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Introduction

In studying smooth actions of compact Lie groups on homology
spheres (or on acyclic manifolds), a basic approach is to compare those
smooth actions with linear actions on standard spheres (or on Euclidean
spaces). Some basic relations between smooth and linear actions have
been studied in [9] and [10].

Let $G$ be a compact Lie group, and $M$ a homology sphere (or an
acyclic manifold) with a smooth action $\psi$ of $G$ . Let $\phi$ be a linear action
of $G$ on the standard sphere (or on Euclidean space) with the same di-
mension as of $M$. If $\psi$ and $\phi$ have the same orbit types and the same
slice representations of the corresponding orbits, then we say that $\phi$ is
a linear model of $\psi$ (see [6]). Denote by $\rho_{n},$ $(\mu_{n})_{R}$ and $(\nu_{n})_{R}$ the canonical
inclusions of $SO(n),$ $SU(n)$ and $Sp(n)$ into $0(n),$ $0(2n)$ and $0(4n)$ , respec-
tively. A smooth action of $SO(n),$ $SU(n)$ or $Sp(n)$ on $M$ is called regular
if its linear model is given by a representation $k\rho_{n}\oplus trivia1$ representation,
$k(\mu_{n})_{R}\oplus trivia1$ representation or $k(\nu_{n})_{R}\oplus trivia1$ representation, respectively,
where $ k\phi$ is the direct sum of $k$ copies of a representation $\phi$ . We shall
also say that these representations are regular. In [5], M. Davis and
W. C. Hsiang classffied regular* $U(n)$ and $Sp(n)$-actions on homotopy
spheres up to concordance. And in [7], these authors and J. W. Morgan
classified regular* $O(n)$-actions on homotopy spheres up to concordance.
In this paper, we treat smooth actions of compact, connected, simple
classical Lie groups on homology spheres with linear models, and we shall
prove that these actions are completely classified up to equivariant diffeo-
morphisms, if they have codimension two principal orbits. When a smooth
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*Precisely, $\alpha reguIarity$ ’ in our sence is obtained by restricting $U(n)$ (resp. $0(n)$) to its
connected simple subgroup $SU(n)$ (resp. $SO(n)$).
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manifold $M$ with a smooth action $\psi$ of $G$ is equivariantly diffeomorphic
to a smooth manifold $M^{\prime}$ with a smooth action $\psi$ of $G$ , we shall say that
$\psi$ is equivariantly diffeomorphic to $\psi$ .

To state our theorem, we recall that the manifold $W_{k}^{4n+1}$ given by
$W_{k}^{4*+1}=\{(z_{0}, z_{1}, \cdots, z_{2n\cdot+1})eC^{2n+2}|z_{0}^{k}+z_{1}^{2}+\cdots+z_{g,*+1}^{l}=0$

and $|z_{0}|^{2}+|z_{1}|^{2}+\cdots+|z_{2n+1}|^{2}=1$ }
is a homology sphere if $k$ is odd (See Chapter I of [2]), and it is called
the Brieskorn sphere. The group $SO(2m+1)$ acts naturally on $C^{2\#+1}$ with
the coordinates $z_{1},$ $z_{2},$ $\cdots,$ $z_{2n*+1}$ as a subgroup of $U(2m+1)$ , under which
$W_{k}^{4’*+1}$ is invariant. Thus if $k$ is odd, $W_{k}^{4\cdot+1}$ becomes an $SO(2m+1)$-homo-
logy sphere by this action. Let us denote it by $\psi_{S0(2’*+1),k}$ . In particular,

$W_{k}^{9}$ also becomes an $Sp(2)$-homology sphere by the action $\psi_{S0(6)k^{\circ}}\pi$ where
$\pi$ is the natural projection of $Sp(2)$ to $SO(5)$ . Our main result is the
following.

THEOREM. Let $M$ be a homology sphere, and let $G$ be one of the three
groups, $SO(n)(n\neq 2,4),$ $SU(n)$ or $Sp(n)$ . Let $\psi$ be a smooth action of $G$

on $M$ which has a codimension two principal orbit and a linear model.
Then $\psi$ is equivariantly diffeomorphic to the linear model unless it is
equivariantly difeomorphic to one of the actions of the following two types:

(i) $\psi_{SO(2n\cdot+1).k}$ on $W_{k}^{4\prime*+1}$ for $G=SO(n)(n=2m+1, m\geqq 2)$ or (ii) $\psi_{S0(),k^{\circ}}\pi$

on $W_{k}^{9}$ for $G=Sp(2)$ .
REMARK. The linear model of the action $\psi_{S0(2’*+1),k}$ is obtained from

the linear action on the representation space of $2\rho_{2’*+1}$ by restricting to
the unit sphere. In particular, $\psi_{so(s),k}$ is equivariantly diffeomorphic to
the linear model (see Chapter I of [2]).

REMARK. Let $G$ be a compact simple Lie group and $M$ a homology
sphere (or an acyclic manifold). Then it is stated in [6] that every smooth
action of $G$ on $M$ with a non-trivial principal isotropy subgroup has a
unique linear model. Thus the assumption that $\psi$ has a linear model
may be removed from the above theorem, except in the case of those
actions with trivial principal isotropy subgroups. It will be seen that
smooth actions in the above theorem which have trivial principal isotropy
subgroups only appear as those modelled* on $2\rho_{\epsilon}$ or on $(\mu_{2})_{R}\oplus 2$-dimensional
trivial representation (see Propositions 2.1 and 2.3).

In \S 1, we recall some basic notions and results. In \S 2, we shall list
up all real representations which provide linear models in our thorem,

*For the definition, see \S 3.
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and investigate all orbit types of the linear models. In \S 3, we define
the orbit datum as a set of isotropy subgroups of $G$ , and in terms of
which we shall classify G-homology spheres in \S 4. Lastly, in \S 5 the
proof of our theorem will be given.

\S 1. Preliminaries.

Let $G$ be a compact connected Lie group and $M$ a smooth G-manifold.
For $x\in M$, the G-orbit through $x$ and the isotropy subgroup at $x$ are
denoted by $G(x)$ and $G_{x}$ , respectively. The orbit space is indicated by
$M^{*}$ or $M/G$ . By $H<G$ , we mean that $H$ is a subgroup of $G$ . Then
we denote by $(H)$ the conjugacy class of $H$, that is, $(H)=\{K<G|K$ is
conjugate to $H$}. And put $M_{(H)}=\{x\in M|G_{x}\in(H)\}$ . If $X$ is a G-invariant
subspace of $M$, then we write $F(H, X)=$ {$x\in X|gx=x$ for all $g\in H$}.

1.1. Recall a result of Montgomery-Samelson-Yang (see [12]). Order
the conjugacy classes of isotropy subgroups by inclusions. They have a
unique absolute minimum $(H)$ for which $M_{(H)}$ is open dense in $M$. We
call $H$ a principal isotropy subgroup and the corresponding orbit $G/H$ a
principal orbit. Let $P$ be a principal orbit. Then an orbit $Q$ is called
a singular orbit if dim $P>\dim Q$ . An orbit $Q$ is called an exceptional
orbit, if dim $P=\dim Q$ and if the corresponding isotropy subgroup $K$ is
not conjugate to $H$.

1.2. Assume that $M$ is equipped with a G-invariant Riemannian
metric. Let $x\in M$. Then the induced action of $G_{x}$ on the normal vector
space $V_{x}$ to $G(x)$ at $x$ gives a representation $\psi.:G.\rightarrow 0(l)(l=\dim M-$

dim $G(x))$ . $\psi$. is called the slice $\gamma epresentation$ of $G_{x}$ at $x$ . Then it is
well-known that there is a small disk $S_{x}$ in $V_{x}$ such that a closed equivariant
tubular neighbourhood of $G(x)$ is equivariantly diffeomorphic to $G\times_{a_{x}}S_{x}$ ,
where $G_{x}$ acts on $S_{x}$ by $\psi_{x}$ (see [2]). $S_{x}$ is called a slice at $x$ .

1.3. The results in this subsection are refered to Chapter VI of [2].
Let $G/H$ be a principal orbit in a smooth G-manifold $M$ and suppose that
$Q=G/K$ is a non-principal orbit in $M$ such that there are exactly two
orbit types in a neighbourhood of $Q$ . We may assume that $H<K$. Let
$G\times_{K}R^{k}$ be an open equivariant tubular neighbourhood of $Q$ . We assume
that $k=n+m$ and that $K$ acts on $R^{k}$ via a representation into $0(n)=\star O(k)$

and is transitive on the unit sphere $S^{n-1}$ in the orthogonal complemet
$R^{n}\times\{0\}$ to the fixed point set $F(K, R^{k})=\{0\}\times R^{n}$ . Let $v_{0}$ be a point in
$S^{n-1}$ with $K_{v_{0}}=H$. Then every point of $G\times_{K}R^{n}$ is of the form $[g, v]$ where
$v\in Rv_{0}$ , and $G\times_{K}R^{n}$ has the right action of $(N(H)\cap N(K))/H$ defined by
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$[g, v]\mapsto[gs, v]$ for $s\in N(H)\cap N(K)$ . We assume that this action is smooth.
$M$ is called a smooth special G-manifold if there are at most two

orbit types in the vicinity of each orbit and if the conditions above hold
for each non-principal orbit.

Let $Homeo_{X}^{a}(M)$ (resp. $Diffeo_{X}^{o}(M)$ ) denote the set of G-equivariant
homeomorphisms (resp. G-equivariant diffeomorphisms) of $M$ inducing the
identity on the orbit space $X=M/G$ . And let $\pi_{0}Homeo_{X}^{a}(M)$ (resp.
$\pi_{0}DIffeo_{X}^{o}(M))$ be the set of equivariant homotopy classes (resp. equivariant
smooth isotopy classes) over $X$ of elements in $Homeo_{X}^{a}(M)$ (resp. $Diffeo_{X}^{o}(M)$).
Then the following theorem has been obtained in [2].

THEOREM (6.4, Chapter VI of [2]). If $M$ is a smooth special G-mani-
fold over $X(=M/G)$ , then the forgetful map $\pi_{0}D\ddagger ffeo_{X}^{a}(M)\rightarrow\pi_{0}Homeo_{X}^{o}(M)$

is $a$ one-one correspondence.

We shall apply this theorem to Lemma 4.7 in \S 4.

1.4. Throughout this paper, we use the following notations: $G^{0}=$

the identity component of a group $G,$ $N(H)=the$ normalizer of a subgroup

$H$ of $G$ , and diag$(A_{1}, A_{2}, \cdots, A_{r})=the$ matrix $[_{0}^{A_{1}}A_{2}$ . . $.0A]$ where each $A_{i}$

is a square matrix. $X\approx Y$ means that G-manifolds $X$ and $Y$ are equi-
variantly diffeomorphic, and $A\cong B$ means that the groups $A$ and $B$ are
isomorphic. And we denote by $\rho_{n},$ $\mu_{n}$ and $\nu_{n}$ the canonical inclusions
of $SO(n),$ $SU(n)$ and $Sp(n)$ into themselves, respectively.

\S 2. Linear models.

Let $G$ be one of the three groups $SO(n)(n\neq 2,4),$ $SU(n)$ or $Sp(n)$ .
Our purpose in this section is to list up the candidates of the linear
models in our theorem stated in the Introduction. This is equivalent to
listing up all real representations of $G$ with codimension three principal
orbits. In Proposition 2.1, we shall give a list of these representations.
And in Proposition 2.3, we shall observe which orbit types occur when
the linear actions are restricted to the unit spheres. The results in
Propositions 2.1 and 2.3 have been studied in [13]. In this section, we
shall give the outlines of the proofs by treating only some typical cases.

From now on, we denote by $\phi_{R}$ the underlying real representation
of a complex or symplectic representation $\phi$ , and by $\phi_{C}$ the underlying
complex representation of a symplectic representation $\phi$ . $\phi^{0}$ denotes $th\epsilon$



HOMOLOGY SPHERES 291

complexification of a real representation $\phi$ , and $\theta$ denotes the real (or
complex) one dimensional trivial representation. For the notational con-
venience, we denote by $ k\phi$ the direct sum of $k$ copies of a representation
$\phi$ . We often write $\phi$ as $\phi_{\iota}-\phi_{2}$ if $\phi\oplus\phi_{2}$ is equivalent to $\phi_{1}$ . And, by the
orbits (resp. the isotropy subgroups) of a representation of $G$ , we mean
the orbits (resp. the isotropy subgroups) of the linear action of $G$ on the
representation space.

