Токуо Ј. Матн. Vol. 8, No. 1, 1985

Non-solvable Multiplicative Subgroups of Simple Algebras of Degree 2

Michitaka HIKARI

Keio University

Let $M_2(\Delta)$ be the full matrix algebra of degree 2 over a division algebra Δ of characteristic 0. In [8] we determined the non-abelian simple groups which are homomorphic images of multiplicative subgroups of $M_2(\Delta)$. In this paper we will study the non-solvable multiplicative subgroups G of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$, where $V_Q(G) = \{\sum \alpha_i g_i | \alpha_i \in$ $Q, g_i \in G\}$. Let N be the largest solvable normal subgroup of G. In § 1 we will prove that G/N is isomorphic to a subgroup W of Aut(T) with $W \supset T$, where $T \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$. Let H be the largest normal subgroup of G such that [H, H] = H. We will prove in § 2 and § 3 $H \cong SL(2, 5)$, SL(2, 9), $SL(2, 5) \times SL(2, 5)$ or E, where E is an extension of PSL(2, 5) by DQ, the central product of the dihedral group D of order 8 and the quaternion group Q of order 8. In § 4 first we will characterize G in the case where G has a normal subgroup M such that $V_Q(M) \cong \Delta_1 \bigoplus \Delta_2$ for some division algebras Δ_1 and Δ_2 . In the other case we will show the following;

(1) O(G) is a Z-group (i.e. all Sylow subgroups of O(G) are cyclic). (2) G has a normal subgroup G_1 such that $G_1 \supset O(G)$, G/G_1 is a 2-group of order ≤ 8 , and $G_1/O(G) \cong SL(2, 5)P$, SL(2, 9) or E, where P is a cyclic 2-group or a dihedral group of order $2^n \geq 4$, and SL(2, 5)P is the central product of SL(2, 5) and P.

§1. The largest solvable normal subgroup.

All division algebras considered in this paper are of characteristic 0. As usual Q and C denote respectively the rational number field and the complex number field. By a subgroup of $M_2(\Delta)$ we mean a finite multiplicative subgroup of $M_2(\Delta)$. Let Δ be a division algebra and let K be a field contained in the center of Δ . Let G be a subgroup of $M_2(\Delta)$. We define $V_{\kappa}(G) = \{\sum \alpha_i g_i | \alpha_i \in K, g_i \in G\}$ as a K-subalgebra of $M_2(\Delta)$.

Received October 31, 1983

Let \mathcal{C} be the class of finite groups G which satisfies the following conditions (a) and (b):

(a) A Sylow 3-subgroup of G is an abelian group generated by at most 2-elements.

(b) A non-abelian simple group which occurs as a composition factor of G is isomorphic to PSL(2, 5) or PSL(2, 9).

If G is a subgroup of $M_2(\Delta)$, then by [6] and [8] $G \in \mathscr{C}$. Let N be the largest solvable normal subgroup of G. As is easily seen, $G/N \in \mathscr{C}$ and the largest solvable normal subgroup of G/N is trivial.

LEMMA 1.1. Let G be an element of C. We assume that G is nonsolvable and that the largest solvable normal subgroup of G is trivial. Then we have

(1) Let H be a normal subgroup of G which is the direct product of non-abelian simple groups S_i , $H=S_1\times S_2\times\cdots\times S_n$. Then $n\leq 2$ and $H\cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5)\times PSL(2, 5)$.

(2) Let M be a minimal normal subgroup of G with $M \neq 1$. Then $M \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$.

(3) If $C_{g}(H) \supset M$, then $H \cong M \cong PSL(2, 5)$.

(4) There exists a normal subgroup T of G such that $C_G(T)=1$ and $T \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$.

PROOF. (1) By the condition (b) S_i is isomorphic to PSL(2, 5) or PSL(2, 9), $i=1, 2, \dots, n$. Since a Sylow 3-subgroup of PSL(2, 5) (resp. PSL(2, 9)) is a cyclic group (resp. an elementary abelian group of order 9), (1) follows directly from the condition (a).

(2) It is well known that $M \cong S \times S \times \cdots \times S$ for some simple group S. Since the largest solvable normal subgroup of G is trivial, S is non-abelian. Therefore by (1) $M \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$.

(3) The condition $C_{\sigma}(H) \supset M$ means $MH \cong M \times H$, because $M \cap H \subset C_{\sigma}(H) \cap H = 1$. Since $MH \triangleleft G$, it follows from (1) and (2) that $M \cong H \cong PSL(2, 5)$.

