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Introduction

In [6], Ishida has explicitly constructed the genus field of an algebraic
number field F of a certain type. Therefore it is of some interest to
construct unramified abelian extensions, of F, which are not contained
in the genus field. In this paper, we shall consider this problem in the
case that F' is a pure cubic field.

Let @ denote the field of rational numbers, and let Z be the ring of
rational integers. Let K=Q(¥m) be a real pure cubic field, where m is
a positive cubefree rational integer. Let {=exp(2ni/8). Let k=@Q({) and
K=Kk. Then K is the Galois closure of K. Let M (resp. M') be the
genus field of K (resp. K) over Q (resp. k). The field M was given
explicitly in {1]. We shall give some unramified cyclic cubic extensions,
of K, which are not contained in M. Let Rea denote the real part of
a complex number «. Then such extensions are written in the form
K(Re ¥¢,), where ¢, is a unit of K with some properties (cf. Theorems
1.8 and 3.1).

Notations: Let J be the complex conjugate map, and let o be a
generator of Gal (K/k) with (¥Ym)°= ¥m -{, Then Gal (K/Q) is generated
by {J, o} with the relations J*=¢*=1, oJ=Jo*. For an algebraic number
field F, let F* (resp. E,) denote its multiplicative group (resp. its unit

group).

§1. Preliminaries.

LEMMA 1.1. Let &7 be the set of all the unramified cyclic cubic
extensions of K and let <# be the set of all the unramified cyclic cubic
extensions, of K, which are abelian over K. (We mote from Kummer
theory that any element of <& is written in the form R(¥ o), where
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ac K*.) Let p be the mapping B(¥V a)e #—KRe¥a). Then p is a
bijection of <& onto 7.

PROOF. As K(¥ a)e<# is cyclic sextic over K, the mapping
R(¥'a)— X, where X is a unique cubic subfield of B(¥ ) over K, is
clearly a bijection of <& onto . Therefore it suffices to show that
KRe¥ a)=X. Clearly KRe¥ a) is X or K since K(Re¥ a)cR. (Ris
the field of real numbers.) As K(¥ a)/K is abelian, we see from Kummer
theory that a'*’ e (K*)y. Hence (¥ a)'*’ e KN R=K, which implies that
¥ a is quadratic over K(Re¥ a). As ¥a is not quadratic over K, we
have KRe¥ a)=X.

LEMMA 1.2. Let <, p be as in Lemma 1.1. Then, for Fe <&, we
have that:

FcM' = p(F)cM.

PROOF. The part “=": It is clear because F=p(F)- K. The part
“=”: Assume that FFcM’'. Then, as F is abelian over K and over k,
we see that F/Q is a Galois extension. Moreover, since K/k is ramified,
then Gal(F/k)=(Z/3Z)*. So an application of Lemma 2 in [7] to Gal(F/Q)
proves that o(F)c M.

THEOREM 1.3. Any unramified cyclic cubic extension of K is obtained
by adjoining Re¥ a to K, where ac K* satisfies the following three
conditions:

0. K(¥Va) is cubic over K, namely, a¢ (K*).

I. K ¥Va) is unramified over K, namely,

i) there exists an ideal ¥ of K such that (a)=9°,

il) for any prime ideal | of K dividing 3, a is a 8rd power residue
mod I’°, where e, is the ramification index of | over k.

II. B(¥Va) is abelian over K, namely, a**’ e (K*).

Moreover, when ac K* satisfies the above conditions 0, I and II, we
obtain that KRe ¥ a)ZM if and only if

1. a° e (K*)p.

PROOF. The first assertion follows immediately from Lemma 1.1,
the ramification theory in Kummer extensions (cf. [4], Ia, Satz 9) and
Kummer theory. As K/k is abelian, we see from Kummer theory that
R(Va)zM =EK(¥ a)/k is not abelian—=a’* ¢ (K*)*. The second assertion
follows at once from this fact and Lemma 1.2.

REMARK. One can easily know whether a € K* satisfies the condition
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1 ii), by taking 7w e K* such that l||7 and by calculating the m-expansion
of a.

§2. Field associated with S#.

Let 57, &% and 5#7° be the 3-elementary class group (i.e., the 8-
elementary part of the ideal class group) of K, the group of ambiguous
ideal classes of K/k and the group of ideal classes represented by ambiguous
ideals of K/k respectively. Then S c ¥, 57, as the class number of
kis 1. Let cl(Y) denote the ideal class represented by an ideal % of K.

For a e K*, the field associated with « is defined as

o(B(¥a)=KRe¥ a) if a satisfies the conditions 0, I and II in
Theorem 1.3,
K otherwise .

