On a Parameter Dependence of Solvability of the Dirichlet Problem for Non-Parametric Surfaces of Prescribed Mean Curvature

Shoichiro TAKAKUWA
Tokyo Institute of Technology
(Communicated by M. Obata)

Introduction

The problem to find a surface having a given function as the mean curvature has been studied for a long time. A particular problem of this type, called the non-parametric problem, can be reduced to solve the Dirichlet problem for the following quasilinear elliptic equation

$$
\begin{equation*}
-\operatorname{div}\left\{\nabla u /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\}=c \quad \text { in } \Omega, \quad u=\phi \text { on } \partial \Omega . \tag{*}
\end{equation*}
$$

Here Ω is a bounded domain in $R^{n}(n \geqq 2), c$ is a given function on Ω and ϕ is a given boundary value. Since Eq. (*) is nonlinear and non-uniformly elliptic, we cannot expect in general that Eq. (*) has a classical solution for generic Ω, c and ϕ. In fact, some kinds of necessary condition on Ω and c are found by many people (see [3], [5], [7], [8], [9], [12]).

In this paper, as an approach to the problem, we introduce a parameter $T(>0)$ into Eq. (*) as follows.
$\left({ }^{*}\right)_{T} \quad-\operatorname{div}\left\{\nabla u /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\}=T c \quad$ in $\Omega, \quad u=\phi$ on $\partial \Omega$,
where c is supposed nonnegative and bounded in Ω. And we investigate how the solvability of Eq. $\left({ }^{*}\right)_{T}$ depends on the parameter T. For this purpose we first consider the variational problem of finding a functional belonging to $B V(\Omega)$ which minimizes the functional

$$
\begin{equation*}
J_{T}(u)=\int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2} d x-T \int_{\Omega} c u d x+\int_{\partial \Omega}|u-\phi| d H_{n-1} \tag{0.1}
\end{equation*}
$$

in $B V(\Omega)$. Here $B V(\Omega)$ is the space consisting of functions of bounded variation in Ω and H_{n-1} denotes ($n-1$)-dimensional Hausdorff measure. For this variational problem we first consider the condition when J_{T} is

[^0]bounded from below on $B V(\Omega)$. Our result is that J_{T} is not bounded from below on $B V(\Omega)$ in case T is larger than a critical parameter T^{*} (>0) defined by
$$
T^{*}=\inf _{F \subset \square}\left\{H_{n-1}(\partial E) / \text { meas }_{e}(E)\right\} \quad \text { where } \text { meas }_{c}(E)=\int_{E} c(x) d x
$$

The condition of this type was obtained by Mosolov [11] for the first time. However, his result [11] contains some inessential assumption because he formulated the problem in the Sobolev space $W^{1,1}(\Omega)$. And also since $W^{1,1}(\Omega)$ is not reflexive, he dose not give the solution of the variational problem. Though several people studied similar variational problems in the space $B V(\Omega)$ (for example, see [3], [5], [7]), their condition for the lowerboundedness of the functional less clarify the relation between the functional and the geometric property of the domain Ω than that of Mosolov. In this paper we return to Mosolov's formulation and show the existence of the solution of the variational problem for $T<T^{*}$ by using the space $B V(\Omega)$ instead of $W^{1,1}(\Omega)$. Using the result about the weak* topology on $B V(\Omega)$ ([1], [2]), we give a more direct proof than that in [3], [5], [7]. Next we consider the regularity property of the solution of the variational problem. Applying the regularity theorem due to Gerhardt [3] and Giaquinta [4], we give a partial result to this problem.

In section 1 we enumerate some properties of $B V(\Omega)$, which will be needed in the following sections. Section 2 is devoted to the proof of the lower boundedness theorem for the variational problem. In section 3 we discuss the existence and regularity property of the solution of the variational problem. In the final section 4 we show a dependence of solutions of Eq. $\left(^{*}\right)_{T}$ on the parameter T and we state some results on Eq. $\left({ }^{*}\right)_{T^{*}}$ for the critical parameter T^{*}. These theorems for Eq. $\left({ }^{*}\right)_{T^{*}}$ are quite different from those of $T<T^{*}$.

§ 1. Definitions and properties of $B V(\Omega)$.

We present here the definition of the space $B V(\Omega)$ and some properties of its elements (for more detail, see [1], [2], [6]). Throughout this section Ω will denote a bounded domain in $\boldsymbol{R}^{n}(n \geqq 2)$ with Lipschitz boundary.

The space of functions of bounded variation in Ω is defined as follows.

$$
B V(\Omega)=\left\{u \in L^{1}(\Omega) ; \nabla u \in\left(C_{0}^{\prime}(\Omega)\right)^{n}\right\}
$$

Here $\left(C_{0}^{\prime}(\Omega)\right)^{n}$ denotes the dual space of $C_{0}(\Omega)^{n}$ and its norm is defined by

$$
\|\omega\|_{\left(O_{0}^{0}(\Omega)\right)^{n}}=\sup \left\{\omega(G) ; G \in C_{0}(\Omega)^{n},|G| \leqq 1\right\}
$$

By virtue of Riesz's representation theorem, we observe that $B V(\Omega)$ is the function space consisting of L^{1} functions whose gradient in distribution sense is a bounded vector-valued Radon measure. $B V(\Omega)$ is a Banach space under the norm

$$
\begin{aligned}
\|u\|_{B V(\Omega)}= & \|u\|_{L^{1}(\Omega)}+\int_{\Omega}|\nabla u| \\
& \text { where } \int_{\Omega}|\nabla u|=\sup \left\{\int_{\Omega} u \operatorname{div} G d x ; G \in C_{0}^{1}(\Omega)^{n},|G| \leqq 1\right\}
\end{aligned}
$$

In the above definition $\int_{\Omega}|\nabla u|$ means the total variation of the vectorvalued Radon measure ∇u in Ω. And it coincides with the norm $\|\nabla u\|_{\left(0_{0}^{\prime}(\Omega)\right)^{n}}$.