PROPOSITION 2.1. Let $G$ be one of the three groups $SO(n)(n\neq 2,4)$ ,

TABLE $A^{1}$
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$SU(n)$ or $Sp(n)$ . Then the Table $A$ contains all possible real represen-
tations of $G$ with codimension three principal orbits.

REMARK 2.2. Let $\tilde{G}$ be the universal covering group of $G$ . In Table
$A$ , we omit representations of $\tilde{G}$ which become the liftings of represen-
tations of $G$ . For example, the representation $(\Lambda^{2}\mu_{4})_{R}$ of $SU(4)$ is excluded
because it is the lifting of the representation $2\rho_{0}$ of $SO(6)$ .

PROPOSITION 2.3. Let $\phi$ be a representation in Proposition 2.1, and
let $V$, be the representation space of $\phi$ . Then the restricted linear action
on the unit sphere $S(V,)$ has the orbit types in the Table $A$ .

REMARK 2.4. In Table $A$ , we display the corresponding isotropy
subgroups instead of orbits. And the symbol $T$ denotes the specific
maximal torus of $G$ which is chosen according to Chapter 4 of [1]. The
group $S(U(n_{1})\times U(n_{2}))$ means the subgroup of $SU(n_{1}+n_{2})$ consisting of
matrices which are of the form diag $(A_{1}, A_{2})$ such that $A_{i}$ is in $U(n_{i})(i=1,2)$

and det $A_{1}$ det $A_{2}=1$ . $K$ is the direct product of $s$ copies of $K$. The
group $U(n)$ (resp. $Sp(n)$ ) is regarded as a subgroup of $SO(2n)$ (resp.
$SU(2n))$ by the natural embedding. And $S^{2}\rho_{8}$ denotes the second sym-
metric power of $\rho_{3}$ .

Before giving the proofs of Propositions 2.1 and 2.3, we recall some
relations between the weight system of a representation of $G$ and the
root system. The results stated below are refered to [10].

Consider the linear action on $V$, induced by a real representation $\phi$

of $G$ , where $V$, is the representation space of $\phi$ . For a maximal torus
$T$ of $G$ , we denote by $\Omega(\phi)$ the system of non-zero weights of $\phi^{0}$ , and by
$\Delta(G)$ the root system of $G$ . Then, for $x\in V,$ , we may assume that the
maximal torus $T_{x}$ of $G_{x}^{0}$ is contained in $T$. And we may take the Lie
algebra $L(T.)$ of $T_{x}$ as $\omega_{\dot{g}_{1}}^{\perp}\cap\omega_{\dot{g}_{2}}^{\perp}\cap\cdots\cap\omega_{\dot{J}t}^{\perp}$ for a suitable subcollection $\{\omega_{\dot{f}}i\}$

of weights in $\Omega(\phi)$ , where $\omega_{\dot{J}i}^{\perp}$ means the set of vectors perpendicular to
$\omega_{j_{i}}$ . On the other hand, for $xeV,$ , we have the following equality:

$\phi|G_{g}=(Ad_{o}|G_{g}-Ad_{a_{o}})\oplus\psi_{g}$

where $\psi_{x}$ is the slice representation at $x$ . Thus we have

$\Omega(\phi)|T_{g}=\Omega(Ad_{o}|T_{\alpha}-Ad_{a_{*}}|T_{v})+\Omega(\psi_{g})$ ,

where $\Omega(\phi)|T_{x}$ is the restriction to $L(T.)$ of $\Omega(\phi)$ . And hence, the root
system of $G_{x}^{0}$ must satisfy the following condition:

(2.5) $\Delta(G_{l}^{0})\supset\Delta(G)|T_{g}-\Omega(\phi)|T_{x}$ (difference set).
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Moreover, it is known that if $\Omega(\phi)|T_{x}-\Delta(G)|T_{x}=\Phi$ , then $T_{x}$ is a maximal
torus of a suitable connected principal isotropy subgroup $H^{0}$ , and that the
root system $\Delta(H^{0})$ of $H^{0}$ is given by the following equation:

(2.6) $\Delta(H^{0})=\Delta(G)|T_{x}-\Omega(\phi)|T_{x}$ .
We remark that these results are valid for any compact, connected, simple
Lie group.

Now let $G=Sp(r)$ , and $\phi$ the representation such that $\phi^{0}=\Lambda^{2}(\nu_{r})_{C}-\theta$ .
And let $\{x_{1}, \cdots, x_{r}\}$ be the basis of the Cartan subalgebra of $Sp(r)$ such
that

$\Delta(Sp(r))=t\pm 2x_{i},$ $1\leqq i\leqq\gamma,$ $\pm x_{i}\pm x_{j},$ $1\leqq i<j\leqq r$}.

Then we have
$\Omega(\phi)=\{\pm x_{i}\pm x_{j}, 1\leqq i<j\leqq r\}$ .

Since $\Omega(\phi)-\Delta(Sp(r))=\Phi$ , the principal isotropy subgroup $H$, of $\phi$ has the
maximal rank. Thus, from (2.6), we have

$\Delta(H_{\phi}^{0})=\{\pm 2x_{i}, 1\leqq i\leqq r\}$ .
This implies that $(H_{\phi}^{0})=(Sp(1)‘)$ . Also, for a singular isotropy subgroup
$G_{x},$ $(2.5)$ shows that $G_{x}^{0}$ is conjugate to $Sp(c_{1})\times\cdots\times Sp(c_{k}),$ $c_{1}+\cdots+c_{k}=r$.

Outline of the proof of Proposition 2.1. We only consider the case
$G=Sp(r)(r\geqq 2)$ ; because the proof for this case is typical and the proofs
of the other cases are similar. See [13] for the details.

Let $\phi$ be a real representation of $Sp(r)$ with a codimension three
principal orbit. Then the degree of $\phi$ does not exceed dim $Sp(r)+3$ . Thus
the complex degree of an irreducible direct summand of $\phi^{\ell}$ is not larger
than dim $Sp(r)+3$ .

(A) Denote by $L_{i}(1\leqq i\leqq r)$ the highest weight of the i-th basic com-
plex irreducible representation of $Sp(\gamma)$ . It is known that every complex
irreducible representation of $Sp(r)$ is uniquely determined by the highest
weight which can be written as $a_{1}L_{1}+\cdots+a_{r}L_{r}$ with non-negative inte-
gers $\{a_{i}\}$ . Denote by $d(a_{1}L_{1}+\cdots+a_{r}L_{r})$ the complex degree of a complex
irreducible representation of $Sp(r)$ whose highest weight is $a_{1}L_{1}+\cdots+$

$a_{r}L_{r}$ . The degree can be computed by Weyl’s dimension formula (see
Theorem 0.24, (0.148)-(0.155) of [8]). By this formula, we can see that,
if a complex irreducible representation of $Sp(r)$ has the degree not larger
than dim $Sp(\gamma)+3$ , then the highest weight is

$L_{1},$ $L_{2}$ or $2L_{\iota}$ for $\gamma\neq 3$ ,
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$L_{1},$ $L_{2},$ $L_{8}$ or 2 $L_{1}$ for $r=3$ .
Notice that the complex irreducible representations corresponding to $L_{1}$ ,
$L_{2}$ and $2L_{1}$ are $(\nu)_{C},$ $\Lambda^{2}(\nu_{r})_{c}-\theta$ and $(Ad_{Sp()})^{0}$ , respectively, and that $d(L_{3})=$

$13$ for $r=3$ .
(B) Let $\psi$ be an irreducible direct summand of $\phi^{o}$ . Then, from (A),

it follows that $\psi$ is $(\nu_{r})_{C},$ $\Lambda^{2}(\nu)_{C}-\theta,$ $(Ad_{Sp()})^{0}$ or $\psi_{1}$ , where $\psi_{1}$ is the complex
irreducible representation of $Sp(3)$ with the highest weight $L_{8}$ . Suppose
that $\psi$ is $\psi_{1}$ . Then $\phi^{0}$ also has the conjugate representation of $\psi_{1}$ as a
direct summand, since there is no real representation whose complexifi-
cation is $\psi_{1}$ . Thus the degree of $\phi^{0}$ must be larger than $2d(L_{8})=26$ .
This is a contradiction; because the degree of $\phi$ does not exceed dim $Sp(3)+$

$3=24$ . Therefore $\phi^{0}$ is $k(\nu)_{G}\oplus l\theta,$ $(Ad_{Sp(r)})^{e}\oplus l\theta$ or $ m(A^{2}(\nu_{r})_{G}-\theta)\oplus l\theta$ , where
$m=1$ for $r\geqq 3$ and $m=1$ or 2 for $r=2$ . Notice that $((\nu)_{R})^{\iota}=2(\nu,)_{0}$ and
that $\Lambda^{2}(\nu)_{C}-\theta$ is the complexification of the isotropy representation of
$SU(2r)/Sp(r)$ at the base point. Denote by $\eta$ this isotropy representation.
As is investigated above, the identity component of a principal isotropy
subgroup of $\eta$ is conjugate to $Sp(1)$‘. Also a principal isotropy subgroup
of $ 2\eta$ for $r=2$ is conjugate to $Sp(1)$ , since $\eta$ is the lifting of $\rho_{\epsilon}$ Moreover,
it is known that principal isotropy subgroups of $k(\nu_{r})_{R}$ and $Ad_{Sp(r)}$ are
conjugate to $Sp(r-k)$ and a maximal torus of $G$ , respectively. Thus we
see that $\phi$ is $(\nu)_{R}\oplus 2\theta(r\geqq 2),$ $Ad_{Sp()}\oplus(3-r)\theta(r=2,3),$ $\eta\oplus(4-r)\theta(r=2,3,4)$

or $2\eta(r=2)$ . Hence the required result for $G=Sp(r)$ is obtained.

Outline of the proof of Proposition 2.3. Here we only consider the
case of $G=Sp(3)$ and $\phi^{0}=A^{2}(\nu_{8})_{G}$ , because the proof for this case is typical.
The other cases are treated similarly, but the actual case-by-case proofs
are somewhat long and tedious. See [13] for the other cases.

The orbit types of $\phi|S(V,)$ equal those of $\phi$ because $\phi$ has just one
dimensional trivial summand. In particular, $\phi|S(V,)$ has exactly two fixed
points as the isolated singular orbits. Since $\phi|S(V,)$ has codimension two
principal orbits and has singular orbits, $\phi|S(V,)$ has no exceptional orbit
and the orbit space $S(V,)^{*}$ is a two dimensional disk whose boundary is
$B^{*}$ , where $B^{*}$ is the set of all singular orbits in $S(V,)$ (see Chapter IV of
[2]). On the other hand, from the observation stated before the proof
of Proposition 2.1, we see that the identity component of each isotropy
subgroup is conjugate to $Sp(1),$ $Sp(1)\times Sp(2)$ or $Sp(3)$ , and that $Sp(1)^{8}$ is
the identity component of a principal isotropy subgroup. From these facts
together with the fact that $N(Sp(1)\times Sp(2))=Sp(1)\times Sp(2)$ , it follows that
$G/(Sp(1)\times Sp(2))$ must occur in $S(V,)$ as a non-isolated singular orbit.
We show below which vector in $S(V,)$ has $Sp(1)\times Sp(2)$ as its isotropy
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subgroup. At the same time, we show that the principal isotropy sub-
group is connected.

As is mentioned in the proof of Proposition 2.1, the non-trivial
irreducible direct summand $\eta$ of $\phi$ is the isotropy representation of
$SU(6)/Sp(3)$ at the base point. Let $T$ and $T^{\prime}$ be maximal tori of $SU(6)$

and $Sp(3)$ , respectively. Regarding the Lie algebra $L(T)$ of $T$ as

{diag$(d_{1}\sqrt{-1},$ $d_{2}\sqrt{-1},$
$\cdots,$

$d_{6}\sqrt{-1})|d_{j}\in R,$ $\sum d_{j}=0$},

each element in $L(T^{\prime})$ can be expressed as

diag $(d_{1}\sqrt{-1}, -d_{1}\sqrt{-1}, d_{2}\sqrt{-1}, -d_{2}\sqrt{-1}, d_{s}\sqrt{-1}, -d_{\epsilon}\sqrt{-1})$

(see Chapter 4 of [1]).