(4) Let L be a non-trivial minimal normal subgroup of G. By (2) $L \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$. If $C_{g}(L)$ is solvable, then by the assumption $C_{g}(L)=1$. Thus we may assume that $C_{g}(L)$ is non-solvable. Let M be a minimal normal subgroup of G such that $1 \neq M \subset C_{g}(L)$. By (3) $M \cong L \cong PSL(2, 5)$. Suppose that $C_{g}(LM)$ is not solvable. Let K be a minimal normal subgroup of G such that $1 \neq K \subset C_{g}(LM)$. Then by (3) $LM \cong K \cong PSL(2, 5)$, which contradicts the fact $LM \cong PSL(2, 5) \times PSL(2, 5)$. Hence $C_{g}(LM)$ is solvable, and $C_{g}(LM)=1$. In this case, if we put T=LM, then we get the assertion (4).

Using this lemma we have

PROPOSITION 1.2. Let Δ be a division algebra. Let G be a non-solvable subgroup of $M_2(\Delta)$. Then we have

(1) The largest solvable normal subgroup N of G is non-trivial.

(2) G/N is isomorphic to a subgroup W of Aut(T) with $W \supset T$, where $T \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$.

PROOF. By (1.1) (4) there exists a normal subgroup T of G/N such that $C_{G/N}(T)=1$ and $T\cong PSL(2,5)$, PSL(2,9) or $PSL(2,5)\times PSL(2,5)$. Hence G/N is isomorphic to a subgroup of Aut(T). If N=1, then either PSL(2,5) or PSL(2,9) is a subgroup of $M_2(\varDelta)$. But it contradicts the main result in [8]. Therefore $N\neq 1$.

As is well known, Aut(PSL(2, 5))/PSL(2, 5) and Aut(PSL(2, 9))/PSL(2, 9) are 2-groups.

LEMMA 1.3. $Aut(PSL(2, 5) \times PSL(2, 5))/(PSL(2, 5) \times PSL(2, 5))$ is a 2-group.

PROOF. Let τ_1 (resp. τ_2) be the morphism from PSL(2, 5) to $PSL(2, 5) \times PSL(2, 5)$ determined by $\tau_1(a) = (a, 1)$ (resp. $\tau_2(a) = (1, a)$). Let μ_i be the projection of $PSL(2, 5) \times PSL(2, 5)$ on the *i*-th component. Let σ be an automorphism of $PSL(2, 5) \times PSL(2, 5)$. We denote by σ_{ij} the morphism $\mu_i \sigma \tau_j$ from PSL(2, 5) to PSL(2, 5). Since PSL(2, 5) is simple, Ker $\sigma_{ij} = 1$ or PSL(2, 5).

Now we will prove that one of the following holds:

(1) Ker σ_{11} = Ker σ_{22} = 1, Ker σ_{12} = Ker σ_{21} = PSL(2, 5); or

(2) Ker σ_{11} = Ker σ_{22} = PSL(2, 5), Ker σ_{12} = Ker σ_{21} = 1.

Since $\mu_i \sigma$ is a surjection, Ker $\sigma_{i1}=1$ or Ker $\sigma_{i2}=1$. We assume that Ker $\sigma_{i1}=$ Ker $\sigma_{i2}=1$. Let a, b be a pair of elements of PSL(2, 5) satisfying $[a, b] \neq 1$. We put $a' = \sigma_{i1}^{-1}(a)$, $b' = \sigma_{i2}^{-1}(b)$. Then $\tau_1(a') = (a', 1)$ and $\tau_2(b') = (1, b')$, which implies $[\tau_1(a'), \tau_2(b')] = 1$ and $[\mu_i \sigma \tau_1(a'), \mu_i \sigma \tau_2(b')] = 1$. It is impossible because $a = \mu_i \sigma \tau_1(a')$ and $b = \mu_i \sigma \tau_2(b')$. Next we assume that Ker $\sigma_{1j} =$ Ker $\sigma_{2j} = 1$. Then $\sigma \tau_1(PSL(2, 5)) = \sigma \tau_2(PSL(2, 5)) = PSL(2, 5) \times 1$ if $j=1, =1 \times PSL(2, 5)$ if j=2. It is a contradiction.

Let ν be an automorphism of $PSL(2, 5) \times PSL(2, 5)$ determined by $\nu(a, b) = (b, a)$. In the case (1) $\sigma = (\sigma_{11}, \sigma_{22}) \in \operatorname{Aut}(PSL(2, 5)) \times \operatorname{Aut}(PSL(2, 5))$. In the case (2) $\nu \sigma \in \operatorname{Aut}(PSL(2, 5)) \times \operatorname{Aut}(PSL(2, 5))$. Thus $\operatorname{Aut}(PSL(2, 5) \times PSL(2, 5))/(PSL(2, 5) \times PSL(2, 5))$ is a 2-group.

