s paper [11]. We start from the definition of the group &(K).

For an arbitrary finite extension K of a fixed finite algebraic number
field k, we define the subgroup &(K) of the group of all the numerical
characters of k mod f(M/k). Put

‘®(K)={X: x(x)=z(%§"-) for some % e Garm}

where ((M/k)/a) is the Artin symbol of the maximal abelian subextension
M|k of K/k. The group G(K) is defined on () u/m. We see {(&(K))=
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f(K/k). Moreover, for the character group &(K),, the following Lemma
2 holds. '

LEMMA 2. Let M be the maximal abelian subextension of K/k. Then
S(K)u=GM/Em)NM) .

PROOF. This lemma can be proved similarly to (i) of Proposition of
Gurak [5].

Now, to generalize “Auflosung”, we introduce the following notations.
f(K/k; Pe)= 11 f(My/k,) .
BePgp

We call it the locally abelian éonductor of K/k at Pg, where Py is a
P-set of K. The subgroup G*(K) (resp. ®*(K; Pg)) of the group of all
the numerical characters of k mod f(My/k,) (resp. mod f(K/k; Pg)) is as
follows.

@%K):{x: (@) =7 _”Eigi’fa) for some jeG(My/k,) on (Is"),}.
®*(K; Po)= ] ®(K) (direct).

We can easily see that f(K/k; P) is not depend on the choice of P in
case K/k is a Galois extension. So we write 8*(K)=®*(K; P) when K/k
is Galois.

The group G*(K; P) is defined on (k*)yxu:p» and its conductor
f(®*(K; P)) is equal to the locally abelian conductor of K/k at P. The
restriction @*(K; P), is a generalization of “Auflosung”. Actually, if &
is the rational number field, K is an abelian field and m is the product
of all the infinite primes of %k, then &*(K; P), is “Auflosung” in [11].
We will show later in final section that, for any abelian extension K/k
and for any integral divisor MM of K, there exists an integral divisor m
of % such that the genus field K*(IM) is characterlized by &*(K),.

On the connection between groups &(K), and extension K/k, Lemma
3 and Theorem 1 below are elementary and essential (cf. (ii) of Proposi-
tion and Theorem 3 in [5]).

LEMMA 8. Let K, and L, be the maximal abelian subextensions of
K/k and L/k respectively. If k(m)K,DL,DK, then &(K).,=O(L). on
(k“)f(xo/k)-

PrROOF. This lemma can also be proved similarly to Gurak’s Pro-
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position (ii) in [5].

THEOREM 1. Let @ be a group of mumerical characters mod f(®) of
k, which is trivial on UP. Then there 18 a unique abelian extension L
of k such that LDOk(m) and

®(L)uz=@n on (km)f(ﬁ) .
Moreover, in that case, the ideal group of k corresponding to L is i(a(®,)).

ProoF. This theorem is a generalization of Theorem 8 in [6]. Lemma
1 and an analogy of the proof of the theorem of Gurak prove the theorem.

In Lemmas 1,2 and 8 and Theorem 1, if we replace &® by a subgroup
A of k* such that i(A) is an ideal group of k¥ and k(m) by the class field
over k corresponding to i(4), analogous results are obtained. The reason
why we restrict our discussion to A=k" is the fact that there is a simple
formula for the number of the elements of &*(K; P).. ‘
~ To make a simple description of the the number of elements of
®&*(K)., we introduce the Hasse’s function +rz; for a Galois extension
K/% of non-archimedean local fields.

Let V,2V,2---2V,=1 be all the ramification groups of K/k and
—1=p,<v,<-+-<v,<co be all the ramification numbers i.e. v;,, is the
maximal exponent such that

(v5+1) (vi4+1)

Vj= Ve =:= Vf/ie
={o e G(K/k): a’=a (mod P’+1**) for all aecK}.

We define v»,,, as <, and put
uj=1;0+ﬁ’_(fvl.— Vo)F + o +_’_?’L:1_(1)j——fvj_1)
no nO

for j=0,1, ---, r+1, where n;=4%V;. The Hasse’s function yz; is de-
fined as

«/rz,;(u)=v,-+%—(u—u,-) for w;=su<<ujy, .
i
The following propositions are known (see [8], [10] and [12]).