Here diag $(d_{1}\sqrt{-1}, d_{2}\sqrt{-1}, \cdots, d_{6}\sqrt{-1})$ is a diagonal matrix of order 6.
Let $\pi$ be the projection of $L(SU(6))$ to $L(SU(6))/L(Sp(3))$ . Then, for the
linear action induced by $\eta$ , we have

$G_{\pi(v_{1})}=Sp(1)^{a},$ $G_{\pi(v_{2})}=Sp(1)\times Sp(2)$ ,

where $v_{1}=diag(l_{1}\sqrt{-1}, l_{1}\sqrt{-1}, l_{2}\sqrt{-1}, l_{2}\sqrt{-1}, l_{6}\sqrt{-1}, l_{3}\sqrt{-1})$ and $v_{2}=$

$diag(l_{1}\sqrt{-1}, l_{1}\sqrt{-1}, l_{2}\sqrt{-1}, l_{2}\sqrt{-1}, l_{2}\sqrt{-1}, l_{2}\sqrt{-1})$ for each other different
integers $\{l_{j}, 1\leqq j\leqq 3\}$ . This implies that the principal isotropy subgroup
is connected and that the vector given by normalizing $v_{2}$ has $Sp(1)\times Sp(2)$

as its isotropy subgroup. Thus the required result for the case of $G=$

$Sp(3)$ and $\phi^{c}=\Lambda^{2}(\nu_{3})_{C}$ is obtained.

The smooth actions of $G$ on homology spheres whose linear models
are given by the representations $\rho_{n}\oplus 2\theta,$ $2\rho_{n},$ $(\mu_{n})_{R}\oplus 2\theta$ and $(\nu_{n})_{R}\oplus 2\theta$ in
Table A are regular. We shall also say that the smooth actions of $G$ on
homology spheres are regular if the linear models are given by the liftings
of these representations. Then these actions of regular types have exactly
two orbit types and the G-homology spheres become smooth special G-
manifolds (See 1.3.) whose orbit spaces are two dimensional disks. It is
known that these actions are equivariantly diffeomorphic to their linear
models, the $SO(2m+1)$-actions on $W_{k}^{4n\cdot+1}$ or the $Sp(2)$-actions on $W_{k}^{9}(k$ ;
odd) in the Introduction (see [3], [4] and Chapters V, VI of [2]). So, to
prove our theorem, we have only to investigate smooth actions which
are of different types from the above regular ones. In the later sections,
we shall only treat such smooth actions.

\S 3. Orbit datum.

Throughout this section, let $G$ be one of the three groups $SO(n)$
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$(n\neq 2,4),$ $SU(n)$ or $Sp(n)$ , and let $M$ be a homology sphere with a smooth
action of $G$ modelled on a representation in Table A which is not regular.
By a G-homology sphere modelled on a representation $\phi$ of $G$ , we mean
a homology sphere with the smooth action of $G$ whose linear model is
obtained from the linear action on the representation space of $\phi$ by
restricting to the unit sphere.

As is mentioned in Remark 2.2, we have excluded the representations
of $G$ from Table A which become the liftings of some representations in
Table A. But, the results in this section are also valid for G-homology
spheres modelled on such representations.

Let $B$ be the set of all singular orbits in $M$. As in the proof of
Propositions 2.3, the orbit space $M^{*}$ is a two dimensional disk whose
boundary is $B^{*}$ . In particular, $M$ always has finitely many isolated
singular orbits because $M$ is compact.

Now suppose that $M$ has $c$ isolated singular orbits. Denote by $G/H$

and $G/K_{i}(i=1, \cdots, c)$ a principal orbit and isolated singular orbits, respec-
tively. We may assume that $K>H(i=1, \cdots, c)$ . Let $\nu(G/K_{i})$ be a closed
equivariant tubular neighbourhood of $G/K$ in $M$ for each $i=1,$ $\cdots,$ $c$ .
For the natural projection $p$ of $M$ to $M^{*}$ , put $A=p(\nu(G/K))$ and $z=$

$p(G/K_{i})$ . By renumbering if necessary, we may assume that $\{z_{i}\}$ is
cyclically ordered in $B^{*}$ . The boundary $\partial p^{-1}(A_{i})$ of $p^{-1}(A)$ becomes a G-
manifold with codimension one principal orbits and with two singular
orbits which are non-isolated singular orbits in $M$. Denote these two
singular orbits by $G/L_{j}(j=i-1, i)$ . The $L_{j}(j=i-1, i)$ can be taken to be
$K_{i}>L_{j}>H$. Moreover, the $L_{i}$ may be chosen up to conjugacy in $K_{i}$ so
that $\partial p^{-1}(A_{i})$ is equivariantly diffeomorphic to $M_{l}i-1\bigcup_{1d}M_{l}$,, where $M_{\pi_{j}}$

is the mapping cylinder of the natural projection $\pi_{j}$ of $G/H$ to $G/L_{\dot{f}}(j=$

$i-1,$ $i$), and id indicates the identity map of $G/H$ (see p. 206 of [2]).
For the union of the two mapping cylinders, we have the following lemma
which we need in the proofs of some lemmas later.

LEMMA 3.1. For $j=i-1,$ $i$ , the action of $(N(H)\cap N(L_{j}))/H$ on $M_{\pi_{j}}$

which is induced by the commutative diagram

$gHeG/H\rightarrow^{\pi_{f}}G/L_{j}\ni gL_{\dot{f}}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $[a]e(N(H)\cap N(L_{j}))/H$

$ga^{-1}H\in G/H\rightarrow^{\pi_{f}}G/L_{j}\ni ga^{-1}L_{j}$

is smooth. In particular, the G-manifold $M_{r}$
,-, $\bigcup_{1d}M_{x_{i}}(\approx\partial p^{-1}(A))$ is a

smooth special G-manifold.
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PROOF. Let $G\times_{L_{j}}D^{n_{\dot{J}}}(j=i-1, i)$ be equivariant tubular neighbourhoods
of $G/L_{j}(j=i-1, i)$ in $\partial p^{-1}(A_{i})$ , where $D^{n_{j}}$ is an $n_{j}$-dimensional disk. Then
$M_{\pi_{j}}$ is equivariantly diffeomorphic to $G\times_{Lj}D^{n_{j}}$ , and the action of $(N(H)\cap$

$N(L_{j}))/H$ on $M_{\pi_{\dot{f}}}$ above induces the action of $(N(H)\cap N(L_{j}))/H$ on $G\times_{L_{j}}D^{n_{j}}$

defined by $[g, v]\mapsto[ga^{-1}, v]$ for $[g, v]\in G\times t_{\dot{f}}D^{n_{j}}$ . Let $v_{o}$ be a point in
$S^{n_{j^{-1}}}=\partial D^{n_{j}}$ with $(L_{j})_{v_{0}}=H$. This action is smooth if the map $ h_{a}:S^{n_{j^{-1}}}\rightarrow$

$S^{n_{j}-1}$ defined by $lv_{0}\mapsto(ala^{-1})v_{0}$ is orthogonal, where $l\in L_{j}$ . So, to obtain
the first statement of this lemma, it is sufficient to show that, for each
$[a]\in(N(H)\cap N(L_{j}))/H$, the map $h_{a}$ is orthogonal. To do this, we may
assume that $H$ is one of the principal isotropy subgroups in Table A and
that $L_{j}$ is one of the isotropy subgroups in Table A which correspond to
non-isolated singular orbits in $M$. Moreover, from Table A and the slice
representation of $L_{j}$ , we see that it is sufficient to investigate G-homology
spheres $M$ modelled on $S^{2}\rho_{3},$ $Ad_{S0(6)}\oplus\theta,$ $(\mu_{4})_{R}\oplus\phi_{2}\oplus\theta,$ $(\Lambda^{2}\mu_{f})_{R}\oplus\theta$ and $\phi$ such
that $\phi^{C}=\Lambda^{2}(\nu_{3})_{C}$ . The other case is reduced to one of these five cases.
And, for these five cases, by describing the map $h_{a}$ explicitly, we can
show that $h_{a}$ is orthogonal. This is a straightforward verification for
any case. So we only give here the actual proof for the last case, that
is, for an $Sp(3)$-homology sphere $M$ modelled on $\phi$ such that $\phi^{\iota}=\Lambda^{2}(\nu_{8})_{C}$ .
The other cases are treated similarly.

From Table $A$ , we may put $H=Sp(1)^{8}$ and $L_{j}=Sp(1)\times Sp(2)$ . Then
we have $(N(H)\cap N(L_{j}))/H=eH\cup bH$, where $e$ is the identity element and
$b=diag(1,$ $\left\{\begin{array}{l}01\\10\end{array}\right\})$ . And a closed equivariant tubular neighbourhood of $G/L_{j}$

in $\partial p^{-1}(A_{i})$ is equivariantly diffeomorphic to $(Sp(3)/Sp(1))\times_{Sp(2)}D^{6}$ , where
$Sp(2)$ acts on $D^{6}$ by the isotropy representation of the homogeneous space
$SU(4)/Sp(2)$ at the base point. Thus, as in the proof of Proposition 2.3,
we may put $v_{o}=\pi(w_{o})$ , where $w_{0}=diag(1/2)(\sqrt{-1}, \sqrt{-1}, -\sqrt{-1}, -\sqrt{-1})$

and $\pi$ is the natural projection of $L(SU(4))$ to $L(SU(4))/L(Sp(2))$ . Since
$b$ is in $L_{j}=Sp(1)\times Sp(2)$ , it is easily verified that, for $leL_{j},$ $(blb^{-1})v_{\Phi}=$

$-b(lv_{0})$ holds. This implies that $h_{b}$ is orthogonal. Thus, for an $Sp(3)-$

manifold $M$ modelled on the above representation $\phi$ , the first statement
of this lemma is obtained.

The second statement immediately follows from the first $statement_{r}$

because the other conditions to be a smooth special G-manifold (see 1.3)
are clearly satisfied. Q.E.D.

Next let $\{B_{i}\}(i=1, \cdots, c)$ be a set of subsets of $M^{*}$ which satisfies
the following conditions: $\{B_{i}\}(i=1, \cdots, c)$ do not mutually intersect, each
$B_{i}$ is adjacent to $A$ and $A_{i+1}(A_{0+1}=A_{1})$ and the space $(\bigcup_{i=1}^{\iota}A)\cup(\bigcup_{i\triangleright 1}^{c}B)$

becomes a neighbourhood of $\partial M^{*}$ . See Fig. 1 below. Then $p^{-1}(B_{i})$ is a



298 AIKO NAKANISHI

trivial $M_{z}$ -bundle over $B_{i}\cap\partial M^{*}$ which is diffeomorphic to the unit interval
$I=[0,1]$ . We write by $X$ the complement of Int $((\bigcup_{i=1}^{c}A_{i})\cup(\bigcup_{i=1}^{0}B_{i}))$ in
$M^{*}$ . The orbit space $M^{*}$ is illustrated as follows:

$M^{*}$

FIGURE. 1.

By using the above facts, we shall next define the orbit datum of $M$

which characterizes the action of $G$ on $M$. To do this we first consider
the following condition for a set of isotropy subgroups. The notations
in the Condition $P$ below are the same as those above.