Example 1.1. (1) If u belongs to the Sobolev space $W^{1,1}(\Omega)$, we may easily show that

$$
\int_{\Omega}|\nabla u|=\int_{\Omega}|\nabla u(x)| d x \quad \text { and } \quad\|u\|_{B V(\Omega)}=\|u\|_{W^{1,1}(\Omega)}
$$

Thus we also see that the Sobolev space $W^{1,1}(\Omega)$ is a closed subspace of $B V(\Omega)$.
(2) Suppose E be an open subset of Ω with C^{2} boundary. We define the characteristic function χ_{E} of E

$$
\chi_{E}(x)=1 \quad \text { if } \quad x \in E, \quad=0 \quad \text { if } \quad x \in \Omega-E
$$

Then, the following results are known (see [6]).

$$
\chi_{E} \in B V(\Omega), \quad \int_{\Omega}\left|\nabla \chi_{E}\right|=H_{n-1}(\Omega \cap \partial E) \quad \text { and } \quad \chi_{E} \notin W^{1,1}(\Omega)
$$

where H_{n-1} denotes ($n-1$)-dimensional Hausdorff measure.
We define the area functional

$$
\begin{align*}
& \int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2}=\sup \left\{\int_{\Omega}\left(g_{0}+\operatorname{div} G\right) d x ; G=\left(g_{1}, \cdots, g_{n}\right),\right. \tag{1.1}\\
& \\
& \left.\qquad g_{i} \in C_{0}^{1}(\Omega), i=0, \cdots, n, \sum_{i=0}^{n} g_{i}^{2} \leqq 1\right\}
\end{align*}
$$

on $B V(\Omega)$ according to [1], [5].
By this definition we may easily show that

$$
\begin{equation*}
\int_{\Omega}|\nabla u| \leqq \int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2} \leqq \int_{\Omega}|\nabla u|+\operatorname{meas}(\Omega) \tag{1.2}
\end{equation*}
$$

where meas (Ω) denotes the n-dimensional Lebesgue measure of Ω. Furthermore we readily verify that

$$
\begin{equation*}
\int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2}=\int_{\Omega}\left(1+|\nabla u(x)|^{2}\right)^{1 / 2} d x \quad \text { for } \quad u \in W^{1,1}(\Omega) . \tag{1.3}
\end{equation*}
$$

We next state about some weak topology on $B V(\Omega)$. We define the following mapping.

$$
\begin{gathered}
c: B V(\Omega) \longrightarrow \boldsymbol{R} \oplus\left(C_{0}^{\prime}(\Omega)\right)^{n}=\left(\boldsymbol{R} \oplus C_{0}(\Omega)^{n}\right)^{\prime}, \\
\iota(u)=\left(\int_{\Omega} u d x, \nabla u\right) .
\end{gathered}
$$

It is easily seen that c is an injective continuous linear mapping between Banach spaces. We identify $B V(\Omega)$ as a subspace of $\boldsymbol{R} \oplus\left(C_{0}^{\prime}(\Omega)\right)^{n}$ endowed with the weak* topology as the dual space of $R \oplus C_{0}(\Omega)^{n}$. This weak* topology induces a topology of $B V(\Omega)$ as follows (see [1], [2]).

Definition 1.2. A sequence $\left\{u_{j}\right\}$ of $B V(\Omega)$ converges to $u \in B V(\Omega)$ in the \widetilde{w}^{*} topology if and only if

$$
\lim _{j \rightarrow \infty} \int_{\Omega} u_{j} d x=\int_{\Omega} u d x \text { and } \lim _{j \rightarrow \infty} \int_{\Omega} G \cdot \nabla u_{j}=\int_{\Omega} G \cdot \nabla u \text { for } G \in C_{0}(\Omega)^{n} .
$$

The \widetilde{w}^{*} topology has the following properties ([1], [2]).
Proposition 1.3. (1) $B V(\Omega)$ is a \tilde{w}^{*}-closed set in $\boldsymbol{R} \oplus\left(C_{0}(\Omega)\right)^{n}$.
(2) If a sequence $\left\{u_{j}\right\}$ of $B V(\Omega)$ converges to $u \in B V(\Omega)$ in the \tilde{w}^{*} topology, then $\left\{u_{j}\right\}$ converges to u in $L^{1}(\Omega)$.
(3) The closed balls of $B V(\Omega)$ are \tilde{w}^{*}-compact and their topology is metrizable.
(4) $W^{1,1}(\Omega)$ is \widetilde{w}^{*}-dense in $B V(\Omega)$.

Concerning the boundary value of a function belonging to $B V(\Omega)$, we state the following theorem (see [1], [6]).

THEOREM 1.4. There exists a bounded operator γ (called the trace operator) from $B V(\Omega)$ to $L^{1}(\Omega)$ such that
(1) If $u \in W^{1,1}(\Omega)$, then $\gamma(u)$ coincides with the trace of u in the sense of the Sobolev space $W^{1,1}(\Omega)$.
(2) For every $G \in C_{0}^{1}\left(R^{n}\right)^{n}$ the following formula holds.

$$
\int_{\Omega} u \operatorname{div} G d x+\int_{\Omega} G \cdot \nabla u=\int_{\partial \Omega} \gamma(u) G \cdot \nu d H_{n-1}
$$

where ν denotes the outward unit normal vector of $\partial \Omega$.

§ 2. Lower boundedness of the variational problem.

