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Introduction

In [6], Ishida has explicitly constructed the genus field of an algebraic
number field $F$ of a certain type. Therefore it is of some interest to
construct unramified abelian extensions, of $F$, which are not contained
in the genus field. In this paper, we shall consider this problem in the
case that $F$ is a pure cubic field.

Let $Q$ denote the field of rational numbers, and let $Z$ be the ring of
rational integers. Let $K=Q(8^{/}\overline{m})$ be a real pure cubic field, where $m$ is
a positive cubefree rational integer. Let $\zeta=\exp(2\pi i/3)$ . Let $k=Q(\zeta)$ and
$\tilde{K}=Kk$ . Then $\tilde{K}$ is the Galois closure of $K$. Let $M$ (resp. $M^{\prime}$) be the
genus field of $K$ (resp. $\tilde{K}$ ) over $Q$ (resp. $k$). The field $M$ was given
explicitly in [1]. We shall give some unramified cyclic cubic extensions,
of $K$, which are not contained in $M$. Let ${\rm Re}\alpha$ denote the real part of
a complex number $\alpha$ . Then such extensions are written in the form
$K({\rm Re}\nu\overline{\epsilon_{0}})$ , where $\epsilon_{0}$ is a unit of $\tilde{K}$ with some properties (cf. Theorems
1.3 and 3.1).

Notations: Let $J$ be the complex conjugate map, and let $\sigma$ be a
generator of Gal $(\tilde{K}Jk)$ with $(@^{/}\overline{m})^{\sigma}=\nu_{\overline{m}\cdot\zeta}$ , Then Gal $(\tilde{K}/Q)$ is generated
by $\{J, \sigma\}$ with the relations $J^{2}=\sigma^{S}=1,$ $\sigma J=J\sigma^{2}$ . For an algebraic number
field $F$, let $F^{*}$ (resp. $E_{F}$) denote its multiplicative group (resp. its unit
group).

\S 1. Preliminaries.

LEMMA 1.1. Let $\mathscr{A}$ be the set of all the unramified cydic cubic
extensions of $K$ and let va be the set of all the unram’ified cyclic cubic
extensions, of $\tilde{K}$, which are abelian over K. (We note from Kummer
theory that any element of va is written in the form $\tilde{K}(\Psi\overline{\alpha})$ , where
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a $e\tilde{K}^{*}.$ ) Let $\rho$ be the mapping $\tilde{K}(\nu\overline{a})e\mathscr{B}\rightarrow K({\rm Re} 8^{/}\overline{\alpha})$ . Then $\rho$ is a
bijection of va onto $\ovalbox{\tt\small REJECT}$

PROOF. As $\tilde{K}(\nu\overline{a})e\mathscr{G}$ is cyclic sextic over $K$, the mapping
$\tilde{K}(\nu\overline{\alpha})\rightarrow X$, where $X$ is a unique cubic subfield of $\tilde{K}(\Psi\overline{a})$ over $K$, is
clearly a bijection of va onto $X$ Therefore it suffices to show that
$K({\rm Re}\sqrt{\alpha})=X$. Clearly $K({\rm Re}\Psi\overline{a})$ is $X$ or $K$ since $K({\rm Re}\Psi\overline{\alpha})\subset R$ . ($R$ is
the field of real numbers.) As $\tilde{K}(\nu\overline{a})/K$ is abelian, we see from Kummer
theory that $\alpha^{1+J}e(\tilde{K}^{*})^{8}$ . Hence $(\sqrt{\alpha})^{1+J}e\tilde{K}\cap R=K$, which implies that

$\Psi\overline{\alpha}$ is quadratic over $K({\rm Re}\Psi\overline{\alpha})$ . As $8^{/}\overline{\alpha}$ is not quadratic over $K$, we
have $K({\rm Re} i^{/}\overline{a})=X$.