I. The Hasse’s function i8 strictly momotone increasing a'nd wWf u

i8 a rational integer, then +rzi(u) 18 also a rational integer. The inverse
. -1 . . . .
image u;=+zz(;) of a ramification number v; is not always a rational
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integer, but if K/k is abelian, w; is a rational integer Jor 7=0,1, -+, ».
II. Let K/k be abelian. If a runs through all the elements of vy
for an integer w such that u;<u=u,,,, then

(58

p
TUNS through all the elements of V;= V:f: n.

LEMMA 4. Let B be a prime of K,p the prime of k divided by B
and let u, be the p-exponent of an integral divisor m of k. Then

(S FACR)
Vir ' ' if P is finite
#S*(K).={2 if P 18 tmaginary infinite and pim
1 otherwise ,

where k=Fk, and M is the maximal abelian subextension of K/k.

PROOF. In case P is infinite, P is imaginary and p is real. So the
statement is obvious. Let 8 be a finite prime. The mapping G(M/k)—
G* K).: Y—X is a surjective homomorphism and ¥ is in the kernel of
the homomorphism if and only if

(U,, S M/k)

From 11, it follows that
(U(%) M/k) Pz )

e

So the kernel of the homomorphism is G ER /k), where M* is the
i-th ramification field of M/k. By the duality, we have Lemma 4.

REMARK 1. Let K/k be Galois. If m is the product of all the
infinite primes of k, then for any ramifying prime P,
the ramification number of M/k if P is finite
1 if P is infinite.

If m be the integer ring O, of k, then
#®*(K),=the ramification number of Mg/k, for all .

$ O K)u= {

§3. The field K**(Pg; m).

‘We first, in this section, give a deﬁmtmn of 1dea1 group H(K; Pg; m)
and the field K**(Pg; m).
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DEFINITION. Let K be an arbitrary finite extension over k, m an
integral divisor of & and Pz a P-set of K. Let E* be the class field
over k corresponding to the ideal group i(a(®*(K; Px).)). The field
K**(Pg: m), the ideal group H(K; Pg; m) and the number g% ,(Px; m)
are defined as follows. |

K**(Py; m)=KE* ,
H(K; Pg; m)=H(K’.“*(Px; m)/K) ,
9xin(Pr; m)=[K**(Pg; m): K] .

In case K/k is Galois, we write K**(m)= K**(Pg; m), H(K; m)=
H(K; Pg; m). o

The above definition ‘can be rewritten as follows. H(K; Pg; m) is
the group of all the ideals %A e I, satisfying the following conditions:
(i) there is an element a in k* such that

Ngi(N)=() , ‘

(ii) there is a unit ¢ in Up such that
a, Kelk,\_ (¢, Ks/k
(. > ’) ( P ") for all Pe Py .

And G(K**(Pg; m)), is the subgroup of &*(K; Pg), corresponding to the
subgroup a(®F(K; Pr).)Ur of Of represented by the elements of
a(®*(K; Pg).)Ur. '

The number g%,.(P; m)=[K**(P; m): K] can easily be computed.

PROPOSITION 1. Let u, be the p-expoment of an integral divisor m
of k, hy=[k(m): k], and ‘

Ug.(P)={ec Up:e isa norm from Ky for all Be P},

FVIRED i B s fimite

es=1{1 if P 18 infinite and pim
2 iof P is fimagi'na'ry nfinite pm.
Then |
hu 11 g
Ixn (P; m)= 8 F

[M: k) Uz:Uza(P)
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where M 18 the maximal abelian subextension of K/k.

PrOOF. From Lemma 2, it follows that
G(K**(P; m)),=G(M*(P)/k(m)N M*(P)) ,

where M*(P) is the maximal abelian subextension of K**(P;m)/k. There-
fore, it follows that

gxi(P; m)=[K**(P; m): K]
=[M*(P): M]
[M*(P): k(m)][k(m): k]
[M: k]
_ 3S&(K**(P; m)),-ha
[M: k] )

Since ®(K**(P; m)), is trivial on U, it follows that

G*(K; P)u/S(K**(P; m))u= Up/U%(P)
from the duality. Lemma 4 and the above prove the proposition.