In this paper we discuss the solvability of the Dirichlet problem for the quasilinear elliptic equation with a parameter T

$$
\left({ }^{*}\right)_{T} \quad-\operatorname{div}\left\{\nabla u /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\}=T c \quad \text { in } \Omega, u=\phi \quad \text { on } \partial \Omega .
$$

Our purpose is to show the existence of the solution of Eq. $\left({ }^{*}\right)_{T}$ belonging to $C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ assuming some kinds of conditions on Ω, c, ϕ and T if necessary. As our approach to this problem we use the variational method. We consider the following variational problem.

$$
\begin{align*}
& \text { Find } u_{T} \in W_{\phi}^{1,1}(\Omega)=\left\{u \in W^{1,1}(\Omega) ; \gamma(u)=\phi\right\} \\
& \text { such that } I_{T}\left(u_{T}\right) \leqq I_{T}(v) \text { for all } v \in W_{\phi}^{1,1}(\Omega) \tag{2.1}\\
& \text { where } I_{T}(u)=\int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2} d x-T \int_{\Omega} c u d x
\end{align*}
$$

If a solution of Eq. $\left({ }^{*}\right)_{T}$ may exist in $C^{2}(\Omega) \cap W_{\phi}^{1,1}(\Omega)$, it becomes a solution of $(2.1)_{T}$. Conversely, if there exists a solution of $(2.1)_{T}$ and it belongs to $C^{2}(\Omega)$, then it is also a solution of Eq. $\left({ }^{*}\right)_{T}$. However, because the space $W^{1,1}$ is not reflexive, the general argument choosing a weakly convergent subsequence from a bounded sequence fails. We overcome this difficulty by considering the following problem instead of $(2.1)_{T}$.

$$
\begin{align*}
& \text { Find } u_{T} \in B V(\Omega) \text { such that } J_{T}\left(u_{T}\right) \leqq J_{T}(v) \text { for all } v \in B V(\Omega) \\
& \text { where } J_{T}(u)=\int_{2}\left(1+|\nabla u|^{2}\right)^{1 / 2}-T \int_{2} c u d x+\int_{\partial \Omega}|\gamma(u)-\phi| d H_{n-1} . \tag{2.2}
\end{align*}
$$

From Theorem 1.4 and (1.3) we readily see that $I_{T}(u)=J_{T}(u)$ whenever $u \in W_{\phi}^{1,1}(\Omega)$, that is, J_{T} is a extension of I_{T} to the space $B V(\Omega)$. The relation between (2.1) $)_{T}$ and (2.2) $)_{T}$ is stated in the following result due to Williams [14].

Proposition 2.1. Let Ω be a bounded open set of \boldsymbol{R}^{n} with Lipschitz boundary and let $c \in L^{n}(\Omega)$ and $\phi \in L^{1}(\partial \Omega)$, Then, we have

$$
\begin{equation*}
\mu=\inf _{W_{\phi}^{1,1}(\Omega)} I_{T}=\inf _{B V_{d}(2)} J_{T}=\inf _{B V(2)} J_{T} \tag{2.3}
\end{equation*}
$$

where $B V_{\phi}(\Omega)=\{u \in B V(\Omega) ; \gamma(u)=\phi\}$.
The remainder of this section is devoted to prove the following theorem about the existence of a finite infimum μ (cf. [11]).

THEOREM 2.2. Let Ω be a bounded domain of \boldsymbol{R}^{n} with Lipschitz
boundary and suppose that $c \in L^{\infty}(\Omega), c \geqq 0$ in Ω and $\phi \in L^{1}(\partial \Omega)$. Then, the functional J_{T} is bounded from below on $B V_{\phi}(\Omega)$ if and only if

$$
\begin{equation*}
0 \leqq T \leqq T^{*}=\inf _{E \subset 2}\left\{H_{n-1}(\partial E) / \text { meas }_{d}(E)\right\} \quad \text { where } \quad \operatorname{meas}_{\mathrm{o}}(E)=\int_{E} c d x \tag{2.4}
\end{equation*}
$$

In the right hand of (2.4) the infimum is taken among open sets of Ω with C^{2} boundary.

Proof. By (1.2) it is sufficient to show that the conclusion holds for the functional

$$
\begin{equation*}
\Phi_{T}(u)=\int_{\Omega}|\nabla u|-T \int_{2} c u d x+\int_{\partial \Omega}|\gamma(u)-\phi| d H_{n-1} \tag{2.5}
\end{equation*}
$$

instead of J_{T}.
We first prove that the condition (2.4) is necessary. It is enough to show that if $T>T^{*}$ there exists a sequence $\left\{u_{j}\right\}$ of $B V_{\phi}(\Omega)$ such that $\lim _{j \rightarrow \infty} \Phi_{T}\left(u_{j}\right)=-\infty$. Since $T>T^{*}$, there exist $\lambda>0$ and an open set G of Ω with C^{2} boundary such that

$$
\begin{equation*}
T>\left(H_{n-1}(\partial G)+\lambda\right) / \text { meas }_{0}(G) \tag{2.6}
\end{equation*}
$$

If ∂G intersects with $\partial \Omega$, we take an open set

$$
G_{\varepsilon}=\left\{x \in \Omega ; \operatorname{dist}\left(x, \boldsymbol{R}^{n}-G\right)>\varepsilon\right\}, \quad(\varepsilon>0) .
$$

From the result of [9], Appendix we see that ∂G_{ε} is of class C^{2} for sufficiently small ε. Furthermore, it is readily shown that (2.6) holds for such G_{ε} by replacing λ with smaller one if necessary, Hence, we may reduce the problem to the case $\partial G \cap \partial \Omega$ is empty.

By [14], Theorem 1 we take an extension $\tilde{\phi} \in W^{1,1}(\Omega)$ of the boundary value ϕ. We choose a cut off function $\eta \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ satisfying

$$
\eta(x)=1 \quad \text { if } \quad x \in \partial \Omega, \quad=0 \quad \text { if } \quad x \in U,
$$

where U is a fixed neighborhood of G such that $U \subset \Omega$.
We define

$$
u_{j}(x)=j \cdot \chi_{G}(x)+\eta(x) \cdot \tilde{\phi}(x) \quad(j=1,2, \cdots)
$$

where χ_{G} is the characteristic function of G. Example 1.1 (2) implies that $u_{j} \in B V_{\phi}(\Omega)$ for all j. Then,

$$
\Phi_{T}\left(u_{j}\right)=\int_{\Omega}\left|\nabla u_{j}\right|-T \int_{0} c u_{j} d x
$$

$$
\begin{aligned}
& \leqq j\left(\int_{\partial}\left|\nabla \chi_{G}\right|-T \int_{G} c d x\right)+C \\
& \leqq j\left(H_{n-1}(\partial G)-T \operatorname{meas}_{c}(G)\right)+C \\
& <-j \lambda+C
\end{aligned}
$$