In [7] we proved that a solvable subgroup of $M_2(\Delta)$ has a normal

Hall $\{2, 3, 5, 7\}'$ -subgroup. This result can be generalized to any subgroup of $M_2(\Delta)$.

COROLLARY 1.4. Let Δ be a division algebra. Let G be a subgroup of $M_2(\Delta)$. Then G has a normal Hall $\{2, 3, 5, 7\}'$ -subgroup.

PROOF. We may assume that G is non-solvable. Let N be the largest solvable normal subgroup of G. Let $\pi = \{2, 3, 5, 7\}$. Let H be a normal Hall π' -subgroup of N. Since PSL(2, 5) and PSL(2, 9) are π -groups, Aut(PSL(2, 5)), Aut(PSL(2, 9)) and $Aut(PSL(2, 5) \times PSL(2, 5))$ are π -groups. By (1.2) H is a normal Hall π' -subgroup of G.

§2. Perfect groups.

A group G is perfect if [G, G]=G. In this paper we denote by D, Q, DQ and DD respectively the dihedral group of order 8, the quaternion group of order 8, the central product of D and Q and the central product of D and D. In this section we will determine all perfect subgroups of $M_2(\Delta)$ such that no normal subgroup of G is isomorphic to DQ. Let m, r be relatively prime integers, and put s=(r-1, m), t=m/s; n=the minimal positive integer satisfying $r^n \equiv 1 \mod m$. Denote by $G_{m,r}$ the group generated by two elements a, b with the relations: $a^m = 1, b^n = a^t$ and $bab^{-1} = a^r$. Let ζ_m be a fixed primitive m-th root of unity and let $\sigma = \sigma_r$ be the automorphism of $Q(\zeta_m)$ determined by the mapping $\zeta_m \to \zeta_m^r$. We denote by $\Lambda_{m,r}$ the cyclic algebra $(Q(\zeta_m), \sigma_r, \zeta_s)$.

First we recall the results in Amitsur [1].

(2.1) ([1]). Let G be a finite group and let Δ be a divison algebra. Assume that $G \subset \Delta$. Then we have

(1) The odd Sylow subgroups of G are cyclic and the even Sylow subgroups of G are cyclic or generalized quaternion.

(2) If all Sylow subgroups of G are cyclic, then $G \cong G_{m,r}$ for some relatively prime integers m, r with (n, t)=1.

(3) A group $G_{m,r}$ can be embedded in a division algebra if and only if $\Lambda_{m,r}$ is a division algebra; then we have $V_Q(G_{m,r}) \cong \Lambda_{m,r}$ and the isomorphism is obtained by the correspondence $a \leftrightarrow \zeta_m$, $b \leftrightarrow \sigma_r$.

(4) If G is not solvable, then $G \cong SL(2, 5) \times G_{m,r}$ and $V_{Q}(G) \cong \Lambda_{10,-1} \bigotimes_{Q} \Lambda_{m,r} \cong (\Lambda_{4,-1} \bigotimes_{Q} Q(\sqrt{5})) \bigotimes_{Q} \Lambda_{m,r}$.

COROLLARY 2.2. Let G be a non-trivial perfect subgroup of $M_2(\Delta)$. (1) If $V_{\mathbf{Q}}(G) \cong \Delta_1$ for some division algebra Δ_1 , then $G \cong SL(2, 5)$ and $V_{\mathbf{Q}}(G) \cong \Lambda_{10,-1}$.

(2) If $V_{\mathbf{Q}}(G) \cong \Delta_1 \bigoplus \Delta_2$ for some division algebras Δ_1 , Δ_2 , then one of the following holds:

(i) $G \cong SL(2, 5)$ and $V_{\boldsymbol{Q}}(G) \cong \boldsymbol{Q} \bigoplus \Lambda_{10,-1}$; or

(ii) $G \cong SL(2, 5) \times SL(2, 5)$ and $V_{o}(G) \cong \Lambda_{10,-1} \bigoplus \Lambda_{10,-1}$.