The field K**(P; m) is another generalization of the genus field K*
of K/k.

§4. The fields K*(IM) and K**(Pg; m).

We consider the relation between K*(IR) and K**(Pg;m). For that
purpose, we introduce the notations D,(IM) and D,(M) for a fixed integral
divisor M of K.

D,(m): the set of integral divisors m of k such that if a=1(mod M),
then Ng,(a)=1 (mod m).

Let P be a prime of K and p=PNk. Set M* (resp. M) the maximal
abelian subextension of K*(IR)/k (resp. K/k), where K=K, k=k, and
K*(I) is a localization of K*(M) which contains K. Moreover, let u(P)
be the exponent of the conductor of M*/M, and let m($P)’s the rational
numbers such that

(5) u(P)—1<m(P) .

Since K*(M)/K is abelian, the rational numbers m($P)’s depend only on
PB. For M=]], P-#, the notation of D,(M) is as follows.
D,(IM): the set of imtegral divisors m=T],p* of k satisfying the
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Jollowing conditions:
(1) if b i3 infinite, then u,=my fo'r some real PB|P,
(ii) 4f p 18 finite, then u, i3 a rational integer such that
ViU, — 1) <m(P)= Wi i(Uy)
Jor some P|p and for some m(P) satisfying (5).

For fixed m in D,(M), let P(m) be a P-set of K which contains B,
used to define m in the above definition. Then for each finite prime pti
in Pg(m), there are rational numbers m(P)’s such that

{u(iB) —1<m(P)
¥aa(u,—1) <m(P) < Pusi(u,) -

Moreover, let Py be the set of P-sets of K such that any P in P,
satisfies

(6)

( N, K/k(a“); M,/ ka) =1

for all @ in K* prime to p.
On the sets D,(M) and D,(M), Lemmas 5 and 6 below are essential.

LEMMA 5. Let L/k be an abelian extension. Then, Jor any m e
D,(IM) and for any Pyec Py, B(L),, c®*(K; Px)a, on (K™)yxny tmplies LC
K*(I).

PROOF. We can assume LDOk(m,) without loss of generality by
Lemma 3. Then, by Theorem 1, we see that L is the class field over k
corresponding to the ideal group i(a(&(L),,)). From &(L).,c®*(K; Pyg)
it follows that

my?

H(a(&L).,) D i(a(®@*(K; Pr)a,) -

On the other hand, by the translation theorem of the class field theory,
an ideal A of K is in H(KL/K) if and only if the ideal Ng,() of k is
in {(@(®(L).,). Let AeS(M), i.e., A=(a) for some a=1(mod M). From
the definition of D,(IM), it follows that Ng.(a)=1(modm,). And from
the definition of Py, (Ng,(a)) is in i(a(®*(K; Px).,)). Therefore, we obtain
S(M)cH(KL/K) i.e., Lc K(IR).

LEMMA 6. Let KCLCK*(I). Then there are P-sets Pg(m,) and
P,(m,) of K and L respectively such that
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G*(K; P K(m2))mg=@*(L; P L(mz))nag on (kaz)l(xlk,l’x(ug}) '3
for all m, e D). B S

To prove Lemma 6, we enumerate _t}_l_e necessary properties of the
Hasse’s function of a Galois extension K/k (see [8], [10] and [12]).

Il (the conductor theorem). Let RK/E be abelian and let {(K/k) be
the conductor of Kk, then

f(K/E) =p1"'1_?/1_k,("”?’5”+1 R
where v(K/k) is the last ramification number of K/k.