Here C denotes a constant independent of j. Hence, we have

$$
\lim _{j \rightarrow \infty} \Phi_{T}\left(u_{j}\right)=-\infty
$$

Conversely, suppose that the condition (2.4) holds. We take an extension $\tilde{\phi} \in W^{1,1}(\Omega)$ of ϕ as the preceding case. For $u \in B V_{\phi}(\Omega)$ we set $v=$ $u-\tilde{\phi}$ and then $\gamma(v)=0$. We first consider the case $v \in C^{\infty}(\Omega)$. We set

$$
A(t)=\{x \in \Omega ;|v(x)|>t\}, \quad a_{t}=\chi_{A(t)} \quad(t \geqq 0)
$$

Then the following formulas are known (see [5]).

$$
|v(x)|=\int_{0}^{\infty} a_{t}(x) d t, \quad \int_{\Omega}|\nabla| v| |=\int_{0}^{\infty}\left(\int_{\Omega}\left|\nabla a_{\tau}\right|\right) d t
$$

Using Sard's theorem we observe that the boundary $\partial A(t)$ of $A(t)$ is of class C^{∞} for almost all $t>0$. Furthermore $\overline{A(t)} \cap \partial \Omega$ is empty for all $t>0$. From Example 1.1 (2) we obtain

$$
\begin{gathered}
\int_{\Omega}|\nabla| v| |=\int_{0}^{\infty} H_{n-1}(\partial A(t)) d t \\
\Phi_{T}(|v|)=\int_{0}^{\infty} H_{n-1}(\partial A(t)) d t-T \int_{\Omega} c(x)\left(\int_{0}^{\infty} a_{t}(x) d t\right) d x \\
= \\
\int_{0}^{\infty}\left\{H_{n-1}(\partial A(t))-T \int_{\Omega} c(x) a_{t}(x) d x\right\} d t \\
= \\
\int_{0}^{\infty}\left\{H_{n-1}(\partial A(t))-T \operatorname{meas}_{c}(A(t))\right\} d t \geqq 0
\end{gathered}
$$

Hence,

$$
\Phi_{r}(u) \geqq \Phi_{T}(v)-\Phi_{T}(\tilde{\phi}) \geqq \Phi_{T}(|v|)-\Phi_{T}(\tilde{\phi}) \geqq-\Phi_{T}(\tilde{\phi}) .
$$

For general element u of $B V_{\phi}(\Omega)$ we approximate $v=u-\tilde{\phi}$ by smooth function. Using [6], 2.12 we can choose a sequence $\left\{v_{j}\right\}$ of $C^{\infty}(\Omega)$ such that $\left\{v_{j}\right\}$ converges to v in $L^{1}(\Omega), \lim _{j \rightarrow \infty} \int_{\Omega}\left|\nabla v_{j}\right|=\int_{\Omega}|\nabla v|$ and $\gamma\left(v_{j}\right)=$ $\gamma(v)=0$. Therefore,

$$
\begin{aligned}
\Phi_{T}(u) & \geqq \Phi_{T}(v)-\Phi_{T}(\tilde{\phi})=\Phi_{T}\left(v_{j}\right)+\Phi_{T}(v)-\Phi_{T}\left(v_{j}\right)-\Phi_{T}(\tilde{\phi}), \\
& \geqq \Phi_{T}\left(\left|v_{j}\right|\right)+\Phi_{T}(v)-\Phi_{T}\left(v_{j}\right)-\Phi_{T}(\tilde{\phi}), \\
& \geqq \Phi_{T}(v)-\Phi_{T}\left(v_{j}\right)-\Phi_{T}(\tilde{\phi}) .
\end{aligned}
$$

Since $\lim _{j \rightarrow \infty} \Phi_{T}\left(v_{j}\right)=\Phi_{T}(v)$, we have the desired result

$$
\Phi_{T}(v) \geqq-\Phi_{T}(\tilde{\phi}) \text { for all } u \in B V_{\phi}(\Omega) .
$$

Remark 2.3. (1) Using the isoperimetric inequality, we have the lower estimate for the critical parameter T^{*}.

$$
\begin{equation*}
T^{*} \geqq n\left(\omega_{n} / \text { meas }(\Omega)\right)^{1 / n} \cdot\|c\|_{\bar{L}^{\infty}(\Omega)}^{1}>0 \tag{2.7}
\end{equation*}
$$

where ω_{n} denotes n-dimensional Lebesgue measure of a unit ball in R^{n}.
(2) Since the functional J_{r} is convex, it cannot attain any critical value except for the minimum value. Hence, Eq. $\left({ }^{*}\right)_{T}$ does not have any weak solution of $W^{1,1}(\Omega)$ for $T>T^{*}$.

§ 3. Existence and regularity of solutions of variational problem.

Here we consider the existence and the regularity of solutions of the variational problem (2.2) for $T<T^{*}$. We first prove the following existence theorem.

Theorem 3.1. Let Ω be a bounded domain in \boldsymbol{R}^{n} with Lipschitz boundary. Suppose that $c \in L^{\infty}(\Omega)$ with $c \geqq 0, \phi \in L^{1}(\partial \Omega)$ and $0 \leqq T \leqq T^{*}$. Then, there exists $u_{T} \in B V(\Omega)$ such that u_{T} minimizes the functional J_{T} on $B V(\Omega)$.

We state the following lemmas which will be needed in the proof of the above theorem.