PROOF. Since [G, G] = G, the assertion (1) follows directly from (2.1)(4). We now assume that $V_{\varrho}(G) \cong \varDelta_1 \bigoplus \varDelta_2$ for some division algebras \varDelta_1, \varDelta_2 . Let ρ_i be the projection of $V_{\varrho}(G)$ on the *i*-th component of $\varDelta_1 \bigoplus \varDelta_2$. Since $G \subset V_{\varrho}(G)$, the morphism $\rho: G \to \rho_1(G) \times \rho_2(G)$ determined by the mapping $g \to (\rho_1(g), \rho_2(g))$ is injective. Because [G, G] = G, $[\rho_i(G), \rho_i(G)] = \rho_i(G)$ and $V_{\varrho}(\rho_i(G)) = \varDelta_i$. By (1), $\rho_i(G) \cong 1$ and $\varDelta_i \cong Q$, or $\rho_i(G) \cong SL(2, 5)$ and $\varDelta_i \cong \varLambda_{10,-1}$. Therefore $V_{\varrho}(G) \cong \varDelta_1 \bigoplus \varDelta_2 \cong Q \bigoplus \varDelta_{10,-1}$ or $\varDelta_{10,-1} \oplus \varDelta_{10,-1}$, because $G \neq 1$. In the case where $V_{\varrho}(G) \cong Q \bigoplus \varDelta_{10,-1}$, we may assume that $\rho_1(G) = 1$ and $\rho_2(G) \cong SL(2, 5)$. Then since $|\rho_2(G)| \le |G| \le |\rho_1(G) \times \rho_2(G)| = |\rho_2(G)|, \quad G \cong \rho_2(G) \cong SL(2, 5)$.

Next we assume that $\Delta_1 \cong \Delta_2 \cong \Lambda_{10,-1}$. Put $K_i = \text{Ker } \rho_i$, i=1, 2. Since ρ is injective, $K_1 \cap K_2 = 1$. Since $K_1 K_2 / K_i \triangleleft SL(2, 5), K_1 K_2 / K_i \cong 1, Z(SL(2, 5))$ or SL(2, 5). The fact $|G: K_i| = |SL(2, 5)|$ implies $|K_1| = |K_2|$. If $|K_1K_2/K_1| =$ $|K_1K_2/K_2| = 1$, then $K_1 = K_2 = 1$ and $G \cong SL(2, 5)$. By [10] $Q[SL(2, 5)] \cong$ $\boldsymbol{Q} \bigoplus M_{\mathfrak{s}}(\boldsymbol{Q}) \bigoplus M_{\mathfrak{s}}(\boldsymbol{\Lambda}_{4,-1}) \bigoplus M_{2}(\boldsymbol{\Delta}_{3}) \bigoplus M_{4}(\boldsymbol{Q}) \bigoplus M_{3}(\boldsymbol{Q}(\boldsymbol{\vee} 5)) \bigoplus \boldsymbol{\Lambda}_{10,-1},$ where $\Delta_{3}\cong$ $(Q(\zeta_3), \tau, -1)$. Hence $V_Q(SL(2, 5)) \not\cong \Lambda_{10, -1} \oplus \Lambda_{10, -1}$. Thus $|K_1K_2/K_1| = |K_1K_2/K_2| \neq 1$. Suppose $K_1K_2/K_1 \cong K_1K_2/K_2 \cong Z(SL(2, 5)).$ that Since $\rho(K_1K_2) \subset$ $\rho_1(K_1K_2) \times \rho_2(K_1K_2) \subset Z(SL(2,5)) \times Z(SL(2,5)), \text{ we get } K_1K_2 \subset Z(G).$ Therefore G is a central extension of PSL(2, 5) with [G, G] = G. Since the Schur multiplier of PSL(2, 5) is 2, we have that $|K_1K_2| \leq 2$. But it is impossible. In fact, by the assumption, $|K_1K_2| = |K_1 \times K_2| = |K_1|^2 = |Z(SL(2, 5))|^2 = 4$. Thus $K_1K_2/K_i \cong SL(2, 5).$ Since $K_1 \cong K_1 K_2 / K_2 \cong SL(2, 5), |SL(2, 5) \times SL(2, 5)| =$ $|K_1K_2| \leq |G| \leq |\rho_1(G) \times \rho_2(G)| = |SL(2, 5) \times SL(2, 5)|.$ Hence we conclude that $G \cong SL(2, 5) \times SL(2, 5)$ if $V_{\boldsymbol{\varrho}}(G) \cong \Lambda_{10,-1} \bigoplus \Lambda_{10,-1}$.