CONDITION P. Fix a principal isotropy subgroup $H$. We say that
a set of subgroups $H,$ $K_{i},$ $L(i=1, \cdots, c)$ of $G$ satisfies the Condition $P$

if, for the given $H$, the subgroups $\{K_{i}\},$ $\{L_{i}\}$ satisfy the following con-
ditions:

(i) $K,$ $L>H,$ $K_{i}>L_{i},$ $L_{-1}$ for $i=1,$ $\cdots,$ $c$ , where $L_{0}=L_{t}$ ,
(ii) $\partial p^{-1}(A_{i})\approx M_{\pi_{i-1}}\bigcup_{1d}M_{\pi_{i}}$ for $i=1,$ $\cdots,$ $c$ , and $\pi_{0}=\pi_{0}$ ,
(iii) $p^{-1}(B)\approx M_{i}\times I$ for $i=1,$ $\cdots,$ $c$ , where $I=[0,1]$ ,
(iv) $p^{-1}(X\cup(\bigcup_{i=1}^{\epsilon}B))\approx(G/H\times X)U_{1d}(U_{=1}^{\iota}M_{\pi_{i}}\times I)$ .
We recall here that every equivariant map of a coset space $G/A$ to

itself is of the form $\phi_{a}$ which is defined by $\phi_{a}(gA)=ga^{-1}A$ for some
$a\in N(A)$ (see Chapter I of [2]).

LEMMA 3.2. Let $M$ be a G-homology sphere modelled on a represen-
tation in Table A in \S 2 which is not regular. Then, for a principal
isotropy subgroup $H$, we can always choose a set of isotropy subgroups
$K,$ $L_{i}(i=1, \cdots, c)$ satisfying the Condition $P$ , where $c$ is the number of
the isolated singular orbits.

PROOF. Fix a principal isotropy subgroup $H$ in the conjugacy $cla8S$ .
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Case 1. Suppose that $N(H)/H$ is finite. It is clear that $p^{-1}(X)$ is
equivariantly diffeomorphic to $G/H\times X$. Thus we have

$p^{-\iota}(X\cup(\bigcup_{i=1}^{c}B))\approx(G/H\times X()\phi_{1},..\cup\psi_{t})(\bigcup_{i=1}^{c}p^{-1}(B_{i}))$

where $\psi_{i}$ is an equivariant diffeomorphism of $G/H\times(X\cap B_{i})$ to $p^{-1}(X\cap B)$ .
First we choose arbitrarily subgroups $L_{0}$ and $K_{1}$ so that $p(G/K_{1})=z_{1}$ ,
$p(G/L_{0})=\partial M^{*}\cap B_{0}\cap A_{1},$ $L_{0}>H,$ $K_{1}>H$ and $K_{1}>L_{0}$ . As is mentioned above,
for given $L_{0}$ and $K_{1}$ , we can choose $L_{1}$ so that $K_{1}>L_{1}>H$ and that
$\partial p^{-1}(A_{1})$ is equivariantly diffeomorphic to $M_{\pi_{0}}\bigcup_{1d}M_{\pi_{1}}$ . This implies that
we may put $\psi_{1}=the$ identity map when $p^{-1}(B_{1})$ is regarded as $M_{\pi_{1}}\times I$.
Next choose $K_{2}$ so that $p(G/K_{2})=z_{2},$ $K_{2}>H$ and $K_{2}>L_{1}$ . Then we can also
choose $L_{2}$ so as to satisfy i), ii) and iii) of the Condition P. And hence,
we may put $\psi_{2}=the$ identity map. In this way, we can choose a set
$\{L_{0}, K_{1}, \cdots, K_{c}, L_{\delta}\}$ of subgroups of $G$ which satisfies $(i)-(iii)$ except the con-
dition of $L_{0}=L_{0}$ . In general, $L_{0}\neq L_{0}$ , but, in our case, any equivariant map
between $M_{ir_{0}}$ and $M_{\pi}$ must be the identity map; because $p^{-1}(\partial X)$ is a trivial
G/H- bundle and $N(H)/H$ is finite. This implies that $L_{0}=L_{o}$ and $\pi_{0}=\pi_{0}$ .
And hence, we may put $\psi_{i}=the$ identity map for all $i\in\{1, \cdots, c\}$ , namely
(iv) of the Condition $P$ holds. Thus the subgroups $H,$ $K_{i},$ $L_{i}(i=1, \cdots, c)$

which are obtained by the above way, satisfy the Condition P.
Case 2. Suppose that $N(H)/H$ is not finite. In this case, $M$ is

modelled on one of the representations, $(\Lambda^{2}\mu_{b})_{R}\oplus\theta,$ $(\Lambda^{2}\mu_{7})_{R}$ or $(\mu_{4})_{R}\oplus\phi_{2}\oplus\theta$

in Table A. By the same way as in Case 1, we obtain a set $\{L_{0},$ $K_{1},$ $L_{1}$ ,. . ., $L_{o}$} which satisfies $(i)-(iii)$ of the Condition $P$ except the condition of
$L_{0}=L_{0}$ . Regard $\partial X\cap B_{i}$ as $I$ and $\psi_{i}$ in Case 1 as an equivariant map of
$G/H\times I$ to itself. If $L_{0}=L_{\iota}$ holds, then, for all $i,$ $\psi_{i}|G/H\times\{0\}$ and
$\psi_{i}|G/H\times\{1\}$ can be taken as the identity maps of $G/H$. Then, we may
put $\psi_{i}=the$ identity map, since $\psi_{i}(eH\times I)\subset(N(H)/H)^{0}\times I$. Thus (iv) of
the Condition $P$ holds. So we have only to show that we can choose a
set of subgroups $\{L_{0}, K_{1}, \cdots, L_{\epsilon}\}$ so that $L_{0}=L_{c}$ .

Any equivariant map $f$ of $M_{\pi_{0}}$ to $M_{\pi_{c}}$ is given by

$f(gH, t)=(ga_{t}^{-1}H, t),$ $[a_{t}]\in(N(H)/H)^{0}$ for $t\neq 1$ ,
$f(gL_{0},1)=(ga_{1}^{-1}L_{0},1),$ $[a_{1}]e(N(H)/H)^{0}$ ,

since $p^{-1}(\partial X)$ is a trivial $G/H$-bundle over $\partial X$. Thus we have $a_{1}L_{0}a_{1}^{-1}=$

$L_{\iota}$ . For each smooth action modelled on one of the representations,
$(\Lambda^{2}\mu_{b})_{R}\oplus\theta,$ $(\Lambda^{2}\mu_{7})_{R}$ or $(\mu_{4})_{R}\oplus\phi_{2}\oplus\theta$ , we may put $(H, L_{0})=(SU(2)^{2}, SU(2)\times$

$SU(3)),$ $(SU(2)^{3}, SU(2)^{2}\times SU(3))$ or $(SU(2), Sp(2))$ , respectively (see Table A).
If $(H, L_{0})$ takes one of the first two types, then we have $N(H)^{0}\subset N(L_{0})$ .
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Therefore, for these cases, $L_{0}=L_{0}$ holds. Next put $(H, L_{0})=(SU(2), Sp(2))$

(in this case, $N(H)^{0}$ is not contained in $N(L_{0})$). From Table $A$ , it follows
that $K_{1}=G=SU(4)$ . Since the slice representation at $x$ with $G_{g}=K_{1}$ is
$(\mu_{4})_{R}\oplus\phi_{2}$ , we have $L_{1}\in(SU(3))$ . Put $L_{1}^{\prime}=SU(3)$ . And let $M_{\pi_{1}^{\prime}}$ be the
mapping cylinder of the projection $\pi_{1}^{\prime}:G/H\rightarrow G/L_{1}^{\prime}$ . Then $\partial p^{-1}(A_{1})$ is equi-
variantly diffeomorphic to $M_{\pi_{0}}\cup\phi_{a}M_{l}i$ ’ where $\phi_{a}$ is the equivariant map of
$G/H$ to itself defined by $\phi_{a}(gH)=ga^{-1}H$ for some a $eN(H)$ . Notice here
that every element in $N(H)$ is written as $bd$ for $b\in S(U(1)‘)$ and $de$

$SU(2)^{2}$ , and that $S(U(1)^{4})\subset N(SU(3))$ and $SU(2)^{2}\subset N(Sp(2))$ . So, taking $a$

as $bd$ , we have the following commutative diagram,

$gL_{0}eG/L_{0}\leftarrow^{\pi_{0}}G/H\rightarrow^{\phi_{a}}G/H\rightarrow^{\pi_{1}^{\prime}}G/L_{1}\ni gL_{1}$

$\downarrow$ $\downarrow\phi_{d}$ $\downarrow\phi_{d}$

$id$

$\downarrow\phi_{b}-1\pi_{1}$
$I^{\phi_{b}-1}$ $\downarrow$

$gd^{-1}L_{0}\in G/L_{0}\leftarrow^{\pi_{0}}G/H\rightarrow G/H\rightarrow G/Li\ni gbL_{1}^{\prime}$ .
Thus, from Lemma 3.1, we see that $\partial p^{-1}(A_{i})$ is equivariantly diffeomorphic
to $M_{\pi_{0}}U_{1d}M_{l\Gamma}i$ Hence we may assume that $L_{1}=SU(3)$ . For these $H,$ $L_{0}$ ,
$K_{1},$ $L_{1}$ , we choose a set of subgroups $\{L_{0}, K_{1}, L_{1}, \cdots, L_{0}\}$ by the same way
as in Case 1. Now suppose that $L_{0}\neq L_{0}$ . Since $L_{0}$ equals $b’ L_{0}b^{\prime-1}$ for some
$b^{\prime}eS(U(1)^{4})(\subset N(SU(3)))$ , we also have the following commutative diagram,

$G/L_{0}\leftarrow^{\pi_{0}}G/H\rightarrow^{id}G/H\rightarrow^{\pi_{1}}G/L_{1}$

$\downarrow\phi_{b^{\prime}}$ $\downarrow\phi_{b^{\prime}}$

id
$\downarrow\phi_{b^{\prime}}\pi_{1}$

$\downarrow\phi_{b^{\prime}}$

$G/L_{0}\leftarrow^{\pi_{\epsilon}}G/H\rightarrow G/H\rightarrow G/L_{1}$ .
Thus $\partial p^{-1}(A_{1})$ is equivariantly diffeomorphic to $M_{n}\bigcup_{1d}M_{\pi_{1}}$ . And hence,
by replacing $L_{0}$ by $L_{e}$ , we obtain a set of subgroups $\{H, K_{1}, L_{1}, \cdots, K_{0}, L_{o}\}$

which satisfies the Condition P. Q.E.D.

DEFINITION. By an orbit datum, we shall mean the sequence of
isotropy subgroups $(H, K_{1}, L_{1}, \cdots, K_{0}, L_{0})$ satisfying the Condition P.

The Condition $P$ implies that the classification of G-homology spheres
with the same linear model and with the same orbit datum depends only
on the choice of attaching maps of $\partial p^{-1}(A)(i=1, \cdots, c)$ .

\S 4. The relation between orbit data and G-homology spheres.

Let $G$ be a compact, connected, simple, classical Lie group as in
\S \S 2, 3. And we also assume that every G-homology sphere in this section
is modelled on a representation in Table A which is not regular. Our
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purpose in this section is to show that all G-homology spheres with the
same linear model and with the same orbit datum are equivariantly
diffeomorphic. By the reason mentioned in the last paragraph in \S 3, we
shall first investigate attaching maps of $\partial p^{-1}(A_{i})$ (the notation $p^{-1}(A_{i})$ is
the same as in \S 3). Note that an attaching map of $\partial p^{-1}(A_{i})$ is an equi-
variant diffeomorphism of $\partial p^{-1}(A_{i})$ inducing the identity map on the orbit
space $\partial p^{-1}(A_{i})/G$ . That is, the set of attaching maps of $\partial p^{-1}(A_{i})$ is equal
to the set $D\ddagger ffeo_{I}^{o}(\partial p^{-1}(A_{i}))$ in 1.3. $I$ indicates the unit interval $[0,1]$

which is diffeomorphic to $\partial p^{-1}(A_{i})/G$ .
Let an attaching difeomorphism of $\partial p^{-1}(A_{i})$ mean an equivariant dif-

feomorphism in $Diffeo_{I}^{o}(\partial p^{-1}(A_{i}))$ . In Lemmas 4.4, 4.5, 4.7 and 4.8, we shall
show that every attaching diffeomorphism of $\partial p^{-1}(A_{i})$ can be extended to
$p^{-1}(A_{i})$ . To do this, we need the following Lemmas 4.1, 4.2 and 4.3. The
notations $H,$ $K_{i},$ $L_{i}$ , etc. are the same as those in \S 3.

The results in this section are also valid for G-homology spheres
modelled on liftings of representations in Table A.