Lemma 3.2. If a sequence $\left\{u_{j}\right\}$ of $B V(\Omega)$ converges to $u \in B V(\Omega)$ in the \widetilde{w}^{*} topology, then

$$
J_{T}(u) \leqq \liminf _{j \rightarrow \infty} J_{T}\left(u_{j}\right)
$$

holds.
Proof. From [1] the functional $\int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2}+\int_{\partial \Omega}|\gamma(u)-\phi| d H_{n-1}$ is lower semicontinuous with respect to the \tilde{w}^{*} topology. Hence, using Proposition 1.3 (2) we have

$$
\begin{align*}
J_{T}(u) & =\int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2}+\int_{\partial \Omega}|\gamma(u)-\phi| d H_{n-1}-T \int_{\Omega} c u d x, \\
& \leqq \liminf _{j \rightarrow \infty}\left\{\int_{\Omega}\left(1+\left|\nabla u_{j}\right|^{2}\right)^{1 / 2}+\int_{\Omega \Omega}\left|\gamma\left(u_{j}\right)-\phi\right| d H_{n-1}\right\}+\lim _{j \rightarrow \infty} T \int_{\Omega} c u_{j} d x, \\
& \leqq \liminf _{j \rightarrow \infty}\left\{\int_{\Omega}\left(1+\left|\nabla u_{j}\right|^{2}\right)^{1 / 2}+\int_{\partial \Omega}\left|\gamma\left(u_{j}\right)-\phi\right| d H_{n-1}-T \int_{\Omega} c u_{j} d x\right\}, \\
& =\underset{j \rightarrow \infty}{\liminf } J_{T}\left(u_{j}\right) .
\end{align*}
$$

Lemma 3.3 (Miranda [10]). For any element u of $B V(\Omega)$, the following inequality holds.

$$
\begin{equation*}
\int_{\Omega} \downarrow u \mid d x \leqq n\left(\operatorname{meas}(\Omega) / \omega_{n}\right)^{1 / n}\left(\int_{\Omega}|\nabla u|+\int_{\partial \Omega}|\gamma(u)| d H_{n-1}\right) . \tag{3.1}
\end{equation*}
$$

Proof of Theorem 3.1. By virtue of Theorem 2.2 and $T<T^{*}$, we have

$$
\mu=\inf _{B V(\Omega)} J_{T}=\inf _{B V_{\phi}(\Omega)} J_{T}>-\infty .
$$

We choose a minimizing sequence $\left\{u_{j}\right\}$ of $B V_{\phi}(\Omega)$, that is, $J_{T}\left(u_{j}\right)$ converges to μ as j tends to infinity. We may assume

$$
\Phi_{T}\left(u_{j}\right) \leqq J_{T}\left(u_{j}\right) \leqq C_{1} \quad \text { where } C_{1} \text { is a constant independent of } j
$$

Then we have

$$
\begin{aligned}
\left(T^{*} / T\right) \Phi_{T}\left(u_{j}\right) & =\left(\left(T^{*} / T\right)-1\right) \int_{\Omega}\left|\nabla u_{j}\right|+\Phi_{T^{*}}\left(u_{j}\right), \\
& \leqq\left(\left(T^{*} / T\right)-1\right) \int_{\Omega}\left|\nabla u_{j}\right|-\Phi_{T^{*}}(\tilde{\phi})
\end{aligned},
$$

where C_{2} is a constant independent of j. Using Lemma 3.3, we obtain

$$
\left\|u_{j}\right\|_{L^{1}(\Omega)} \leqq n\left(\operatorname{meas}(\Omega) / \omega_{n}\right)^{1 / n}\left(C_{2}+\|\phi\|_{L^{1}(\Omega)}\right)
$$

Hence, $\left\{u_{j}\right\}$ is bounded in $B V(\Omega)$. By Proposition 1.3 (3). There exists a subsequence $\left\{u_{k}\right\}$ of $\left\{u_{j}\right\}$ which converges to some element u_{T} of $B V(\Omega)$ in the \widetilde{w}^{*} topology. Using Lemma 3.2, we obtain

$$
\mu \leqq J_{T}\left(u_{T}\right) \leqq \liminf _{k \rightarrow \infty} J_{T}\left(u_{k}\right)=\mu
$$

Concerning with the regularity property of the solution u_{r} of the variational problem (2.2) obtained in the above theorem, we state the following theorem, which is derived from the result of Giaquinta [4].

Theorem 3.4. Let Ω be a bounded domain in \boldsymbol{R}^{n} with C^{2} boundary and $\phi \in C^{0}(\partial \Omega)$. Suppose that a nonnegative function $c \in C^{1}(\bar{\Omega})$ satisfies

$$
\begin{equation*}
T c(y) \leqq(n-1) H(y) \quad \text { for any } \quad y \in \partial \Omega, \tag{3.2}
\end{equation*}
$$

where H denotes the mean curvature of $\partial \Omega$ with respect to the inward unit normal vector of $\partial \Omega$. And suppose $0<T<T^{*}$. Then, the solution
u_{T} of $(2.2)_{T}$ belongs to $C^{2, \alpha}(\Omega) \cap C^{0}(\bar{\Omega})(0 \leqq \alpha<1), u_{T}=\phi$ on $\partial \Omega$ and u_{T} is a unique solution of Eq. $\left(^{*}\right)_{T}$.

REMARK 3.5. (1) In the above theorem if we consider the interior regularity alone, we may assume that $c \in C^{1}(\Omega)$ (see [4]).
(2) The condition (3.2) is initially introduced by Serrin [12] and he shows that (3.2) is necessary to solve Eq. $\left(^{*}\right)_{T}$ for any boundary value $\phi \in C^{0}(\partial \Omega)$ (see [9], [12]).

For the further regularity property we have the following theorem using the result due to Gerhardt [3].

THEOREM 3.6. Let Ω be a bounded domain of \boldsymbol{R}^{n} with $C^{2, \alpha}$ boundary for some $\alpha>0$ and ϕ can be extended to an element of $C^{2, \alpha}(\bar{\Omega})$. Suppose $c \in C^{1}(\bar{\Omega})$ is as in Theorem 3.4 and $0 \leqq T<T^{*}$. Then, $u_{T} \in C^{2, \alpha}(\bar{\Omega})$.