LEMMA 2.3. Let Δ be a division algebra. Let G_1 and G_2 be subgroups of $M_2(\Delta)$. Let 1 be the unit element of $M_2(\Delta)$. Assume that $V_Q(G_i)$ contains the simple algebra A_i with $A_i \ni 1$, i=1, 2. If A_1 and A_2 satisfy one of the following conditions (1)-(4), then we have $[G_1, G_2] \neq 1$.

- $(1) \quad A_1 \cong A_2 \cong M_2(\boldsymbol{Q}).$
- $(2) \quad A_1 \cong A_2 \cong \Lambda_{4,-1}.$
- (3) $A_1\cong \Lambda_{4,-1}$ and $A_2\cong M_2(Q(\zeta_3)).$
- (4) $A_1\cong \Lambda_{4,-1}$ and $A_2\cong M_2(\boldsymbol{Q}(\boldsymbol{i})).$

PROOF. Suppose that $[G_1, G_2] = 1$. In any case the center of $A_1 = Q$. Since $a_1a_2 = a_2a_1$ for any element $a_i \in A_i$, $i = 1, 2, A_1 \bigotimes_Q A_2$ is isomorphic to

a Q-subalgebra A_1A_2 of $M_2(\Delta)$. On the other hand $M_2(Q)\otimes_Q M_2(Q)\cong M_4(Q)$, $\Lambda_{4,-1}\otimes_Q \Lambda_{4,-1}\cong M_4(Q)$, $\Lambda_{4,-1}\otimes_Q M_2(Q(\zeta_8))\cong M_4(Q(\zeta_8))$ and $\Lambda_{4,-1}\otimes_Q M_2(Q(i))\cong M_4(Q(i))$. Hence in any case $M_2(\Delta)$ contains a Q-subalgebra which is isomorphic to $M_4(Q)$. It is a contradiction. Thus we obtain $[G_1, G_2] \neq 1$.

LEMMA 2.4. Let G be a perfect subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. Then O(G) (the largest normal 2'-subgroup of G) is trivial.

PROOF. We assume that $O(G) \neq 1$. If $V_Q(O(G))$ is not a division algebra, by [7] (2.3) G has a normal subgroup of index 2, contradicting the assumption [G, G] = G. Therefore $V_{\varrho}(O(G))$ is a division algebra. By (2.1) all Sylow subgroups of O(G) are cyclic. Let p be the maximal prime number which divides the order of O(G). Let P be a Sylow p-subgroup Then it is well known that P is a normal subgroup of O(G)of O(G). Thus P is a normal subgroup of G. Since $G/C_G(P)$ is abelian, (see [5]). we have $G = C_G(P)$. Let S_p be a Sylow *p*-subgroup of G. Set R = $S_p \cap Z(N_G(S_p))$. Then $R \supset P$. Since S_p is abelian (See [6] Proposition 2.), by [5] (20.12) there exists a normal subgroup G_0 of G such that $G/G_0 \cong R$. Since [G, G] = G, we have $G = G_0$, and R = 1. Hence P = 1. It is a contradiction. Therefore O(G) = 1.

LEMMA 2.5. Let G be a perfect subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. We assume that no normal subgroup of G is isomorphic to DQ. Let N be a normal subgroup of G. If N is a 2-group, then $N \subset Z(G)$ and N is cyclic.

PROOF. The proof is by induction on |N|. Let $\Phi(N)$ be the Frattini subgroup of N. By induction $\Phi(N) \subset Z(G)$ and $\Phi(N)$ is cyclic.

First we will prove that N is generated by at most 3 elements.

By [7] $V_{\varrho}(N) \cong \Delta_1$, $\Delta_1 \bigoplus \Delta_2$ or $M_2(\Delta_1)$ for some division algebras Δ_1 and Δ_2 . If $V_{\varrho}(N) \cong \Delta_1 \bigoplus \Delta_2$, then it follows from [7] (2.3) that G has a normal subgroup of index 2. It contradicts the assumption [G, G] = G. Therefore $V_{\varrho}(N) \cong \Delta_1$ or $M_2(\Delta_1)$. In the case where $V_{\varrho}(N) \cong \Delta_1$ N is cyclic or generalized quaternion. It follows that N is generated by at most 2 elements. Hence we may assume that $V_{\varrho}(N) \cong M_2(\Delta_1)$. Suppose that Δ_1 is a commutative field. Then $V_c(N) \cong M_2(\Delta_1) \otimes \Delta_1 C \cong M_2(C)$. By [6] Lemma 3 N has a normal subgroup N_0 of index 2 such that $V_c(N_0) \cong C \bigoplus C$. It is easy to see that N_0 is an abelian group generated by at most 2 elements. Therefore N is generated by at most 3 elements. So it may be assumed that Δ_1 is not commutative. If $|\varphi(N)| = 1$, then N is abelian, which contradicts the assumption $V_{\varrho}(N) \cong M_2(\Delta_1)$. Therefore $|\varphi(N)| \ge 2$. Suppose |Z(N)| > 2. Since $Z(N) \subset$ the center of $M_2(\Delta_1)$, Z(N) is cyclic. Put K = the center of