LEMMA 1.2. Let $\ovalbox{\tt\small REJECT}\rho$ be as in Lemma 1.1. Then, for $Fe\mathscr{G}$, we
have that:

$F\subset M^{\prime-}\rho(F)\subset M$ .
PROOF. The part $\Leftarrow$ : It is clear because $F=\rho(F)\cdot\tilde{K}$. The part

$‘‘\Rightarrow$ : Assume that $F\subset M^{\prime}$ . Then, as $F$ is abelian over $K$ and over $k$ ,
we see that $F/Q$ is a Galois extension. Moreover, since $\tilde{K}/k$ is ramified,
then $Ga1(F/k)\simeq(Z/3Z)^{2}$ . So an application of Lemma 2 in [7] to $Ga1(F/Q)$

proves that $\rho(F)\subset M$.
THEOREM 1.3. Any unramified cyclic cubic extension of $K$ is obtained

by adjoining ${\rm Re} i^{/}\overline{a}$ to $K$, where a $e\tilde{K}^{*}$ satisfies the following three
conditions:

$0$ . $\tilde{K}(\sqrt{\alpha})$ is cubic over $\tilde{K}$, namely, $a\not\in(\tilde{K}^{*})$ .
I. $\tilde{K}(8^{/}\overline{\alpha})$ is unramified over $\tilde{K}$, namely,
i) there exists an ideal ut of $\tilde{K}$ such that $(\alpha)=\mathfrak{U}^{\epsilon}$ ,
ii) for any prime ideal $l$ of $\tilde{K}$ dividing 3, $a$ is a 3$rd$ power residue

mod $I^{le_{0}}$ , where $e_{0}$ is the ramification index of I over $k$ .
II. $\tilde{K}(\Psi\overline{\alpha})$ is abelian over $K$, namely, $\alpha^{1+J}e(K^{*})^{8}$ .

Moreover, when a $e\tilde{K}^{*}$ satisfies the above conditions $0$ , I and II, $we$

obtain that $K({\rm Re}\Psi\overline{a})\not\subset M$ if and only if
III. $a^{\sigma-1}\not\in(\tilde{K}^{*})$ .
PROOF. The first assertion follows immediately from Lemma 1.1,

the ramification theory in Kummer extensions (cf. [4], Ia, Satz 9) and
Kummer theory. As $\tilde{K}/k$ is abelian, we see from Kummer theory that
$\tilde{K}(\nu\overline{\alpha})\not\subset M\Leftrightarrow\tilde{K}(\nu\overline{\alpha})/k$ is not abelians $\alpha^{\sigma-1}\not\in(\tilde{K}^{*})^{\epsilon}$ . The second assertion
follows at once from this fact and Lemma 1.2.

REMARK. One can easily know whether $a\in\tilde{K}^{*}$ satisfies the condition
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I ii), by taking $\pi e\tilde{K}^{*}$ such that I 1 $\pi$ and by calculating the $\pi$-expansion
of $\alpha$ .

\S 2. Field associated with $\ovalbox{\tt\small REJECT}_{1}$.
Let $\ovalbox{\tt\small REJECT}_{2},$ $\ovalbox{\tt\small REJECT}_{1}$ and $\mathscr{G}_{1}^{0}$ be the 3-elementary class group (i.e., the 3-

elementary part of the ideal class group) of $\tilde{K}$, the group of ambiguous
ideal classes of $\tilde{K}/k$ and the group of ideal classes represented by ambiguous
ideals of $\tilde{K}/k$ respectively. Then $\ovalbox{\tt\small REJECT}_{1}^{0}\subset \mathscr{G}_{1}\subset\ovalbox{\tt\small REJECT}_{2}$ as the class number of
$k$ is 1. Let $c1(\mathfrak{U})$ denote the ideal class represented by an ideal $\mathfrak{U}$ of $\tilde{K}$.