LEMMA 4.1. If $N(H)/H$ is finite, then there is $a$ one-one correspon-
dence between $Diffeo_{l}^{o}(\partial p^{-1}(A_{i}))$ and $(N(H)\cap N(L_{i})\cap N(L_{i-1}))/H$.

PROOF. The space $\partial p^{-1}(A_{i})$ is equivariantly diffeomorphic to the
space $G/H\times I$ with $G/H\times\{0\}$ callapsed to $G/L_{l-1}$ , and with $G/H\times\{1\}$ to
$G/L_{i}$ . We denote this space by $(G/H\times I)/\sim$ . Since $N(H)/H$ is finite,
every attaching diffeomorphism of this space (that is, of $\partial p^{-1}(A_{i})$ ) is
naturally induced by the equivariant map $\overline{f}_{a}$ of $G/H\times I$ to itself which
is defined by

$\overline{f}_{a}(gH, t)=(ga^{-1}H, t)$ for $[a]\in(N(H)\cap N(L_{i})\cap N(L_{-1}))/H$ .
Thus the correspondence of $\overline{f}_{a}$ to $[a]$ gives an injective correspondence
from $DIffeo_{I}^{o}(\partial p^{-1}(A_{i}))$ to $(N(H)\cap N(L_{i})\cap N(L_{i-1}))/H$. The surjectivity of
this correspondence follows from Lemma 3.1. Q.E.D.

Let $f_{a}$ be the attaching diffeomorphism of $\partial p^{-1}(A_{i})$ given by the map
$f_{a}$ in the proof of the above lemma. From 1.2, $p^{-1}(A_{i})$ is equivariantly
diffeomorphic to $G\times_{K_{i}}S$ , where $S$ is a slice at $x$ with $G_{x}=K$ . Thus the
map $f_{a}$ naturally induces the equivariant diffeomorphism of $G\times_{K_{i}}\partial S$. We
also denote it by the same notation $f_{a}$ .

LEMMA 4.2. Suppose that $N(H)/H$ is finite. Let $ a\in N(H)\cap N(L_{i})\cap$

$N(L_{i-1})$ . If $N(H)\cap N(L_{i})\cap N(L_{i-1})\subset N(K_{i})$ , then $f_{a}$ maps $\partial S$ to $\partial S^{\prime}$ , where
$S$ and $S^{\prime}$ are slices at $x$ and $a^{-1}x$ with $G_{x}=G_{a^{-1}x}=K_{i}$ , respectively.
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PROOF. Let $\Phi$ be an equivariant diffeomorphism of $(G/H\times I)/\sim$ to
$G\times_{K_{i}}\partial S$. Then we have

$\Phi((K\sqrt H\times I)/\sim)=\partial S$ and
$\Phi(f_{a}((K/H\times I)/\sim))=\Phi((Ka^{-1}/H\times I)/\sim)=\Phi((a^{-1}K/H\times I)/\sim)$

$=a^{-1}\Phi((K/H\times I)/\sim)=a^{-1}\partial S=\partial S’$ . Q.E.D.

Let $(G_{1}, G_{2}, \cdots, G_{k})$ and $(G_{1}, G_{2}, \cdots, G_{k}^{\prime})$ be sets of ordered subgroups
of $G$ . We say that $(G_{1}, G_{2}, \cdots, G_{k})$ and $(G_{1}, G_{2}, \cdots, G_{k}^{\prime})$ are simultaneously

TABLE $B$
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conjugate, if there exists an element $g$ in $G$ such that $g^{-1}Gg=G_{i}^{J}$ for
all $i$.

LEMMA 4.3. Let $M$ be a G-homology sphere moddled on a represen-
$tat\dot{w}n$ in Table A $wh\dot{w}h$ is not regular. Then, for a principal isotropy
subgroup $H$ in the following Table $B$, all triples $(K_{i}, L_{u}L_{i-1})$ in the TabZe
$B$ satisfy i) and ii) of the Condition $P$ in \S 3. Conversely, every tride
$(K_{u}L, L_{i-1})$ which satisfies (i) and (ii) of the Condition $P$ for $H$ above,
is simultaneously conjugate to one in the Table B.

We only prove Lemma 4.3 for $M$ modelled on $Ad_{S0(6)}$ ; because the
proof for this case is typical and the others are similar.

PRCOF. Suppase that $(K, L, L_{-1})$ satisfies \langle $i$) of the Condibion P.
Let $S$ be a sliee at $x$ with $G_{x}=K_{i}$ . And let $N_{\pi_{j}}(j=i-1, i)$ be the mapping
eylinders of the projections $\pi_{j}:K_{i}/H\rightarrow K_{i}/L_{j}(j=i-1, i)$ . If $\partial S$ is $K_{i}-\Re ui-$

variantly diffeomorphic to $N_{\pi_{i-1}}U_{ld}N_{\pi_{i}}$ , then $G\times_{K_{i}}\partial S$ ig equivariantly
$diff\infty morph\{ic$ to $M_{\pi_{l-1}}U_{ld}M_{\pi_{i}}$ , namely, $(K_{i}, L, L_{i-1})$ satisfies (i) and (ii) of
the Condition P.

Let $M$ be modelled on the representation $Ad_{S0(6)}$ of SO(6). From
Proposition 2.3, we have $K_{i}\in(SO(2)\times SO(4))$ or $K_{i}\in(U(3))$ . Put $K_{i}=U(3)$ .
Since the sliee representation at $x$ with $G_{x}=K_{i}$ is $Ad_{U(l)}-\theta$ , we can
see that $L_{i}$ and $L_{i-1}$ are conjugate to $U(2)\times U(1)$ . Put $L_{i}=U(2)\times U(1)$

and $L_{i-1}=U(1)\times U(2)$ . Then $\partial S$ is $K_{i}$-equivariantly diffeomorphic to
$N_{\pi_{i-1}}\bigcup_{\phi_{a}}N_{\pi_{l}}$ , where $\phi_{a}$ is a $K_{i}$-equivariant map of $K_{i}/H$ to itself which
is given by $\phi_{a}(kH)=ka^{-q}H$ for some la] $e(N(H)\cap K_{i})/H$. It is easily
verified that

$(N(H)\cap K_{i})/H=eH\cup b_{1}H\cup b_{2}H\cup b_{3}H\cup b_{1}b_{2}H\cup b_{1}b_{3}H$ ,

where $b_{1}=diag([0110]1),$ $b_{2}=diag(1,$ $[_{1}^{0}01J)$ and $b_{3}=\left\{\begin{array}{lll}0 & & l\\1 & 1 & 0\end{array}\right\}$ as complex

matrices of order 3. Since $b_{1}\in N(L_{i})$ and $b_{2}\in N(L_{i-1})$ , we can see that
$N_{\pi_{4-1}}\bigcup_{\phi_{b_{1}}}N_{\pi_{i}},$ $N_{\pi_{1-l}}\bigcup_{ib_{2}}N_{\pi_{i}}$ and $N_{f\iota_{i-1}}\bigcup_{\phi_{b_{1}b_{2}}}N_{\pi_{i}}$ are $K_{i}$-equivariantly diffeo-
morphic to $N_{\pi_{i-1}}\bigcup_{1d}N_{\pi_{i}}$ (see Lemma 3.1 and the diagrams in the proof of
Lemma 3.2). Similarly both $N_{\pi_{i-1}}\bigcup_{b_{3}}N_{x_{i}}$ and $N_{\pi-1}\bigcup_{b_{1}b_{3}}N_{\pi_{i}}$ are $K_{c^{-}}equi-$

variantly diffeomorphic to $N_{\pi},$ $\bigcup_{1d}N_{\pi_{i}}$ ; because $b_{3}L_{i-1}b_{\overline{a}}^{1}=L_{i}$ holds. But,
by the Mayer-Vietoris exact sequence for the triad $(N_{\pi_{i}}U_{ld}N_{\pi_{i}}, N_{\pi_{i}}, N_{\pi_{i}})$ ,
we see that $N_{\pi_{i}}\bigcup_{1d}N_{\pi_{i}}$ is not diffeomorphic to $\partial S$ . Thus $\partial S$ is $K_{2^{-}}equi-$

variantly diffeomorphic to $N_{\pi_{i-1}}\bigcup_{1d}N_{\pi_{i}}$ . And hence, $(K_{i}, L_{i}, L_{i-1})=(U(3)$ ,
$U(2)\times U(1),$ $U(1)\times U(2))$ satisfies (i) and (ti) of the Condition P. For $K_{i}=U(3)$,
suppose that another triple $(K_{i}, L_{i}^{\prime}, L_{i-1}^{\prime})$ satisfies (i) and (ii) of the Con-
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dition P. Then $N_{\pi-1}\bigcup_{1d}N_{l}$, and $N_{l^{\prime}}i-1\bigcup_{1d}N_{*:}$ are equivariantly diffeomoprhic.
Thus we have $L_{\dot{f}}^{\prime}=aL_{\dot{f}}a^{-1}(j=i-1, i)$ for some $[a]e(N(H)\cap K)/H$. Also,
taking another $K_{i}^{\prime}$

‘ in $(U(3))$ , it follows from the above results that a
triple $(K_{i}^{\prime\prime}, L^{\prime\prime}, L_{-1})$ satisfying (I) and (ii) of the Condition $P$ must be
of the form $(gK_{i}g^{-1}, gLg^{-1}, gL_{i-1}g^{-1})$ for some $g\in G$ . When $ K\in(SO(2)\times$

$SO(4))$ , we also have the required result by the same way as in the case
of $K_{i}\in(U(3))$ .

Similarly we can prove this lemma for the other cases, omitting the
details.

Now suppose that $N(H)/H$ is finite. In this case, from Lemma 4.1,
every attaching diffeomorphism of $\partial p^{-1}(A_{i})$ is of the form $f_{a}$ for $[a]\in$

\langle$N(H)\cap N(L_{i})\cap N(L_{i-1}))/H$. Also, from Lemma 4.3, to prove the existence
of an extension of $f_{a}$ to $p^{-1}(A)$ , it is sufficient to prove it for the triples
in Table B. For the case of $2-b,$ $4,6,7$ or $8-b$ in Table $B$ , we can take
the identity map only as an attaching diffeomorphism of $\partial p^{-1}(A)$ , since
\langle$N(H)\cap N(L)\cap N(L_{i-1}))=H$. So we shall show that $f_{a}$ has an extension
to $p^{-1}(A_{i})$ for the other triples in Table B. Here the extension of $f_{l}$

means an equivariant diffeomorphism of $p^{-1}(A)$ .
In the proofs of the following lemmas, the symbols $i$ and $j$ mean

the imaginary unit and the quarternionic unit such that $i^{2}=j^{2}=-1$ ,
respectively, excepting those appeared as suffices.

LEMMA 4.4. Suppose that a triple $(K, L, L_{i-1})$ is one of those in
1, $2-a,$ $3-b,$ $5-b$ and $8-a$ . Then, for each $[a]\in(N(H)\cap N(L)\cap N(L_{i-1}))/H$,
the map $f_{a}|\partial S$ is a linear map, where $S$ is a slice at $x$ with $G_{x}=K_{i}$ . In
particular, $f_{l}$ can be extended to $p^{-1}(A_{i})$ .