MULTIPLICATIVE SUBGROUPS

 $M_2(\varDelta_1)$. By |Z(N)| > 2 K has an element of order 4, which implies $K \ni i$. Since K is a splitting field for N, it follows that $\varDelta_1 = K$. However \varDelta_1 is not commutative. Thus $|Z(N)| \leq 2$. Because $\varPhi(N) \subset Z(G)$, $2 \leq |\varPhi(N)| \leq |Z(N)| \leq 2$. Therefore $\varPhi(N) = Z(N)$ and $|\varPhi(N)| = 2$. On the other hand $N/\varPhi(N)$ is an elementary abelian group of order $\leq 2^4$ by [7]. Suppose that $|N/\varPhi(N)| = 2^4$. Since N is not abelian, $[N, N] = \varPhi(N)$. Thus N is an extra-special 2-group of order 32. It is well known that $N \cong DD$ or DQ(see [3]). And by the assumption $N \cong DD$. Since Q is a splitting field for DD (See [3].), it follows that \varDelta_1 is commutative. It is a contradiction. Thus $|N/\varPhi(N)| \leq 2^3$ and N is generated by at most 3 elements.

Assume that $G/C_{G}(N)$ is non-solvable. By (1.2) $G/C_{G}(N)$ has an element of order 5. Let g be an element of G such that the order of $gC_{g}(N)$ Since $N/\Phi(N)$ is an elementary abelian group of order $\leq 2^3$, is 5. $|\operatorname{Aut}(N/\Phi(N))|||GL(3, 2)|=2^{3}\cdot 3\cdot 7.$ Therefore for any $n \in N$ $g^{-1}ng\Phi(N) =$ We put $z=n^{-1}g^{-1}ng$ and a= the order of $\Phi(N)=2^t$. $n\Phi(N)$. Then And the order of $gC_{G}(N)$ divides $a=2^{t}$, which is a $(g^a)^{-1}ng^a=nz^a=n.$ Thus we obtain that $G/C_{\sigma}(N)$ is a solvable group. By contradiction. the assumption [G, G] = G we get $G = C_G(N)$. This means $N \subset Z(G)$. Since $N \subset Z(G) \subset$ the center of $M_2(\varDelta)$, it follows that N is cyclic. The proof of the lemma is completed.

LEMMA 2.6. Let G be a perfect subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. We assume that no normal subgroup of G is isomorphic to DQ. Let N be the largest solvable normal subgroup of G. Then we have

(1) $G/N \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$.

(2) N is a cyclic 2-group and $N=Z(G)\neq 1$.

PROOF. By (1.2) G/N is isomorphic to a subgroup W of $\operatorname{Aut}(T)$ with $W \supset T$, where $T \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$. It follows from (1.3) that $\operatorname{Aut}(T)/T$ is a 2-group. Therefore [G, G] = G means that $G/N \cong T$.

Next we will show the assertion (2). Suppose that N is not a 2-group. Since O(G)=1 by (2.4), there exist normal subgroups N_0 , N_1 of G such that $N \supset N_1 \supset N_0 \neq 1$, N_0 is a 2-group and N_1/N_0 is an elementary abelian p-group for some odd prime p. By (2.5) N_0 is a cyclic group and $N_0 \subset Z(G)$, which implies $N_1 \cong N_0 \times (N_1/N_0)$. Thus $O(G) \supset N_1/N_0 \neq 1$. But it is impossible. Hence we obtain that N is a 2-group. By (2.5) $N \subset Z(G)$, and N = Z(G) because $G/N \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$.

Now we determine all perfect subgroups G of $M_2(\Delta)$ such that no normal subgroup of G is isomorphic to DQ.

PROPOSITION 2.7. Let Δ be a division algebra. Let G be a perfect subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. If no normal subgroup of G is isomorphic to DQ, then $G \cong SL(2, 5)$ or SL(2, 9), and $\Delta \cong (Q(\zeta_s), \tau, -1)$, where $\langle \tau \rangle = \text{Gal}(Q(\zeta_s)/Q)$.