For $a\in\tilde{K}^{*}$ , the field associated with $\alpha$ is defined as

$\left\{\begin{array}{l}\rho(\tilde{K}(\nu\overline{a}))=K({\rm Re}\nu\overline{\alpha})\alpha 0\\\\K\end{array}\right.$

Furthermore, for a subgroup $H$ of $\mathscr{F}_{2}$, the field associated with $H$ is
defined as the composite of all the fields associated with those $a$

$e\tilde{K}^{*}$

such that $(\alpha)=\mathfrak{U}^{8}$ with $c1(\mathfrak{U})eH$. We note that the condition I i) shows
that any unramified cyclic cubic extension of $K$ is contained in the field
associated with $\ovalbox{\tt\small REJECT}_{2}$.

For a subgroup $H$ of $\ovalbox{\tt\small REJECT}_{2}$ such that $H^{J}\subset H$, we denote

$H=\{h\in H|h^{J}=h^{\pm 1}\}$ .
Then

$H=H^{+}\times H^{-}$ (direct).

In fact, for $h\in H$, we have $h=h^{2(1+J)}\times h^{2(1-J)}$ and $h^{2(1\pm J)}eH^{\pm}$ .
LEMMA 2.1. Let $H$ be a subgroup of $\ovalbox{\tt\small REJECT}_{2}$ such that $H^{J}\subset H$. Then

the field associated with $H$ is the same as the field associated with $H^{-}$ .
PROOF. Let $\alpha$ be an element of $\tilde{K}^{*}$ such that $(\alpha)=\mathfrak{U}^{8}$ with $c1(\mathfrak{U})eH$.

We may assume that $\alpha$ satisfies the condition II. Then $\mathfrak{U}^{1+J}$ is a principal
ideal, since $(a^{1+J})=(\mathfrak{U}^{1+J})^{8}$ and $a^{1+J}e(\tilde{K}^{*})^{\theta}$ . Therefore $c1(\mathfrak{U})^{2(1+J\rangle}=1$ , namely,
$c1(\mathfrak{U})eH^{-}$ .

REMARK. If $H=\ovalbox{\tt\small REJECT}_{2},$ $\ovalbox{\tt\small REJECT}_{1}$ or $\ovalbox{\tt\small REJECT}_{1}^{0}$ , then $H^{J}\subset H$. So Lemma 2.1 is
applicable to these cases.

We shall consider the case $H=\mathscr{G}_{1}$ in this paper.

LEMMA 2.2. Let $p_{1},$ $\cdots,$ $p$. be all the rational primes dividing $m$ and
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congruent to 1 mod 3. We write $p=n^{1+J}$ for $1\leqq i\leqq s$ , where $\pi$ are prime
elements in $k$ congruent to 1 mod 3. Then

$\prod_{i=1}^{\cdot}\rho(\tilde{K}(\nu_{\overline{\pi_{i}^{1+2J}}}))=K({\rm Re}\sqrt{\pi_{1}^{1+2J}},$
$\cdots,$

${\rm Re}\nu_{\overline{\pi^{1+2J}})=M}$ .
PROOF. From Lemma 3.2 in [2] and the condition II, we see that

$K(\gamma\overline{\pi_{1}^{1+2J}}, \cdots, \sqrt{\pi^{1+lJ}})$ is the maximal subfleld, of $M^{\prime}$ , which is abelian
over $K$. The lemma fOtfows at onoe from this fact and Lemmas 1.1 and 1.2.

THEOREM 2.3. Let $L$ be the composite of au the klds associated with
the units in $\tilde{K}$. (We note that $L$ is the field associated with the identity
subgroup {1} of $\ovalbox{\tt\small REJECT}_{2}.$ ) Then the field associated with $\ovalbox{\tt\small REJECT}_{1}$ is the same as $ML$ .