Furthermore, for a subgroup H of 2%, the field associated with H is
defined as the composite of all the fields associated with those ae K*
such that (a)=%® with cl(A)e H. We note that the condition I i) shows
that any unramified cyclic cubic extension of K is contained in the field
associated with S#.
For a subgroup H of 5% such that H’c H, we denote
H*={he H W =h*}.
Then
H=H*"*"xH~  (direct).
In fact, for h € H, we have h=h2“+”><hé“““ and A*'*" e H*,

LEMMA 2.1. Let H be a subgroup of 5%, such that H cH. Then
the field associated with H is the same as the field assoctated with H-.

PROOF. Let a be an element of K* such that (a)=9° with cl() e H.
We may assume that a satisfies the condition II. Then %A'*’ is a principal
ideal, since (a**’)=(A'*’)® and a't’ € (K*)®. Therefore cl(A)**+' =1, namely,
cl(N)e H-.

REMARK. If H=5%,, 5% or 5#° then H’cH. So Lemma 2.1 is
applicable to these cases.

We shall consider the case H=5#; in this paper.

LEMMA 2.2, Let p, +--, p, be all the rational primes dividing m and
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congruent to 1mod 3. We write p,=ni*" for 1<i<s, where 7, are prime |
elements in k congruent to 1 mod3. Then

T1 o(R(VZF) = K(Re V7T, - -+, Re VTiT™)=M .

PrOOF. From Lemma 8.2 in [2] and the condition II, we see that
R ¥z79, ..., ¥7¥7) is the maximal subfield, of M’, which is abelian
over K. The lemma follows at once from this fact and Lemmas 1.1 and 1.2.

THEOREM 2.3. Let L be the composite of all the fields associated with
the units in K. (We mote that L ts the field associated with the identity
subgroup {1} of 5%;.) Then the field associated with 57, is the same as ML.

PROOF. From the proof of proposition 2 in [3], we see that s&—=
S7"". So an application of Lemma 2.1 to 5%, and 5#° implies that the
field associated with 5% is the same as the field associated with s#3.
Let P, ---, B, be all the prime ideals of K ramified over k. Then S&°
is generated by these ideal classes as the class number of k is 1. We
write Pi=(x;) for 1<i<t, where 7; are prime elements in k. Let s, =,
be as in Lemma 2.2. Then 2s<t¢t. We can take

Ti=T1, for 1=<:i<s,

Te=T_, for s+1=<i=2s,

7, is a rational prime or vV —8 for 2s<i.
Then the field associated with 5£7° is the composite of all the fields as-
sociated with a=e [[i-, 7%, where cc E%, a,€ Z. We may assume that a

satisfies the conditions 0, I and II. By II, we have B(¥ a)=K(¥Va™>),
which is contained in

I?( Yo .. ., ¥ri, Q/ewz.l) .
Since 7t;1+z.r.77;;§_4;21 (=] (I?*)8 for 1§i§s and since n.:ww e (I?*)‘ for 28<’i, we have
R ¥Va)cKR( ¥z, ..., Yaitso, Yy

As a'*¥ and each z;** satisfy the conditions I and II, so does &*¥, Let
Y be po(K(¥e*¥)) or K, according as &+ satisfies the condition 0 or not.
Then, by Lemma 1.1, we have

o(R( W))C,ljl o(BR(¥TF™).Y and YcL.

So we see from Lemma 2.2 that o(B(¥ «))c ML. Conversely it is clear
from this lemma that M is contained in the field associated with S#.
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This completes the proof of the theorem.
}n the next section, we shall consider the field associated with a unit

in K.

§3. Field associated with a unit.

Let {e,, &,} be a system of the fundamental units of K. As the field
associated with a unit is the same as the field associated with one of
{eete:, where a, b, c€{0, 1, 2}, we shall examine the conditions 0, I, II and
HI in Theorem 1.3 for {%!s;. Clearly each (%’e; satisfies the conditions
0 and I i) unless a=b=c=0.

Now to examine the conditions II and III we use some results about
{e,, &:}. Let e be a fundamental unit of K with norm 1. Then the follow-
ing two cases occur (cf. [8]).

Case 1. {g, &}={e, €°}.
Case 2. {e, &}={s, ¢°}, where ¢ is a unit in K such that & —"=e.

Case 1. The condition II: Sinee (e?)'*"=e™?, then ({%"°°)* =¢%°,
Therefore only {* and (%'t* satisfy this condition. (We may delete
(%"’ because e't?°¢**? ¢ (K*)®.) The condition III: We have ({%'*°)* ‘=
e—*-%9 ¢ (K*)®, Hence in Case 1 there are no units in K satisfying the
conditions II and III.