PROOF. Let N be the largest solvable normal subgroup of G. By (2.6) $G/N \cong PSL(2, 5)$, PSL(2, 9) or $PSL(2, 5) \times PSL(2, 5)$, and Z(G) = N. This means that G is a central extension of G/N with [G, G] = G. The central extensions of PSL(2, 5), PSL(2, 9) and $PSL(2, 5) \times PSL(2, 5)$ are well known (see [9] V § 25).

First we assume that $G/N \cong PSL(2, 5)$. Since $|H^2(PSL(2, 5), C^*)| = 2$, |N| = 2 and $G \cong SL(2, 5)$.

In the case where $G/N \cong PSL(2, 9)$, since $|H^2(PSL(2, 9), C^{\times})| = 6$ and N is a 2-group, we have that |N|=2 and $G \cong SL(2, 9)$.

Suppose that $G/N \cong PSL(2,5) \times PSL(2,5)$. Since $H^2(PSL(2,5) \times PSL(2,5), C^{\times}) \cong H^2(PSL(2,5), C^{\times}) \times H^2(PSL(2,5), C^{\times})$, there exists an epimorphism ρ from $SL(2,5) \times SL(2,5)$ to G. Put $G_1 = \rho(SL(2,5) \times 1)$ and $G_2 = \rho(1 \times SL(2,5))$. Since N is cyclic and PSL(2,5) is not a subgroup of $M_2(\Delta)$, $G_i \cong SL(2,5)$, $|G_1 \cap G_2| = 2$ and $[G_1, G_2] = 1$. If $V_Q(G_i) \cong \Delta_1 \bigoplus \Delta_2$ for some division algebras Δ_1 , Δ_2 , then G has a normal subgroup of index 2 by [7] (2.3), contradicting the assumption [G, G] = G. Thus $V_Q(G_i) \cong \Delta^{(i)}$ or $M_2(\Delta^{(i)})$ for some division algebra $\Delta^{(i)}$, i=1, 2. By $(2.2) \Delta^{(i)} \cong \Lambda_{10,-1} \cong \Lambda_{4,-1} \bigotimes_Q Q(\sqrt{5})$ if $V_Q(G_i) \cong \Delta^{(i)}$. By [10] $\Delta^{(i)} \cong (Q(\zeta_8), \tau, -1)$ if $V_Q(G_i) \cong M_2(\Delta^{(i)})$. In any case it follows from (2.3) that $[G_1, G_2] \neq 1$. But it is impossible. Thus $G/N \ncong PSL(2, 5) \times PSL(2, 5)$.

In the case where $G \cong SL(2, 5)$ or SL(2, 9), if $QG \oplus > M_2(\Delta)$, then $\Delta \cong (Q(\zeta_3), \tau, -1)$ (see [10]). The proof of proposition is completed.

\S 3. The extra-special 2-group DQ.

In this section we will determine all perfect subgroups of $M_2(\Delta)$. In §2 we determined these groups G if no normal subgroup of G is isomorphic to DQ. Thus we may assume that G has a normal subgroup which is isomorphic to DQ.

We put $D = \langle a, b | a^4 = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$ and $Q = \langle c, d | c^4 = 1, c^2 = d^2, dcd^{-1} = c^{-1} \rangle$. Let set $S = \{x | x \in DQ, x^2 = 1\} - \{1\}$. Then S is decomposed into the disjoint conjugate classes of DQ, $S = C_0 \cup C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5$, where $C_0 = \{a^2\}, C_1 = \{b, a^2b\}, C_2 = \{ab, a^3b\}, C_3 = \{ac, a^3c\}, C_4 = \{ad, a^3d\}$ and $C_5 = \{acd, a^3cd\}$. We set $\Omega = \{C_1, C_2, C_3, C_4, C_5\}$. Let τ be an automorphism of DQ. Since $C_5 = C_0, \tau$ induces a permutation $\tilde{\tau}$ on Ω . Let ϕ be the homomorphism from Aut(DQ) to S_5 determined by $\phi(\tau) = \tilde{\tau}$. Let $\tau \in \text{Ker } \phi$. Then

 τ induces the identity map on DQ/[DQ, DQ], and, as is well known, τ is an inner automorphism of DQ. Thus Ker $\phi = \text{Inn Aut}(DQ)$. Let α , β , γ , δ be the automorphisms of DQ determined by the following;

 $a^{\alpha}=a, b^{\alpha}=ab, c^{\alpha}=c, d^{\alpha}=d,$

 $a^{\beta} = bc^{-1}, b^{\beta} = ab, c^{\beta} = c, d^{\beta} = a^{-1}bcd,$

 $a^{\tau} = bd^{-1}, b^{\tau} = ab, c^{\tau} = abcd, d^{\tau} = d, and$

 $a^{\mathfrak{d}}=a^{\mathfrak{d}}bcd$, $b^{\mathfrak{d}}=ab$, $c^{\mathfrak{d}}=a^{-1}bd$, $d^{\mathfrak{d}}=abc$.