PROOF. For these cases, it is easily verified that $ N(H)\cap N(L_{i})\cap$

$N(L_{i-1})\subset K_{i}$ . Therefore, from Lemma 4.2, every $f_{a}$ maps $\partial S$ onto $\partial S$.
Case of 1. In this case, we have $(N(H)\cap N(L_{i})\cap N(L_{i-1}))/H=eH\cup bH$,

where $e=the$ identity matrix and $b=diag(C, C, 1)$ for $C=diag(1, -1)$ . So
an attaching diffeomorphism of $\partial p^{-1}(A_{i})$ is either the identity map or $f_{b}$ .
Let $\Phi$ be the equivariant diffeomorphism in the proof of Lemma 4.2. Then,
for $x=\Phi([eH, t])e\partial S$ , we have $f_{b}(x)=b^{-1}x$ . Since the $K$ -action on $S$ is
$Ad_{S0(b)}$ and $x$ is in $F(H, \partial S)=F(T, \partial S),$ $x$ can be written as the matrix $X$;
$X=diag(D(d_{1}), D(d_{2}),$ $0$)

$,$

$D(d)=\left\{\begin{array}{ll}0 & -d\\d & 0\end{array}\right\},$ $d\in R(i=1,2)$ , where $d_{1}=d_{2}$ if
$t=0$ , and $d_{2}=0$ if $t=1$ (see Chapter 4 of [1]). Thus we $havef_{b}(x)=b^{-1}x=$

$b^{-1}Xb=-X=-x$ and $f_{b}(gx)=gf_{b}(x)=g(-X)g^{-1}=-gx$ for $geK_{i}(=SO(5))$ .
This shows that $f_{b}|\partial S$ is linear, since every element in $\partial S$ is of the form
$gx$ for some $g\in K$ .
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Case of $2-a$ . Instead of $Ad_{S0(6)}$ , we consider the lifting $Ad_{SU(4)}$ to $SU(4)$

$to\sim$ simplify the computation. Then, $H(=T)$ corresponds to a maximal torus
$H(=T)$ of $SU(4)$ . And the triple $(K_{i}, L_{i}, L_{i-1})$ in $2-a$ corresponds to the
triple $(\tilde{K}_{i},\tilde{L}_{i},\tilde{L}_{i-1})=(S(U(2)^{2}), S(U(1)^{2}\times U(2)),$ $S(U(2)\times U(1)^{2}))$ . The required
result for the triple $(K_{i}, L_{i}, L_{i-1})$ are deduced from the following results
for the triple $(K_{i},\tilde{L}_{i},\tilde{L}_{i-1})$ . We have $(N(\tilde{H})\cap N(\tilde{L}_{i})\cap N(\tilde{L}_{i-1}))/H=eH\cup$

$b_{1}H\cup b_{2}H\cup b_{3}H$, where $b_{1}=diag(\left\{\begin{array}{l}10\\01\end{array}\right\},$ $\left\{\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right\}),$ $b_{2}=diag(\left\{\begin{array}{ll}0 & 1\\1 & 0\end{array}\right\},$ $\left\{\begin{array}{ll}0 & 1\\1 & 0\end{array}\right\})$ and
$b_{3}=b_{1}b_{2}$ . Since the $K_{i}$-action on $S$ is $((Ad_{U(2)}-\theta)\otimes\theta\oplus\theta\otimes(Ad_{U(2)}-\theta))|S(U(2)\times$

$U(2)),$ $x=\Phi([eH, t])$ corresponds to the matrix $X;X=diag(X_{1}, X_{2}),$ $X_{j}=$

$diag(d_{j}i, -d_{j}i),$ $d_{j}\in R(j=1,2)$ . And we have the following relation for $g=$

$diag(g_{1}, g_{2})eS(U(2)\times U(2)):f_{b_{1}}(gXg^{-1})=(gb_{1}^{-1}Xb_{1}g^{-1})=diag(g_{1}X_{1}g_{1}^{-1}, -g_{2}X_{2}g_{2}^{-1})$ ,
$f_{b_{2}}(gXg^{-1})=-gXg^{-1}$ and $f_{b_{3}}(gXg^{-1})=diag(-g_{1}X_{1}g_{1}^{-1}, g_{2}X_{2}g_{2}^{-1})$ . Thus $f_{b_{j}}|\partial S$ is
linear for $j=1,2$ and 3.

Case of $3-b$ . This case is reduced to the case of 1, since we have
$G\times_{K_{i}}\partial S=(SO(7)/SO(2))\times_{S0()}\partial S$ , where $SO(5)$ acts on $S$ by $Ad_{S0(6)}$ .

Case of $5-b$ . This case is also reduced to the case of 1 by the same
reason as in the case of $3-b$ .

Case of $8-a$ . In this case, the action $\psi$ of $K_{i}=Sp(2)^{2}$ on a slice $S$

(diffeomorphic to a 10-dimensional disk) is given by $\psi=\psi_{1}\oplus\psi_{2}$ , where $\psi_{\dot{f}}^{c}=$

$\Lambda^{2}(\nu_{2})_{C}-\theta(j=1,2)$ . And we have $(N(H)\cap N(L_{t})\cap N(L_{i-1}))/H=eH\cup b_{1}H\cup$

$b_{2}HUb_{3}H$, where $b_{1}=diag(1,1,$ $\left\{\begin{array}{l}01\\l0\end{array}\right\}),$ $b_{2}=diag(\left\{\begin{array}{l}0l\\10\end{array}\right\},$ $1,1)$ and $b_{3}=b_{1}b_{2}$ .
Now consider the map $s:I=[0,1]\rightarrow\partial S$ defined by $s(t)=\Phi([eH, t])$ . Then
we have $(K_{i})_{(0)}=L_{i-1}=Sp(1)^{2}\times Sp(2)$ and $(K)_{(1)}=L_{i}=Sp(2)\times Sp(1)^{2}$ . Re-
garding $s(t)$ as a vector in $S,$ $s(t)$ is described as $ s(O)\alpha+s(1)\beta$ for $\alpha,$ $\beta\in$

$R$ . And each vector $w$ in $\partial S$ is of the form $ gs(t)=g_{1}(s(0))\alpha+g_{2}(s(1))\beta$ for
some $g=(g_{1}, g_{2})\in Sp(2)\times Sp(2)=K_{i}$ On the other hand, if we put $b_{j}=(b_{j,1}$ ,
$b_{j,2})\in Sp(2)\times Sp(2)$ , then we have $ f_{b_{j}}(s(t))=b_{\dot{f}}^{-1}s(t)=b_{j,1}^{-1}(s(0))\alpha+b_{j.2}^{-1}(s(1))\beta$ ,
$b_{\dot{f}.1}^{-1}(s(0))=\pm s(0)$ and $b_{j,2}^{-1}(s(1))=\pm s(1)$ . Because both actions $\psi_{1}$ and $\psi_{2}$ on
the unit spheres are transitive, $N(Sp(1)^{2})/Sp(1)^{2}$ is isomorphic to $Z_{2}$ and
$b_{j,1},$ $b_{j,2}\in N(Sp(1)^{2})$ , where $N(Sp(1)^{2})$ is the normalizer of $Sp(1)^{2}$ in $Sp(2)$ .
Thus for $g=(g_{1}, g_{2})\in K_{i}$ , we have $ f_{b_{j}}(gs(t))=gf_{b_{j}}(s(t))=\pm g_{1}(s(0))\alpha\pm g_{2}(s(1))\beta$ .
This shows that $f_{b_{j}}|\partial S$ is a linear map.

The second statement follows immediately from the first statement;
because a linear map $f_{a}|\partial S$ can be extended to $S$ and $p^{-1}(A_{i})$ is equivar.
iantly diffeomorphic to $G\times_{K_{i}}S$. Q.E.D.

LEMMA 4.5. Suppose that a triple $(K_{i}, L_{i}, L_{i-1})$ is one of those in
$3-a,$ $3-c,$ $5-a$ and $5-c$ . Then, for each $[a]\in(N(H)\cap N(L_{i})\cap N(L_{i-1}))/H$, the
map $f_{a}$ can be extended to $p^{-1}(A_{i})$ .

PROOF. For these cases, it is verified that $ N(H)\cap N(L_{i})\cap N(L_{i-1})\subset$
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$N\langle K_{i}$) but $N\langle H$) $\cap N(L)\cap N(L_{l-1})\not\in\&\cdot$ Put $x=\Phi([eH, t])$ (see the proof of
Lemma 4.4). And let $S$ and $S’ k$ slices at $x$ and $u^{-1}x$, respectively.
From Lemma 4.2, $f_{\iota}$ maps $\partial S$ to $\partial S^{\prime}$ . Such $f_{l}|\partial S$ is given by the com-
position of the following two maps:

$h:\partial S\rightarrow\partial S$ defined by $h(gx)=aga^{-1}x$ for $g\in K$ ,
$L_{a}:\partial S\leftrightarrow\partial S^{\prime}$ defined by $L.(v)=a^{-1}v$ for $ve\partial S$ .

$L_{a}$ clearly has the $axRnsion\tilde{L}_{t}$ such that $L_{a}(w)=a^{-1}w$ for $weS$. So, if
$h$ is a linear map, then $f_{l}|\delta S$ can be extended to $S$, and hence $f_{a}$ is
extended to $p^{-1}\langle A_{i}$). When a $eK_{i}$ , the proof of this lemma is given by
the same way as in Lemma 4.4.

Case of $6-c$ . In this case, we have $(N(H)\cap N(L)\cap N(L_{i-1}))/H=eHu$

$bH$, where $b=diag(j, j, j)(\not\in U(3)=K)$ . And $bgb^{-1}=ff$ holds for each $ g\in$

$K_{i}$ , where $\theta$ is the tonjugate matrix of $g$ . Let $X$ be a matrix diag $(d_{1}i$ ,
$d_{2}i,$ $d_{3}i$), wheoe $d_{j}\in R$ and $d_{1}+d_{2}+d_{S}=0$ . Then $x$ is identified with $X$,
since the action of $K_{i}$ on $S$ is given by $Ad_{U(3)}-\theta$ . And $gx$ is identified
with the matrix $gXg^{-1}$ . It is clear that $\overline{g}x$ corresponds to $-(\overline{gXg^{-1}})$ . Thus
the above map $h$ is a linear map.

Case of $3-c$ . In this case, we have $(N(H)\cap N(L)\cap N(L_{i-1}))/H=eH\cup$

$bH$, where $b=d\grave{1}ag(C, C, C, -1)(\not\in K_{i}=U(3)\subset SO(7)),$ $C=diag(1, -1)(\in 0(2))$ .
And $bgb^{-1}=\overline{g}$ holds for each $g\in K$ . So the rest of the proof is similar
to that of the case of $ 5-\alpha$ We omit the detail.

Case of $5-a$. In this case,, we have $(N(H).\cap N(L)\cap N(L_{i-1}))/H=eHU$

$b_{1}H\cup b_{2}H\cup b_{S}HUb{}_{\iota}H\cup b_{1}b_{4}H\cup b_{2}b{}_{\iota}H\cup b_{8}b_{4^{\prime}}H$, where $b_{8}=b_{2}b_{1},$ $b_{1}=diag(1,1, j)$ ,
$b_{2^{-}}=diag(C, 1),$ $C=\left\{\begin{array}{ll}C & 1\\10 & \end{array}\right\}$ and $b_{4}=diag(j, j, 1)$ . It is clear that $b_{1},$ $b_{2},$ $b_{2}b_{1}eK_{1}$

and $b_{4},$ $b_{1}b_{4},$ $b_{2}b_{4},$ $b_{S}b_{4}\not\in K_{i}$ . Since the action of $K_{i}$ on $S$ is given by
$(Ad_{U(2)}-\theta)\otimes\theta\oplus\theta\otimes Ad_{Sp(1)},$ $x$ is identified with the matrix $X;X=diag(d_{1}i$ ,
$-d_{1}i,$ $d_{2}i$) where $d_{1},$ $d_{2}eR$ . When $a=b_{1},$ $b_{2}$ and $b_{\epsilon}$, we have the following
relations for $g=(g_{1}, g_{2})\in K=U(2)\times Sp(1):f_{b},$ $(gx)=gb_{1}^{-1}Xb_{1}g^{-1}=(g_{1}$ diag $(d_{1}i$ ,
$-d_{1}i)g_{1}^{-1},$ $-g_{2}(d_{2}i)g_{2}^{-1}),$ $f_{b_{2}}(gx)=$ ( $-g_{1}$ diag $(d_{1}i,$ $-d_{1}i)g_{1}^{-1},$ $g_{2}(d_{2}i)g_{2}^{-1}$) and
$f_{b_{3}}(gx)=-gx$ . Thus the map $f_{a}|\partial S$ is linear, and hence, it has an ex.
tension to $p^{-1}(A_{i})$ . Next put $a=b_{4}$ . Then we have $b_{4}gb_{4}^{-1}=(\overline{g}_{1}, g_{2})$ for al]

$g=(g_{1}, g_{2})\in K_{i}=U(2)\times Sp(1)$ . Thus the above map $h$ is linear (see the
case of $5-c$). Thirdly we put $a=b_{1}b_{4}$ . Then it is clear that $f_{b_{1}b_{4}}(gx)=$

$f_{b_{1}}\circ f_{b_{4}}(gx)$ . Since $f_{b_{1}}$ and $f_{b_{4}}$ have extensions, $f_{b_{1}b_{4}}$ also has an extensior
to $p^{-1}(A_{i})$ . Similarly, it is seen that $f_{b_{2}b_{4}}$ and $f_{b_{3}b_{4}}$ have extensions tc
$p^{-1}(A_{i})$ .