Case 2. The condition II: By Equality (4) in [5], &*'=+e¢, and so
/==’ An easy calculation then shows that ({%?*°7)!*J=gb—eit+le—ble
Thefore only {* and (%'t satisfy this condition. (This time we may
delete £%?**°.) The condition III: We have e”*=g¢~'° with ¢=¢'*"** ¢ E,,
s0 (L%e+°)*t=ge*° ¢ (K*)®. Hence in Case 2 it follows that only %'*°,
a=0, 1, 2, satisfy the conditions II and III. The condition I ii): This
condition is easily examined (ef. Remark just following Theorem 1.8). In
particular, at most one of (%" satisfies this condition because { does not.

Hence we have the following

THEOREM 3.1. Let L be the composite of all the fields associated with
the units in K. Let Case 1, Case 2 and ¢ be as above. Then we have that:
Case 1. LcM.

Case 2. #$U=0 or 1, where U={{%'"" a=0, 1, 2|{%'t° satisfies the
condition 1 ii) in Theorem 1.3.}.
If U=g, then LcM.
If U={e}, then ML=M-KRe¥e, )#=M.

REMARK. Some effective methods to calculate a fundamental unit e
of K have been known. (For example, there is a table for m <250 in
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[10]. Also if m is of particular form, e is given explicitly (cf. [9]).)
Moreover, by easy arithmetic involving the unit e, we can know whether
this is Case 2, and in Case 2 we can also calculate the unit ¢ (cf. [5]).

By Theorems 2.3 and 3.1, we have completely obtained the field
associated with 5%. As was noted in section 2, in order to obtain all
the unramified eyclic cubic extensions of K, it suffices to construct the
field associated with 5#;. But, as it seems somewhat complicated to treat
the case H= 5%, we shall consider this case elsewhere.

EXAMPLE. K=Q(¥m), where m is a positive cubefree rational

integer. We consider the case
m=D*+d with D,deZ, D>0, d|3D*.

This is Case 1 or Case 2 according as d==+1 except (D, d)=(1, 1), (2, 1) or
d+#+1. In the case d# =1 except (D, d)=Q1, 3), (2, —6), (6, —25), (2, —4),
we have e=(9—D)/(§”'—D) with 6= ¥m. (The above results have been
obtained in [9] and [5].) Examining the condition I ii) for %' (cf.
Remark just following Theorem 1.3), we obtain the following

PROPOSITION 3.2. Let K=Q(¥m), where m is a positive cubefree
rational integer written as
D*+d with D,deZ, D>0, d|3D*, d+#1,
D, d)+1,3), 2, —6), (6,—25), (2, —4).
Then U im Theorem 3.1 18 as follows:

U
m==x1mod9 (%)}
m=-+4mod9 {{ett9}
3rd
m=*+1mod 9 and 3fm m=+2mod 9 {el+d}
8yD 3\d @
3llm @
m/9=Dmod 3 {C2et+a}
3%m
m/9=—Dmod 3 {{el+o}
3fm {Let+9}
m/8=D/3 mod 3 {{2st+e}
3|D 3|m
m/8=—D/3mod 3 {s'+}
3%m 0]
32|D {Letta}
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Here ¢=(6—D)/(6°°— D) with 6= ¥m,.

NUMERICAL EXAMPLES: K=Q(¥m). Let h and g be the class num-
ber and the genus number of K respectively.

(1) m=30 (An example contained in Proposition 3.2.) As 30=8%+3,
D=d=3. Since 3||D, 3||lm and m/8=D/3mod3, then U={{%'*).
Therefore

K(Re ¥T%™ )= K(Re ¥ (¥30C—3)/(¥/30—30) )

is an unramified cyclic cubic extension, of K, which is not contained in
M. Moreover, since it is known that g=1 and A=38, K(Re ¥Z%°) is the
field associated with 5% and also the absolute class field of K.

(2) m=34 (An example not contained in Proposition 3.2.) e=334153+
1031460+ 318396 (cf. [10]). Then, by the method described in [5], we
know that this is Case 2 and

€=305-+946 4 296" —52{ — 166 —56°C .

Examining the condition I ii), we have U={¢'*’}. Therefore K(Re ¥&+°)
is an unramified cyclic cubic extension, of K, which is not contained in M.
Moreover, since it is known that g=1 and h=3, K(Re ¥&°) is the field
associated with 5% and also the absolute class field of K.
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