IV (Herbrand’s theorem). Let L/k and K/k be Galois extensions and
let L contain K. Then

Ves= VirG(L/K)/G(L/K)
for ¥z <v=Siz(u). '

PROOF OF LEMMA 6. Let Pg(m,) be a P-set of K satisfying (6) and
P,(m,) a P-set of L such that P.(m,) is contained in {,N K: B, € P,(m,)}.
Then, clearly,

G*(L; Py(m))a,D8*(K; Pe(m))a, o0 (K™)yiz/m,ppme -

Let P, be in P,(m,) and let P=P,N K and p=P,Nk. Put L=L,, K=
Ky, k=Fk, and L, (resp. K,) the maximal abelian subextension of L/k (resp.
K/k). Considering the conductor theorem III, we obtain by the choice
of Pg(m) that |

WIyktug) o PLyku,—D+)

Vfo Ky = VIyE, ’

where u, is the p-exponent of m,. On the other hand, from the defini-
tion of the ramification groups, it follows that

(VIy/k(up)

(VI,Th(up)) - -
VR =Vga | NGELJK) .
Therefore, we obtain ‘

= F (VT /% (up)
Lo=Lo 0 Ko ’

where L{# is the i-th ramification field of L,/k. By Herbrand’s theorem
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[K03 Ké%}oﬁ(u,))] = [Ko: Ko N EéV‘Zo/'IE'(“v”]
=[LYTF D R,; [WF )
=[Lo: LYTFe]
Lemma 4 and the above imply
(7) ' | #®”(K)m2=#@”L(L)m;

for all infinite prime ®, in P,(m,). In case B, e P,(m,) is infinite, the
equality (7) also holds. And, by Lemma 1, we obtain Lemma 6.

- The following Proposition 2 is a consequence of Lemmas 5 and 6.
PROPOSITION 2. (i) For any P-set Py in Px and for any m, ¢ D,(M),
K**(Pg; m)cK*(IM) .
(ii) For any m, e D,(I), there is a P-set Py(m,) such ihat t
o - K*(I)C K**(Px(m,); m,) . _
s Espécz'ally,: tf m is in D(M)ND(M) and if Pg(m) is in P, then
K* (@)= K*(Py(am); m) R

PROOF. Let Px(tlnz)» satisfy (6) for all finite pi‘imes in Pg(m,). We
obtain G(K*(M)),, cG*(K; Pr(m,))a, by Lemma 6. Since &(K*(M)),, is
trivial on Uy,

a(B(K*(T))uy) Da(G*(K; Pes))a) Ugs .
From the definition of K**(Pg(m); m), it follows that
K*(M) C K**(Pg(m,); m,)
The statement (i) is an immediate consequence of Lemma 5.

In the rest of the paper, we assume that the extension K/k is a
Galois extension.

Put M=T], P™® and let u, is the rational integer satisfying
Vrgriy(Us—1) <My =gy (Usg)
for a finite prime 3. For a real infinite prime B, put

(1 if pIMm
“"‘_{o if M.
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For any imaginary infinite prime P8, we do not define uy. Put
u,; =min{ug: Plb} ,
(8) m*=T] p*
]
where the product [], runs through all the finite primes and all the real

infinite primes of k.
From the following Proposition V, we easily see

m* e D,(IM) .

V (cf. [8], [10] and [12]). Let u be a non-negative integer, then, for
any integer v such that ¥zzr(u—1)<v=+zz(u),

Nz#(Us)cUs .

Hereafter, we will be concerned with sufficient conditions for m* e
D,(I).

LEMMA 7. Let K/k (resp. Lik) be a Galois (resp. abelian) extension of
non-archimedean local fields. Put v(K/k) the last ramification number
of Klk. And put

f( KE/ K)=s$u(ii/f)+1 , f(E/E): pu(?.‘/iiﬂ .
If w(K/E)<u(RL/K), then w(L/k) is the rational integer such that
vea(w(L/k) <u(RL/K)+1<yza(uw(L/k)+1) .
PrROOF. From the conductor theorem III, it follows that

(VK i/ (KL/EK)) =1

KL/K ’
i.e.,

VAYRHRELEN o RTIR) #1

The above implies
(9) f({zlg_ck_z/f(u(if/i)))ng(Kl—l/E) ]
We obtain by Herbrand’s theorem IV that if yzz(u)<u(KL/K)+1,
(10) DR o FRIRCELEN 0 BT L)/G(RL/L) .
By (9) and (10),
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(11) Ve 1
On the other hand, from »(K/k)<u(KL/K), it follows that

1 = VEETR

= Vage "R NG(RLK)G(RLK)
i.e.,
VApRHRWEIDD - RT/R) .
Since we defined w(KL/K)+1 as the exponent of the conductor of KL/K,
1=V =X N GRL/K) .