Proof. By virtue of Gerhardt's result ([3], Theorem 3) we first observe that $u_{T} \in W^{2, p}(\Omega)$ for any p with $n<p<\infty$. By Sobolev imbedding theorem u_{T} belongs to $C^{1, \lambda}(\bar{\Omega})$ for some $\lambda>0$. We may regard Eq. $\left(^{*}\right)_{T}$ as a linear uniformly elliptic equation whose coefficients belong to $C^{\lambda}(\bar{\Omega})$ and we have the desired result using the regularity theory for linear elliptic equations.
Q.E.D.

EXAMPLE 3.7. Let $\Omega=\left\{x \in \boldsymbol{R}^{n} ;|x|<R\right\}, \phi=0$ and $c(x)=|x|^{k} \quad(k \geqq 0)$. Then, the solution u_{T} of Eq. $\left({ }^{*}\right)_{T}$ is given by

$$
\begin{align*}
& u_{T}(x)=\int_{|x|}^{R}\left[r^{k+1} /\left\{(k+n)^{2} / T^{2}-r^{2 k+2}\right\}^{1 / 2}\right] d r, \tag{3.3}\\
& 0 \leqq T \leqq T^{*}=(k+n) / R^{k+1}
\end{align*}
$$

In particular, when $c=1$ we have

$$
\begin{align*}
& u_{T}(x)=\left(\left(n^{2} / T^{2}\right)-|x|^{2}\right)^{1 / 2}-\left(\left(n^{2} / T^{2}\right)-R^{2}\right)^{1 / 2} \tag{3.4}\\
& 0 \leqq T \leqq T^{*}=n / R .
\end{align*}
$$

In this case Eq. $\left({ }^{*}\right)_{T}$ is also solvable for $T=T^{*}$. The graph of u_{T} in (3.4) is a portion of a sphere in \boldsymbol{R}^{n+1}. We also see that the solution u_{T} for $T>T^{*}$ exists in geometric sense but it cannot be represented as a graph of some function over Ω.
§4. The case $T=T^{*}$.
In this section we discuss about the case $T=T^{*}$. First we provide a result on the global regularity property of Eq. $\left.{ }^{(*)}\right)_{T^{*}}$ which is in contrast
with the case $T<T^{*}$.
Theorem 4.1. Let Ω be a bounded domain of \boldsymbol{R}^{n} with Lipschitz boundary and let $c \in L^{\infty}(\Omega)$ with $c \geqq 0$ and c is not identically zero. Suppose that $u \in C^{1}(\Omega)$ is a weak solution of the equation

$$
-\operatorname{div}\left\{\nabla u /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\}=T^{*} c \text { in } \Omega,
$$

where T^{*} is as in Theorem 2.2. Then, we have $\sup _{\Omega}|\nabla u|=\infty$, that is, $u \notin C^{1}(\bar{\Omega})$.

Proof. By the definition of the weak solution we have

$$
\int_{\Omega} \frac{\nabla u \cdot \nabla \eta}{\left(1+|\nabla u|^{2}\right)^{1 / 2}} d x=T^{*} \int_{\Omega} c \eta d x \text { for any } \eta \in C_{0}^{1}(\Omega) .
$$

Hence,

$$
\begin{equation*}
T^{*} \int_{\Omega} c \eta d x \leqq M \int_{\Omega}|\nabla \eta| d x \quad \text { where } \quad M=\sup _{\Omega}\left\{|\nabla u| /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\} \tag{4.1}
\end{equation*}
$$

Using [6], 2.12 we observe that the above inequality can be extended for any element $\eta \in B V(\Omega)$ with $\gamma(\eta)=0$. Therefore, we choose η as follows:

$$
\eta=\chi_{E} \text { for any } E \subset \Omega \text { with } \partial E \in C^{2}
$$

Then, we have

$$
\begin{aligned}
& T^{*} \int_{\Omega} c \chi_{E} d x=T^{*} \text { meas }_{\circ}(E) \leqq M \int_{\Omega}\left|\nabla \chi_{E}\right|=M \cdot H_{n-1}(\partial E) \\
& T^{*} \leqq M \cdot H_{n-1}(\partial E) / \text { meas }_{c}(E)
\end{aligned}
$$

In this inequality we take infimum with respect to E. By the definition of T^{*} and $M \leqq 1$ we obtain

$$
T^{*} \leqq M \cdot T^{*} \leqq T^{*}
$$

Therefore,

$$
M=\sup _{\Omega}\left\{|\nabla u| /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\}=1
$$

holds. This implies that $\sup _{\Omega}|\nabla u|=\infty$.
Q.E.D.

We next treat the solvability of the Eq. $\left({ }^{*}\right)_{T^{* *}}$. However, we cannot apply the same method for Eq. $\left({ }^{*}\right)_{T^{*}}$ as the case $T<T^{*}$. We so consider the problem whether the solution u_{T} of Eq. $\left({ }^{*}\right)_{T}\left(T<T^{*}\right)$ converges to a solution of Eq. $\left(^{*}\right)_{T^{*}}$ as T tends to T^{*}. The behavior of solutions $\left\{u_{T}\right\}$ ($T<T^{*}$) is proposed by the following proposition.

PROPOSITION 4.2. Suppose that $T_{1}<T_{2}$ and $u_{1}, u_{2} \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ are solutions of $\left({ }^{*}\right)_{T}$ for $T=T_{1}, T_{2}$ respectively. Then,

$$
u_{1}(x)<u_{2}(x) \quad \text { for } \quad x \in \Omega
$$

holds in case c is not identically zero.
Proof. By hypothesis $T_{2}>T_{1}$

$$
\begin{equation*}
\operatorname{div}\left\{\nabla u_{2} /\left(1+\left|\nabla u_{2}\right|^{2}\right)^{1 / 2}\right\}-\operatorname{div}\left\{\nabla u_{1} /\left(1+\left|\nabla u_{1}\right|^{2}\right)^{1 / 2}\right\} \leqq 0 . \tag{4.2}
\end{equation*}
$$