Case of $3-a$ . In this case, we have $(N(H)\cap N(L_{i})\cap N(L_{-1}))/H=eH\cup$

$b_{1}H\cup b_{2}H\cup b_{8}H\cup b_{4}H\cup b_{1}b_{4}H\cup b_{2}b_{4}H\cup b_{8}b_{4}H$, where $b_{8}=b_{1}b_{g},$ $b_{1}=diag(1,1,1,1_{l}$
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1, $-1,$ $-1$), $b_{2}=diag(C, 1,1,1),$ $ C=[\frac{0}{oi10}f\frac{0110}{0}\iota$ and $b_{s}=diag(1_{r}-1,1,$ $-1$ ,

1, $l,$ $1$). Alsa it is seen that the action of $K_{i}$ on $S$ is given by $(Ad_{U\langle 2)}-\theta\rangle$$\otimes$

$\theta\oplus\theta\otimes\rho_{3}$ . The rest of the proof is similar to that of the case of $5\leftarrow a$ .
We omit the detail. Q.E.D.

From Lemmas 4.4 and 4.5, we get the $fo\ddagger 1owirg$ propositian.

PROPOSITION 4.6. Suppose that $N(H)/H$ is finite. $Th$.en all G-homology
spheres with the same orbit datum are equivariantly diffeomorphic.

PROOF. llix one orbit datum. And denote by $fa_{1},$ $a_{2},$ $*\cdot\cdot,$
$ a_{0}\rangle$ the G-

homology sphere such that the attaching diffeomorphism of $\partial p^{-\iota}(A_{i})$ is
given by $f_{a_{i}}$ for each $i$ . Put $M_{1}=(a_{1}, a_{2}, \cdots, a_{0})$ and $M_{z}=(\prime e, e, \cdots, e)$ where
$e$ indicates the identity element. Since $M_{1}$ and $M_{2}$ have the same orbit
datum, $M_{1}-(\bigcup_{=1}^{\epsilon}Int(p^{-1}(A_{i})))$ is identified with $M_{2}-(\bigcup_{i=1}^{\iota}Int(p^{-1}(A_{i})))$ .
Then by an extension $\psi_{a}$ of $f_{a_{i}}$ to $p^{-1}(A_{i})$ , we can construct a map $\psi$ of
$M_{2}$ to $M_{1}$ as follows:

$\psi|(M_{2}-(\bigcup_{i=1}^{c}Int(p^{-1}(A_{i}))))=the$ identity map , $\psi|p^{-1}(A_{i})=\psi_{a}$, .
Clearly $\psi$ is an equivariant diffeomorphism of $M,$ to $M_{1}$ . Q.E.D.

Next we consider the case that $N(H)/H$ is not $finite_{\iota}$ namely G-
homology spheres modelled on $(\Lambda^{a}\mu_{b})_{R}\oplus\theta,$ $(\Lambda^{2}\mu_{7})_{R}$ or $(\mu_{4})_{R}\oplus\phi_{l}\oplus\theta$ where
$\phi_{2}^{a}=\Lambda\mu_{4}$ .

Let $\Phi$ be the equivariant diffeomorphism of $(G[H\times I)/\sim$ to $\partial p^{-\iota}(4_{i})$

in the proof of Lemma 4.2, where $I=[0,1]$ . Then every attaching diffeQ-
morphism $f$ of $\partial p^{-1}(A)$ uniquely determines an arc $s:I\rightarrow N(H)/H$ by
$f\circ\Phi([eH, t])=\Phi([s(t\rangle, t])$ . Such an arc $s$ satisfies the conditions: $ s(O)\in$

$(N(H)\cap N(L_{i-1}))/H$ and $s(1)\in(N(H)\cap N(L_{i}))fH$. Moreover, by the connec-
tedness of $I,$ $s(t)$ is in $N_{k}/H$ for some connected component $N_{k}$ of $N(H)$

such that $ N_{k}\cap N(L_{i-1})\neq\emptyset$ and $ N_{k}\cap N(L_{i})\neq\emptyset$ . An arc $s$ satisfying the
above conditions will be called a cross-sectioning arc. Conversely, a cross-
sectioning arc $s$ uniquely determines an equivariant homeomorphism $f$ of
$\partial p^{\leftrightarrow 1}(A_{i})$ by $f\circ\Phi([eH_{\ell}t])=\Phi([s(t), t])$ .

LEMMA 4.7. Suppose that an $SU(7)$-homology sphere $M$ is modelled
on \langle $A^{a}\mu_{7})_{R}$ . Then every attaching diffeomorphism of $\partial p^{-\iota}(A_{i})$ oan be ex-
$t\ell ndd$ to $p^{-1}(A_{i})$ .
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PROOF. Put $H=SU(2)$ (see Proposition 2.3). Then it is easily
verified that $N(SU(2)^{8})$ has six connected components $N_{k}(0\leqq k\leqq 5)$ and
that the identity component $N_{0}=(N(SU(2)^{\epsilon}))^{0}$ is $S(U(2)^{t}\times U(1))$ . To
prove this lemma, it is sufficient to study the following three cases
(namely, the cases of $10-a,$ $b$ and $c$ in Table B), by virtue of Lemma
4.3.

Case 1. Let $(K, L, L_{-1})$ be $(Sp(3), Sp(2)\times Sp(1),$ $Sp(1)\times Sp(2))$ . If
$ N_{k}\cap N(L_{i-1})\neq\emptyset$ and $ N_{k}\cap N(L)\neq\emptyset$ , then it is shown that $N_{k}=N_{0}$ . And
every element $X$ in $N_{k}\cap N(L_{i})$ is written as diag$(A, B, C, D)$ , where $A,$ $B$

and $C$ lie in $U(2),$ $D$ in $U(1)$ and det $A=\det B$. Similarly, if $X$ is an
element in $N_{0}\cap N(L_{-1})$ , then det $B=\det C$ holds. Therefore we have the
following diffeomorphisms: $N_{0}/H\sim S^{1}\times S^{1}\times S^{1},$ $(N_{0}\cap N(L_{i}))/H\sim\Delta(S^{1}\times S^{1})\times$

$S^{1},$ $(N_{0}\cap N(L_{i-1}))/H\sim S^{1}\times\Delta(S^{1}\times S^{1})$ , where $\Delta(S^{1}\times S^{1})=\{(x, x)|x\in S^{1}\}\subset S^{1}\times S^{1}$ .
And hence a cross-sectioning arc 8: $I\rightarrow N_{0}/H$ which is given by each
attaching diffeomorphism $f$ of $\partial p^{-1}(A)$ can be regarded as the map $s$

below;

$s(t)=(s_{1}(t), s_{2}(t),$ $s_{\epsilon}(t))\in S^{1}\times S^{1}\times S^{1}$

such that

$s_{1}(1)=s_{2}(1)$

(A).
$s_{2}(0)=s_{8}(0)$

First consider the map $f_{1}:I\times I=p(\partial p^{-1}(A))\times I\rightarrow N_{0}/H$ defined by
$f_{1}(t, u)=(s_{1}(t), s_{2}(t),$ $s,((1-u)t))$ . Then we have $f_{1}(t, O)=s(t),$ $f_{1}(t, 1)=(s_{1}(t)$ ,
$s_{2}(t),$ $s_{s}(0))$ . Put $s’(t)=f_{1}(t, 1)$ . Next we define the map $f_{2}:I\times I\rightarrow N_{0}/H$ by
$f_{2}(t, u)=(s_{1}^{\prime}(t)\rho(t, u),$ $s_{2}^{\prime}(t),$ $s_{3}^{\prime}(t))$ , where $\rho$ is the map of $I\times I$ to $S^{1}$ given
by arg $\rho(t, u)=u(\arg(s_{1}(t)^{-1}s_{2}(t)))$ . Then we have $f_{2}(t, O)=s^{\prime}(t)$ and $f_{2}(t, 1)=$

$(s_{2}^{\prime}(t), s_{2}^{\prime}(t),$ $s_{3}^{\prime}(t))$ . Put $s(t)=f_{2}(t, 1)$ . Finally we define the map $ f_{\epsilon}:I\times I\rightarrow$

$N_{0}/H$ by $f_{3}(t, u)=(s_{1}^{\prime\prime}((1-u)t), s_{2}’((1-u)t),$ $s_{3}^{\prime\prime}(t))$ . Then $f_{\epsilon}$ satisfies $f_{\epsilon}(t, 0)=$

$s^{\prime}(t)$ and $f_{8}(t, 1)=(s_{2}(0), s_{2}(0),$ $s_{2}(0))(e(N_{0}\cap N(L_{i})\cap N(L_{-1})))$ . Put $s(t)=$
$f_{8}(t, 1)$ . Since $(N_{0}\cap N(L_{i})\cap N(L_{i-1}))/H$ is diffeomorphic to $\Delta(S^{1}\times S^{1}\times S^{1}),$ $s$

‘

is homotopic to $s_{0}$ , where $s_{0}$ is given by $s_{0}(t)=eH$. And hence $s$ is homo-
topic to $s_{0}$ . We write this homotopy as $F(t, u)=F.(t)$ . The F. satisfies
the above condition (A) for each $u$ . Thus F. induces an equivariant
homotopy between the given $f$ and identity map of $\partial p^{-1}(A_{i})$ . That is,
we have $\pi {}_{0}Homeo_{I}^{o}(\partial p^{-1}(A))=1$ . Hence, from Lemma 3.1 and the Theorem
in 1.3, it follows that $\pi_{0}D\ddagger ffeo_{I}^{a}(\partial p^{-1}(A))=1$ . Thus $f$ can be extended to
$p^{-1}(A_{i})$ .

Case 2. Let $(K, L, L_{-1})$ be $(Sp(2)\times SU(3), SU(2)^{2}\times SU(3),$ $ Sp(2)\times$

$Sp(1))$ . If $ N_{k}\cap N(L)\neq\emptyset$ and $ N_{k}\cap N(L_{2-1})\neq\emptyset$ , then it is verified that $N_{k}$
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must be $N_{0}$ or $N_{1}=CN_{0}$ for $C=diag([\frac{0}{0110}|\frac{0110}{0}],$ $1,1,1)$ . And we have

$N_{k}\cap N(L_{i})=N_{k},$ $(N_{k}\cap N(L_{i-1}))/H\sim\Delta(S^{1}\times S^{1})\times S^{1}$ for $k=0,1$ . Thus, by the
way similar to that in Case 1, we see that if $k=0$ (resp. $k=1$), then every
attaching diffeomorphism of $\partial p^{-1}(A_{i})$ is equivariantly isotopic to the
identity map (resp. the map $f_{\sigma}$). For the definition of the map $f_{c}$ , see
the Prst paragraph following Lemma 4.1. Since $C\in K$ , it is verified that
$f_{c}$ can be extended to $p^{-1}(A_{i})$ by the same way as in Lemma 4.5. Hence
we also deduce the required result for this case.

Case 3. Let $(K_{i}, L_{i}, L_{i-1})$ be $(SU(2)\times SU(5), Sp(1)\times Sp(2),$ $ SU(2)^{2}\times$

$SU(3))$ . If $ N_{k}\cap N(L_{i})\neq\emptyset$ and $ N_{k}\cap N(L_{i-1})\neq\emptyset$ , then it is verified that
$N_{k}=N_{0}$ . And we see that every attaching diffeomorphism of $\partial p^{-1}(A)$ is
equivariantly isotopic to the identity map. The proof is similar to that
in Case 1. We omit the detail. Q.E.D.