PROOF. From the proof of proposition 2 in [3], we see that $\ovalbox{\tt\small REJECT}_{1}^{-}=$

$\ovalbox{\tt\small REJECT}_{1}^{0-}$ . So an application of Lemma 2.1 to $\mathfrak{X}$ and $\ovalbox{\tt\small REJECT}_{1}^{0}$ implies that the
field associated with $\ovalbox{\tt\small REJECT}_{1}$ is the same as the field associated with $\ovalbox{\tt\small REJECT}_{1}^{0}$ .
Let $R,$ $\cdots$ , a be all the prime ideals of $\tilde{K}$ ramified over $k$. Then $\ovalbox{\tt\small REJECT}_{1}$

is generated by these ideal classes as the class number of $k$ is 1. We
write $\mathfrak{W}=(\pi^{\prime})$ for $1\leqq i\leqq t$ , where $\pi_{i}^{\prime}$ are prime elements in $k$ . Let $s,$ $\pi_{I}$

be as in Lemma 2.2. Then $2s\leqq t$. We can take

$\left\{\begin{array}{ll}\pi_{i}^{\prime}=\pi_{i} & for 1\leqq i\leqq s,\\\pi_{i}^{\prime}=\pi_{i-}^{J} & for s+1\leqq i\leqq 2s ,\\\pi^{\prime} is a rational prime or \sqrt{-3} & for 2s<i.\end{array}\right.$

Then the field associated with $\mathscr{G}_{1}^{\ovalbox{\tt\small REJECT}}$ is the composite of all the fields as-
sociated with $\alpha=\epsilon\prod_{i=1}^{t}\pi!^{a_{i}}$ , where $\epsilon eE_{\tilde{K}},$ a $eZ$. We may assume that $\alpha$

satisfies the conditions $0$ , I and II. By II, we have $\tilde{K}(\nu\overline{\alpha})=\tilde{K}(\nu\overline{a^{1+2J}})$ ,
which is contained in

$\tilde{K}(\nu_{\overline{\pi_{1}^{\prime}}}1+2J$ , $\cdot$ . ., $\nu_{\overline{\pi^{\prime_{1+lJ}}}},$ $\nu_{\overline{\epsilon^{1+2J}})}$ .
Since $\pi!^{1+2J}\cdot\pi_{i+}^{1+2J}e(\tilde{K}^{*})^{8}$ for $1\leqq i\leqq s$ and since $\pi^{\prime_{1+2J}}\in(\tilde{K}^{*})^{t}$ for $2s<i$ , we have

$\tilde{K}(\nu_{\overline{a}})\subset\tilde{K}(\sqrt{\pi_{1}^{1+2J}},$

$\cdots,$
$\sqrt{\pi^{1+2J}},$ $\nu_{\overline{\epsilon^{1+2J}})}$ .

As $\alpha^{1+2J}$ and each $\pi$: satisfy the conditions I and II, so does $\epsilon^{1+2J}$ . Let
$Y$ be $\rho(\tilde{K}(\nu\overline{\epsilon^{1+2J}}))$ or $K$, according as $\epsilon^{1+2J}$ satisfies the condition $0$ or not.
Then, by Lemma 1.1, we have

$\rho(\tilde{K}(\sqrt{\alpha}))\subset\prod_{=1}^{l}\rho(\tilde{K}(\nu\overline{\pi_{i}^{1+2J}}))\cdot Y$ and $Y\subset L$ .
So we see from Lemma 2.2 that $\rho(K(\nu\overline{a}))\subset ML$. Conversely it is clear
from this lemma that $M$ is contained in the field associated with $\mathscr{G}_{1}^{0}$ .
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This completes the proof of the theorem.
In the next section, we shall consider the field associated with a unit

in $\tilde{K}$.
\S 3. Field associated with a unit.