Using the mean value theorem, we can regard the left hand of (4.2) as a linear elliptic equation of divergence form for $u_{2}-u_{1}$, that is, (4.2) can be written as follows:

$$
\begin{equation*}
\operatorname{div}\left\{A(x) \cdot \nabla\left(u_{2}-u_{1}\right)\right\} \leqq 0 \tag{4.3}
\end{equation*}
$$

where $A(x)=\left(a^{i j}(x)\right), a^{i j} \in C^{1}(\Omega)(i, j=1, \cdots, n)$ is defined by

$$
\begin{aligned}
& a^{i j}(x)=\int_{0}^{1}\left\{\frac{\left(1+\left|\nabla u_{t}(x)\right|^{2}\right) \cdot \delta_{i j}-\partial_{t} u_{t}(x) \cdot \partial_{j} u_{t}(x)}{\left(1+\left|\nabla u_{t}(x)\right|^{2}\right)^{8 / 2}}\right\} d t, \\
& u_{t}(x)=u_{1}(x)+t \cdot\left(u_{2}(x)-u_{1}(x)\right) .
\end{aligned}
$$

From the maximum principle we first obtain

$$
\inf _{\Omega}\left(u_{2}-u_{1}\right) \geqq 0, \quad \text { that is, } \quad u_{2} \geqq u_{1} \quad \text { in } \Omega
$$

We next consider a set $N=\left\{x \in \Omega ; u_{1}(x)=u_{2}(x)\right\}$. We show that N is open and closed in Ω. By continuity of u_{1}, u_{2}, the closedness is evident. To prove, the openness we use the following weak Harnack inequality (see [9], Theorem 8.18).

For any $y \in \Omega$ and $R>0$ with $B_{\& R}(y) \subset \Omega$, there exists a constant $C>0$ such that

$$
R^{-n} \int_{B_{2 R}(y)}\left(u_{2}-u_{1}\right) d x \leqq C \inf _{B_{R^{\prime}}(y)}\left(u_{2}-u_{1}\right)
$$

where $B_{r}(y)$ is a open ball in R^{n} with center y and radius r. If $x \in N$ and we choose $R>0$ with $B_{4 R}(x) \subset \Omega$, then we obtain

$$
R^{-n} \int_{B_{2 R}(x)}\left(u_{2}-u_{1}\right) d x \leqq C \inf _{B_{R}(x)}\left(u_{2}-u_{1}\right)=0
$$

From $u_{2} \geqq u_{1}$ we have $u_{2}=u_{1}$ in $B_{2 R}(x)$. This implies the openness of N. Since Ω is connected, the set N is either empty or Ω. Hence, in case c is not identically zero we obtain the desired result.
Q.E.D.

According to the above proposition we observe that the next two cases may occur about the behavior of u_{T} as T tends to T^{*} in case c is not identically zero.
(1) $\sup _{\Omega} u_{T} \leqq K$ for some constant independent of T.
(2) $\sup _{\Omega} u_{T} \rightarrow \infty$ as $T \rightarrow T^{*}$.

The Example 3.7 is the case (1). Concerning with the case (2) we propose the following theorem.

THEOREM 4.3. Let Ω be a bounded domain of \boldsymbol{R}^{n} with C^{8} boundary and $\phi \in C^{1, \alpha}(\partial \Omega)$ for some $\alpha>0$. Suppose $c \in C^{1}(\bar{\Omega})$ satisfying $c \geqq 0$, c is not identically zero and

$$
\begin{equation*}
T^{*} c(y) \leqq(n-1) H(y) \quad \text { for all } \quad y \in \partial \Omega \tag{4.4}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\lim _{T \uparrow T^{*}} \sup u_{T}=\infty, \tag{4.5}
\end{equation*}
$$

Proof. Contrary to the theorem we assume that there exists a constant K independent of T such that

$$
\sup _{\Omega} u_{T} \leqq K \quad \text { for all } T<T^{*}
$$

Combining to Proposition 4.2 the sequence $\left\{u_{T}(x)\right\}$ is bounded and monotone increasing for any $x \in \bar{\Omega}$. Hence, the limiting value $u_{T^{*}}(x)$ exists for all $x \in \bar{\Omega}$ and $u_{T^{*}}(x)=\phi(x)$ for all $x \in \partial \Omega$. Furthermore we obtain

$$
\begin{aligned}
& u_{0}(x) \leqq u_{T}(x) \leqq K \text { for all } T<T^{*} \text { and } x \in \bar{\Omega}, \\
& \sup _{\Omega}\left|u_{T}\right| \leqq C_{1}=\max \left\{\sup _{\Omega}\left|u_{0}\right|, K\right\} \text { for } 0 \leqq T \leqq T^{*},
\end{aligned}
$$

where u_{0} is a unique solution of $\left({ }^{*}\right)_{T}$ for $T=0$.
We first establish the interior regularity of $u_{T^{*}}$. We use the following a priori estimate due to Trudinger ([9], [13]).

For any $\Omega^{\prime} \subset \Omega$ the following estimate holds.

$$
\left|\nabla u_{T}(x)\right| \leqq C \exp \left\{C^{\prime} \sup _{y \in \Omega}\left(u_{T}(y)-u_{T}(x)\right) / d\right\} \quad \text { for } \quad x \in \Omega^{\prime} \quad \text { and } T<T^{*}
$$

where $d=\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$ and C, C^{\prime} denote constant depending on n, $d T^{*} \sup _{\Omega}|c|$ and $d^{2} T^{*} \sup _{\Omega}|\nabla c|$.