Similarly we have the following lemma. The proof is omitted.
LEMMA 4.8. Let $G$ be $SU(5)$ or $SU(4)$ . Suppose that a G-homology

sphere $M$ is modelled on $(\Lambda^{2}\mu_{b})_{R}\oplus\theta$ or $(\mu_{4})_{R}\oplus\phi_{2}\oplus\theta$ , where $\phi_{2}^{c}=\Lambda^{2}\mu_{4}$ . Then
every attaching diffeomorphism of $\partial p^{-1}(A_{i})$ can be extended to $p^{-1}(A_{i})$ .

From Lemmas 4.7 and 4.8, we get the following proposition. The
proof is omitted, since it is similar to that of Proposition 4.6.

PROPOSITION 4.9. Suppose that $N(H)/H$ is not finite. Then all G-
homology spheres with the same orbit datum are equivariantly drffeo-
morphic.

\S 5. The proof of the Theorem.

In this section, we shall prove our theorem stated in the Introduction.
Let $G$ be one of the three groups, $SO(n)(n\neq 2,4),$ $SU(n)$ or $Sp(n)$ . And
let $M$ be a G-homology sphere which satisfies the assumptions in our
theorem. As is mentioned in \S 2, we may assume that $M$ is a G-homology
sphere with a smooth action of $G$ which is not regular. By Propositions
4.6 and 4.9, we have only to prove that $M$ has the same orbit datum as
that of its linear model.

PROOF OF THEOREM. Let $M$ and $N$ be G-homology spheres with the
same linear model. And let $(H, K_{1}, L_{I}, \cdots, K_{o}, L_{\phi})$ and ($H$‘, $K_{1}^{\prime},$ $L_{1},$ $\cdots$ ,
$K_{c}^{\prime},$ $L_{c}^{\prime}$) be the orbit data of $M$ and $N$, respectively. Now suppose that



310 AIKO NAKANI HI

$(H’, K_{1}^{\prime}, L_{1}, \cdots, K_{\iota}^{\prime}, L_{c}^{\prime})$ is equal to one of the followings:
(i) $(gHg^{-1}, gK_{1}g^{-1}, gL_{1}g^{-1}, \cdots, gK_{l}g^{-1}, gL_{\iota}g^{-1})$ for $g\in G$ ,
(ii) $(H, K_{j}, L_{j}, K_{j+1}, L_{j+1}, \cdots, K_{\iota}, L_{0}, K_{1}, L_{1}, \cdots, K_{j-1}, L_{j-1})$ for $I\leqq j\leqq c$ ,
(iii) $(H, K_{I}, L_{0}, K_{0}, L_{0-1}, \cdots, K_{2}, L_{1})$ .

Then it is clear that $N$ is equivariantly diffeomorphic to $Mor-M$. The
manifold $-M$ is equivariantly diffeomorphic to $M$. So we shall say that
$(H, K_{\iota}, L_{1}, \cdots, L_{c})$ and $(H^{\prime}, K_{1}, L_{1}^{\prime}, \cdots, L^{\prime}.)$ are equivalent if the latter is
equal to (i), (ii) or (iii) above. We shall prove that every G-homology
sphere in our theorem has the same orbit datum as that of its linear
model up to equivalence.

Case 1. Suppose that $M$ is modelled on a representation other than
the representations $(\Lambda^{2}\mu_{7})_{R},$ $ S^{2}\rho$, and $(S^{2}\rho_{8})\circ\pi$ of $SU(7),$ $SO(3)$ and $SU(2)$ ,
respectively, where $\pi$ is the projection of $SU(2)$ to $SO(3)$ . Then, from
the following relation of Euler characteristics,

(5.1) $\chi(M)=\chi(G/H)+\sum_{=1}^{0}\chi(G/K_{i})-\sum_{i=1}^{\ell}\chi(G/L_{t}\rangle$

we can show that $M$ has the same orbit detum as that of its linear model
up to equivalence. We only give here the actual proof for $M$ modelled
on the representation $\phi$ of $Sp(4)$ where $\phi^{e}=A^{a}(\nu_{4})_{\sigma}-\theta$ . We omit the proofs
for the other cases, since they are given similarly.

Suppose that $M$ is modelled on the representation $\phi$ above. By Pro-
position 2.3, we have $H\in(Sp(1)^{4})$ and $L\in(Sp(1)^{2}\times Sp(2))$ . And we have
$K\in(Sp(2)^{2})$ or $K\in(Sp(1)\times Sp(3))$ . Since $Sp(1)$‘ is a subgroup of $Sp(4)$

with the maximal rank, the Euler characteristic $\chi(Sp(4)/Sp(1)^{4})$ equals
$|W(Sp(4))|/|W(Sp(1)\rangle|=2$ , where $|W(G)|$ is the order of the Weyl group of
$G$ . Similarly we have $\chi(Sp(4)/(Sp(1)^{2}\times Sp(2)))=12,$ $\chi(Sp(4)/Sp(2)^{2})=6$ and
$\chi(Sp(4)/(Sp(1)\times Sp(3)))=4$ . Let $c_{1}$ (resp. $c_{2}$) be the number of isolated
singular orbits whose types are $Sp(4\rangle/Sp(2)^{2}$ (resp. $Sp(4)/(Sp(1)\times Sp(3))$).
Then, by (5.1), we have $c_{1}=1$ and $c_{a}=2$ (we remark that $\chi(M)=2$ , since
the dimension of $M$ is even). Thus, from Lemma 4.3, we can deduce
that the orbit datum of $M$ is uniquely determined as $(Sp(1)^{4}, Sp(1)\times$

$Sp(3),$ $Sp(1)\times Sp(2)\times Sp(1),$ $Sp(3)\times Sp(1),$ $Sp(2)\times Sp(1)^{2},$ $Sp(2)^{2},$ $Sp(1)^{2}\times Sp(2))$

up to equivalence. This shows that $M$ has the same orbit datum as that
of the linear model up to equivalence.

UnfortunateIy, for $M$ modelled on $(\Lambda^{2}\mu_{7})_{R},$ $S^{2}\rho_{8}$ or $(S^{z}p_{\epsilon})\circ\pi$ , the equation
(5.1) is useless. In fact, if $M$ is modelled on $(A^{2}\mu_{7})_{R}$ , then both Euler
characteristic of $M$ and that of each orbit are zero. And if $M$ is modelled
on $S^{2}p_{\epsilon}$ or $(S^{2}\rho_{\epsilon})\circ\pi$, then the Euler characteristics of $M$ and the principal
orbit are zero, and that of each singular orbit is one. So, for these
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cases, we shall prove our theorem by computing directly the homology
of $M$.

Case 2. Suppose that $M$ is modelled on $S^{2}\rho_{8}$ . By Hudson [11],
$H_{2}(M;Z)\neq 0$ unless the number of the isolated singular orbits is two.
Thus the orbit datum of $M$ must be $(Z_{2}^{2}, SO(3),$ $N_{1},$ $SO(3),$ $N_{2}$) where $N_{1}$ ,
$N_{2}\in(O(2))$ and $N_{1}\neq N_{2}$ . This orbit datum is the same as that of the
linear model up to equivalence.

Case 3. Suppose that $M$ is modelled on $(S^{2}\rho_{3})\circ\pi$ . The result in Case
2 naturally induces that $M$ has the same orbit datum as that of the
linear model up to equivalence.

Case 4. Suppose that $M$ is modelled on $(\Lambda^{2}\mu_{7})_{R}$ . By Proposition 2.3,
we have $ H\in(SU(2)^{\epsilon}\rangle$ . And $K$ is conjugate to $Sp(3),$ $Sp(2)\times SU(3)$ or
$SU(2)\times SU(5)$ , and $L_{i}$ is conjugate to $Sp(2)\times Sp(1)$ or $SU(2)^{l}\times SU(3)$ .

Now we consider the following three fibre bundles:

$S^{\epsilon}=SU(2\rangle-SU(7)/SU(2)^{2}\rightarrow^{p_{1}}SU(7)1SU(2\rangle^{8}$ ,

$S=SU(4)/Sp(2)\rightarrow SU(7)/(Sp(2)\times Sp(1))\rightarrow^{h}SU(7)/(SU(4)\times SU(2))$ ,

$S^{b}=SU(3)/SU(2\rangle\rightarrow SU(7)/SU(2)^{\epsilon}\rightarrow^{p_{8}}SU(7)[(SU(2)^{2}\times SU(3))$ .
Then, by the Gysin sequences of the bundles $p_{1},$ $p_{2},$ $p_{a}$ we have

$H_{4}(SU(7)fSU(2)^{8};R)=R\oplus R,$ $H_{4}(SU(7)f(Sp(2)\times Sp(1)\rangle;R)=R$ and
$H_{4}(SU(7)[(SU(2)^{3}\times SU(3));R)=R\oplus R$ .

Next let $\nu(G/K_{i})$ be the normal vector bundle of an isolated singular
orbit $G/K_{i}$ in $M$, and let $S\nu(G\}K)$ be the associated sphere bundle (we
use the same notations for the total spaces of these bundles). Since the
dimension of $M$ is 41 and the codimension of $G/K_{l}$ is larger than 10 for
every $K_{i}$ , by the Gysin sequence of the bundle $S\nu(G/K_{t})\rightarrow G\prime K$ , we
have

$H_{q}(S\nu(G/K_{i});R)\cong H_{q}(\nu(G/K_{i});R)\cong H_{q}(G/K_{i};R)$ for $q=4,6$ .
Put $Y=M-\bigcup_{i=1}^{c}Int(\nu(G/K_{i}\rangle)=M-\bigcup_{i=1}^{0}Int(p^{-1}(A_{i}))$ . Then, by the Mayer-
Vietoris exact sequence, we have

$\bigoplus_{i=1}H_{q}(S\nu(G/K_{i});R)\cong\bigoplus_{1}^{l}H_{q}(\nu(G/K_{i});R)\oplus H_{q}(Y;R)$

for $0<q<\dim M-1=40$. From the two isomorphisms above, it follows
that $H_{4}(Y;R)=H(Y;R)=0$ . Moreover, regarding $Y$ as $(U_{l\Leftarrow 1}^{a}p^{-1}(B))U$

$(G/HxX)$ (see Fig. 1 in \S 3), we have the isomorphism
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$H_{4}(G/H\times I;\frac{R)\oplus\cdots\oplus H_{4}(G/}{c}H\times I;R)$

$\cong(\bigoplus_{i=1}^{c}H_{4}(p^{-1}(B_{i});R))\oplus H(G/H\times X;R)$ .
And hence we have

$H_{4}(G/H\times I;R\frac{)\oplus\cdots\oplus H(G/}{c}H\times I;R)$

$\cong(\bigoplus_{=1}^{o}H_{4}(G/L_{i};R))\oplus H_{4}(G/H;R)$ .
In the orbit datum of $M$, let $m$ (resp. n) be the number of $L_{i}’ s$ such

that $L_{i}e(Sp(2)\times Sp(1))$ (resp. $Le(SU(2)^{2}\times SU(3))$). Then the above iso-
morphism of homologies shows that $m+2n+2=2(m+n)$ , namely, $m=2$ .
On the other hand, from Lemma 4.3, each triple $(L_{i-1}, K, L)$ in the orbit
datum $(H, K_{1}, L_{1}, \cdots, K_{0}, L_{e})$ must be simultaneously conjugate to $(Sp(1)\times$

$Sp(2),$ $Sp(3),$ $Sp(2)\times Sp(1)),$ $(SU(2)^{2}\times SU(3), SU(2)\times SU(5),$ $Sp(1)\times Sp(2))$ or
$(Sp(2)\times Sp(1), Sp(2)\times SU(3),$ $SU(2)^{2}\times SU(3))$ . Moreover, from the definition
of a linear model, each of these three triples must appear at least one
time in the orbit datum. Thus $m=2$ implies $n=1$ . And hence, from
Lemma 4.3, it is deduced that the orbit datum of $M$ is uniquely deter-
mined as $(SU(2)^{8}, Sp(3),$ $Sp(2)\times Sp(1),$ $Sp(2)\times SU(3),$ $SU(2)^{2}\times SU(3),$ $ SU(2)\times$

$SU(5),$ $Sp(1)\times Sp(2))$ up to equivalence. This shows that $M$ has the same
orbit datum as that of the linear model up to equivalence. Q.E.D.
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