Let $\{\epsilon_{1}, \epsilon_{2}\}$ be a system of the fundamental units of $\tilde{K}$. As the field
associated with a unit is the same as the field associated with one of
$\zeta^{a}\epsilon_{1}^{b}\epsilon_{2}^{c}$ , where $a,$ $b,$ $ce\{0,1,2\}$ , we shall examine the conditions $0,$ $I$ , II and
III in Theorem 1.3 for $\zeta^{a}\epsilon_{1}^{b}\epsilon_{2}^{c}$ . Clearly each $\zeta^{a}\epsilon_{1}^{b}\mathfrak{X}$ satisfies the conditions
$0$ and I i) unless $a=b=c=0$ .

Now to examine the conditions II and III we use some results about
$\{\epsilon_{1}, \epsilon_{2}\}$ . Let $e$ be a fundamental unit of $K$ with norm 1. Then the follow-
ing two case $s$ occur (cf. [8]).
Case 1. $\{\epsilon_{1}, \epsilon_{2}\}=\{e, e^{\Phi}\}$ .
Case 2. $\{\epsilon_{1}, \epsilon_{2}\}=\{\epsilon, \epsilon^{\Phi}\}$ , where $\epsilon$ is a unit in $\tilde{K}$ such that $\epsilon^{1-\phi}=e$ .

Case 1. The condition II: Since $(e^{\sigma})^{1+J}=e^{-1}$ , then $(\zeta e^{b+oo})^{1+J}=\theta^{-}$ .
Therefore only $\zeta^{Q}$ and $\zeta^{a}e^{1+2\sigma}$ satisfy this condition. (We may delete
$\zeta^{a}e^{l+\sigma}$ because $e^{1+2\sigma}e^{2+\sigma}\in(\tilde{K}^{*})^{8}.)$ The condition III: We have $(\zeta^{a}e^{1+2\sigma})^{\sigma-1}=$

$e^{-8-8\sigma}e(\tilde{K}^{*})^{8}$ . Hence in Case 1 there are no units in $\tilde{K}$ satisfying the
conditions II and III.

Case 2. The condition II: By Equality (4) in [5], $\epsilon^{1+J}=\pm e$ , and so
$\epsilon^{J}=\pm\epsilon^{-\sigma}$ . An easy calculation then shows that $(\zeta^{a}\epsilon^{b+c\sigma})^{1+J}=\epsilon^{(b-u)+(o-b)\sigma}$ .
Thefore only $\zeta^{a}$ and $\zeta^{a}\epsilon^{1+\sigma}$ satisfy this condition. (This time we may
delete $\zeta^{a}\epsilon^{2+2\sigma}.$ ) The condition III: We have $\epsilon^{\sigma^{2}}=\xi\epsilon^{-1-\sigma}$ with $\xi=\epsilon^{1+\sigma+\sigma^{2}}\in E_{k}$ ,
so $(\zeta^{a}\epsilon^{1+\sigma})^{\sigma-1}=\xi\epsilon^{-2-\sigma}\not\in(\tilde{K}^{*})^{8}$ . Hence in Case 2 it follows that only $\zeta^{a}\epsilon^{1+\sigma}$ ,
$a=0,1,2$ , satisfy the conditions II and III. The condition I ii): This
condition is easily examined (cf. Remark just following Theorem 1.3). In
particular, at most one of $\zeta^{a}\epsilon^{1+\sigma}$ satisfies this condition because $\zeta$ does not.

Hence we have the following

THEOREM 3.1. Let $L$ be the composite of all the fields associated with
the units in $\tilde{K}$. Let Case 1, Case 2 and $\epsilon$ be as above. Then we have that:

Case 1. $L\subset M$.
Case 2. $\# U=0$ or 1, where $U=\{\zeta^{a}\epsilon^{1+\sigma},$ $a=0,1,2|\zeta^{a}\epsilon^{1+\sigma}$ satisfies the

condition I ii) in Theorem 1.3.}.