So we obtain by Herbrand’s theorem IV that if w(RL/K)+1S+4zu(u),
(12) Vet =1
(11) and (12) prove the lemma.

LEMMA 8. Let L/k and K/k be Galois extensions and let LK be
abelian. If L/K is tamely ramified, then

vr R WL/ K)<uw(L/K)+1,

where K, (resp. L,) is the maximal abelian subextension of Kk (resp.
L/k) and {(L,/K,)=Pr@Eo+ §(L/K) =P &0+ gud B, (resp. P) is the prime
of K, (resp. K).

PrROOF. Take the inertia fields T and T, of L/K and L,/ K, respec-
tively. Then we can easily see that T=T,K. Comparing the degrees
[Lo: T,] and [L: T], we obtain the lemma.

The above Lémma 8 is a generalization of the lemma in [5].}

THEOREM 2. Let K/k be a Galois extension of finite algebraic number
fields. For a fized integral divisor M=T[s P**, set m* as in (8). Sup-
pose that any finite prime B of K satisfies one of the following con-
ditions:

(i) KM)/K is tamely ramified,

(ii) the last ramification number v(K/M) of K/M does mot exceed

me—1.
Then the genus field K*(IM) is characterized by &*(K),., i.e.,
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H(K*(IM)/K)=H(K; m*) .

Proor. Since K/k is Golois, K*(IM)/k is also Galois. So, the con-
ductor of K*(M)/K does not depend on the choice of P dividing p. Set
m*=min{ms: P|p} and W =TT, (PUP?--.)™ where P (i=1, 2, ---) are all
the primes of K dividing p. Then

(13) K*(M)C K(W') .
There is an integer w(p) such that
(14) Yria(u®) —1) <my Sz x(w)) .

From (13) and (14), it follows that «(p) is not less than the exponent of
the conductor of M*/M (c.f. the definition of D,(I) and Lemmas 7 and
8). On the other hand, from the choice of m*, it follows that

Yy —1)<my SPrauy) .
Therefore, we obtain
m* e D,(IM) .
So, Proposition 2 prove the theorem.

The following corollary is an immediate consequence of Theorem 2
and Proposition 1.

COROLLARY. Let K/k be an abelian extension of finite algebraic
number fields. Then, for an arbitrary integral divisor MM of K, the
principal genus H(K*(IM)/K) i8 the ideal group of all the ideals A e I,
such that

(i) Ngp(A)=(a) for some ac k™,

(ii) (a, I;,/k,)_:(e, Ii'/k’) Jor some s U and for all p

ramifying in Kk .
And the genus number gg,(IM) 18 given by the formula

hm' H' 8;

(15) . gx/k(m) = [K: k]( U’:a: ;‘/k

where the product TI, runs through all the primes of k ramifying in
K/k and m* is as in (8), m}=min{P-exponent of IM; P|p},
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f# Vih, if b is finite

1 if b 18 infinite and p|m*
t2 if b s infinite and pim* ,
 Re=[k(m*): k]

’
ey=

and U%), is all the units in U which are norms from K for all primes

B of K.

REMARK 2. For an arbitrary extension, a genus number formula
similar to Satz 1 of Halter-Koch [6] has been obtained by Furuta. He
also obtained a genus number formula similar to (15) in the case when
K|k is EL-abelian. The latter genus number formula of Furuta follows
from our Propositions 1 and 2.

REMARK 8. The theorem of Gold [3] is the case when I is the
integer ring of K in our Theorem 2. The genus number formula of
Furuta [2] follows from Theorem 2 and Proposition 1. Theorem 7 of
Gurak [5] is the case when M is the product of all the real infinite primes
of K. And Leopoldt’s formula in [11] and the theorem in Hasse [9] are
the case when k is the rational number field, K is an abelian field and
I is the product of all the real infinite primes of K in Corollary to
Theorem 2.
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