From this estimate we obtain the uniform gradient estimate

$$
\sup _{\Omega^{\prime}}\left|\nabla u_{T}\right| \leqq C_{2}\left(n, C_{1}, d,\|c\|_{C^{1}(\bar{\Omega})}\right) \text { for all } T<T^{*}
$$

Using the theorem of Ladyzhenskaya-Ural'tseva ([9], Theorem 12.1) we obtain the uniform Hölder estimate on each $\Omega^{\prime} \subset \Omega$ of $\nabla u_{r}\left(T<T^{*}\right)$. Combining with the Ascoli-Arzelà theorem we obtserve that $u_{T^{*}} \in C^{1, \beta}\left(\overline{\Omega^{\prime}}\right)$ for some $\beta(>0)$ depending on d, C_{1} and C_{2}. And we have

$$
\int_{\Omega^{\prime}}\left\{\frac{\nabla u_{T^{*}} \cdot \nabla \zeta}{\left(1+\left|\nabla u_{T^{*}}\right|^{2}\right)^{1 / 2}}-T^{*} c \zeta\right\} d x=0 \text { for any } \zeta \in C_{0}^{1}\left(\Omega^{\prime}\right),
$$

that is, $u_{T^{*}}$ is a weak solution of $-\operatorname{div}\left\{\nabla u /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right\}=T^{*} c$ in Ω^{\prime}. By virtue of the regularity theory for linear elliptic equation we have $u_{T^{*}} \in$ $C^{2, \alpha}\left(\Omega^{\prime}\right)(0 \leqq \alpha<1)$. Since $\Omega^{\prime} \subset \Omega$ is arbitrarily chosen, we have $u_{T^{*}} \in C^{2, \alpha}(\Omega)$ $(0 \leqq \alpha<1)$ and

$$
-\operatorname{div}\left\{\nabla u_{T^{*}} /\left(1+\left|\nabla u_{T^{*}}\right|^{2}\right)^{1 / 2}\right\}=T^{*} c \quad \text { in } \quad \Omega .
$$

We next show the continuity of $u_{T^{*}}$ on the boundary $\partial \Omega$. We may claim the following by applying [9], Theorem 13.15 concerning with the boundary behavior of solutions $\left\{u_{T}\right\}\left(T<T^{*}\right)$.

For any $x_{0} \in \partial \Omega$ and any $\varepsilon>0$, there exists a neighborhood V of x_{0} and a function $w \in C^{2}(\Omega \cap V) \cap C^{1}(\bar{\Omega} \cap V)$ satisfying $w\left(x_{0}\right)=0$ and

$$
\begin{equation*}
\left|u_{T}(x)-\phi\left(x_{0}\right)\right| \leqq \varepsilon+w(x)+\left(2 / \delta^{2}\right)\left(\sup _{\partial \Omega}|\phi|\right)\left|x-x_{0}\right|^{2} \tag{4.6}
\end{equation*}
$$

for all $x \in V \cap \Omega$ and all $T<T^{*}$ where V and w depend on n, δ, C_{1}, $\|c\|_{\sigma^{1}(\bar{\Omega})}$ and Ω and $\delta>0$ is chosen so that any pair $x, y \in \partial \Omega$ with $|x-y|<\delta$ implies $|\phi(x)-\phi(y)|<\varepsilon$.

Making T tends to T^{*}, we get

$$
\left|u_{T^{*}}(x)-\phi\left(x_{0}\right)\right| \leqq \varepsilon+w(x)+\left(2 / \delta^{2}\right)\left(\sup _{\partial \Omega}|\phi|\right)\left|x-x_{0}\right|^{2}
$$

for $x \in V \cap \Omega$. This implies $u_{T^{*}} \in C^{0}(\bar{\Omega})$.
Thus we construct the solution $u_{T^{*}}$ of Eq. $\left({ }^{*}\right)_{r^{*}}$ belonging to $C^{2}(\Omega) \cap$ $C^{0}(\bar{\Omega})$. Furthermore, from the result of Giaquinta [5] we derive that u_{T} * is Lipschitz continuous on $\bar{\Omega}$. However, this contradicts with Theorem 4.1. Therefore, (4.5) must hold. The rest of the theorem follows immediately.
Q.E.D.

Remark 4.4. In the above theorem the regularity hypothesis on $\partial \Omega$ and ϕ is needed only to apply the result of Giaquinta. His result is obtained by the maximum principle and nice choices of barrier functions.

Acknowledgement: The author is indebt to Professor A. Inoue, K. Masuda and S. Tanno for their useful advice. He wishes to thank espe-
cially Professor A. Inoue who suggested this problem together with an important information about the space $B V(\Omega)$.

References

[1] F. Ferro, Variational functional defined on spaces of $B V$ functions and their dependence on boundary data, Ann. Mat. Pura Appl., 122 (1979), 269-287.
[2] F. Ferro, Integral characterization of functionals defined on spaces of $B V$ functions, Rend. Sem. Mat. Univ. Padova, 61 (1979), 177-201.
[3] C. Geriardt, Existence, regularity and boundary behavior of generalized surfaces of prescribed mean curvature, Math. Z., 139 (1974), 173-198.
[4] M. Giaquinta, Regolarità delle superfici $B V(\Omega)$ con curvatura media assegnata, Boll. Un. Mat. Ital., (4), 8 (1973), 567-578.
[5] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math., 12 (1974), 73-86.
[6] E. Grusti, Minimal Surfaces and Functions of Bounded Variation, Notes on Pure Math. 10, Australian National University, Canberra, 1977.
[7] E. Giusti, Boundary value problem for non-parametric surfaces of prescribed mean curvature, Ann, Scuola Norm. Sup. Pisa, IV, 3 (1976), 501-548.
[8] E. GIusti, On the equation of surfaces of prescribed mean curvature-existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), 111-137.
[9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977.
[10] M. Miranda, Dirichlet problem with L^{1} data for the non-homogeneous minimal surface equation, Indiana Univ. Math. J., 24 (1974), 227-241.
[11] P. P. Mosolov, A functional connected with a surfaces of given mean curvature, Math. USSR-Sb., 7 (1969), 45-58.
[12] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413-496.
[13] N. S. Trudinger, Gradient estimate and mean curvature, Math. Z., 131 (1973), 165-175.
[14] G. H. Williams, The equivalence of some variational problem for surfaces of prescribed mean curvature, Bull. Austral. Math. Soc., 20 (1979), 87-104.

Present Address:

Department of Mathematics
Faculty of Science
Toryo Institute of Technology
o-orayama, Meguro-ru, Tokyo, 152

[^0]: Received August 8, 1983