$\left\{\begin{array}{ll}If & U=\emptyset, then L\subset M.\\If & U=\{\epsilon_{0}\}, then ML=M\cdot K({\rm Re}\Psi\overline{\epsilon_{0}})\neq M.\end{array}\right.$

REMARK. Some effective methods to calculate a fundamental unit $e$

of $K$ have been known. (For example, there is a table for $m\leqq 250$ in
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[10]. Also if $m$ is of particular form, $e$ is given explicitly (cf. [9]).)
Moreover, by easy arithmetic involving the unit $e$ , we can know whether
this is Case 2, and in Case 2 we can also calculate the unit $\epsilon$ (cf. [5]).

By Theorems 2.3 and 3.1, we have completely obtained the field
associated with $\mathscr{G}_{1}$. As was noted in section 2, in order to obtain all
the unramified cyclic cubic extensions of $K$, it suffices to construct the
field associated with $\ovalbox{\tt\small REJECT}_{2}$. But, as it seems somewhat complicated to treat
the case $H=\ovalbox{\tt\small REJECT}_{2}$ , we shall consider this case elsewhere.

EXAMPLE. $K=Q(\Psi\overline{m})$ , where $m$ is a positive cubefree rational
integer. We consider the case

$m=D^{8}+d$ with $D,$ $d\in Z$ , $D>0$ , $d|3D^{2}$ .
This is Case 1 or Case 2 according as $d=\pm 1$ except $(D, d)=(1,1),$ $(2,1)$ or
$d\neq\pm 1$ . In the case $d\neq\pm 1$ except $(D, d)=(1,3),$ $(2, -6),$ $(5, -25),$ $(2, -4)$ ,
we have $\epsilon=(\theta-D)/(\theta^{\sigma^{2}}-D)$ with $\theta=\nu_{\overline{m}}$. (The above results have been
obtained in [9] and [5].) Examining the condition I ii) for $\zeta^{a}\epsilon^{1+\sigma}$ (cf.
Remark just following Theorem 1.3), we obtain the following



CUBIC EXTENSIONS 397

Here $\epsilon=(\theta-D)/(\theta^{\sigma^{2}}-D)$ with $\theta=8^{/}\overline{m}$.
NUMERICAL EXAMPLES: $K=Q(8^{/}\overline{m})$ . Let $h$ and $g$ be the class num-

ber and the genus number of $K$ respectively.
(1) $m=30$ (An example contained in Proposition 3.2.) As $30=3^{3}+3$ ,

$D=d=3$ . Since 3 $\Vert D$ , 3 $\Vert m$ and $m/3\equiv D/3$ mod 3, then $U=\{\zeta^{2}\epsilon^{1+\sigma}\}$ .
Therefore

$K({\rm Re}\nu\overline{\zeta^{2}\epsilon^{1+\sigma}})=K({\rm Re}^{\Psi}\overline{(\nu 30\zeta-3)/(\nu\overline{30}-3\zeta)})$

is an unramified cyclic cubic extension, of $K$, which is not contained in
$M$. Moreover, since it is known that $g=1$ and $h=3,$ $K({\rm Re}\Psi\overline{\zeta^{2}\epsilon^{1+\sigma}})$ is the
field associated with $\ovalbox{\tt\small REJECT}_{1}$ and also the absolute class field of $K$.

(2) $m=34$ (An example not contained in Proposition 3.2.) $e=334153+$
$103146\theta+31839\theta^{2}$ (cf. [10]). Then, by the method described in [5], we
know that this is Case 2 and

$\epsilon=305+94\theta+29\theta^{2}-52\zeta-16\theta\zeta-5\theta^{2}\zeta$ .
Examining the condition I ii), we have $U=\{\epsilon^{1+\sigma}\}$ . Therefore $K({\rm Re} 8^{/}\overline{\epsilon^{1+\sigma}})$

is an unramified cyclic cubic extension, of $K$, which is not contained in $M$.
Moreover, since it is known that $g=1$ and $h=3,$ $K({\rm Re}\nu\overline{\epsilon^{1+\sigma}})$ is the field
associated with $\ovalbox{\tt\small REJECT}_{1}$ and also the absolute class field of $K$.
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