Then $\phi(\alpha) = (C_1, C_2)$, $\phi(\beta) = (C_1, C_2, C_3)$, $\phi(\gamma) = (C_1, C_2, C_4)$ and $\phi(\delta) = (C_1, C_2, C_5)$. Since $\phi(\alpha)$, $\phi(\beta)$, $\phi(\gamma)$ and $\phi(\delta)$ generate S_5 , $\operatorname{Aut}(DQ)/\operatorname{Inn}\operatorname{Aut}(DQ) \cong S_5$ and $\phi(\langle \beta, \gamma, \delta \rangle) \cong A_5 \cong PSL(2, 5)$. It is easy to see that β, γ, δ can be regarded as permutations on $\{b, ab, ac, ad, acd\}$. For any $\sigma \in \operatorname{Aut}(DQ)$, $\sigma = 1$ if σ is the identity permutation on $\{b, ab, ac, ad, acd\}$. Therefore we obtain that $\langle \beta, \gamma, \delta \rangle \cong A_5 \cong PSL(2, 5)$. Let H be a central extension of $\langle \beta, \gamma, \delta \rangle$ by $\langle a^2 \rangle$ with [H, H] = H. Then $H \cong SL(2, 5)$ (see [9] V § 25). Let $\{u_\sigma | \sigma \in \langle \beta, \gamma, \delta \rangle$ in H. The set HDQ forms a group if we define $u_{\sigma}^{-1}xu_{\sigma} = x^{\sigma}$, $\sigma \in \langle \beta, \gamma, \delta \rangle$, $x \in DQ$. We denote this group by E. Since $H \cap DQ = \langle a^2 \rangle$, E is an extension of PSL(2, 5) by DQ.

LEMMA 3.1. E is a subgroup of $M_2(\Lambda_{4,-1})$ and $V_Q(DQ) = V_Q(E) = M_2(\Lambda_{4,-1})$.

PROOF. $\Lambda_{4,-1}$ is the ordinary quaternion algebra over Q, i.e. $\Lambda_{4,-1} = Q + Qi + Qj + Qk$ with the relations; $i^2 = j^2 = k^2 = -1$, ij = -ji = k. Let ρ be the homomorphism from E to $M_2(\Lambda_{4,-1})$ determined by

$\rho(a) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\rho(b) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$	$egin{array}{c} 0 \\ 1 \end{pmatrix}$,	$ ho(c) = \begin{pmatrix} i \\ 0 \end{pmatrix}$	$egin{array}{c} 0 \\ m{i} \end{pmatrix}$,	$ ho(d) = \begin{pmatrix} j \\ 0 \end{pmatrix}$	$egin{array}{c} 0 \ j \end{pmatrix}$,
$ \rho(u_{\beta}) = \begin{pmatrix} x & -x \\ \overline{x} & \overline{x} \end{pmatrix} $	$\left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{y} \end{array}\right), \rho(\boldsymbol{u}_{r}) = \begin{pmatrix} \boldsymbol{y} \\ \boldsymbol{\overline{y}} \end{pmatrix}$	$egin{array}{c} -oldsymbol{y} \ oldsymbol{ar{y}} \end{pmatrix}$	and	$\rho(u_{\delta}) =$	$egin{pmatrix} oldsymbol{z} & -oldsymbol{z} \ \overline{oldsymbol{z}} & \overline{oldsymbol{z}} \end{pmatrix}$,	

where x = (1-i)/2, y = (1-j)/2 and z = (1-k)/2. It is easy to see that $V_{Q}(\rho(DQ)) = M_{2}(\Lambda_{4,-1})$.

We will show that ρ is injective. Suppose that $\operatorname{Ker} \rho \cap DQ \neq 1$. Then $\operatorname{Ker} \rho \cap Z(DQ) \neq 1$. Since |Z(DQ)| = 2, $\operatorname{Ker} \rho \supset Z(DQ)$. Therefore $\rho(DQ) \cong DQ/\operatorname{Ker} \rho$ is an abelian group, because DQ/Z(DQ) is an elementary abelian group. However $[\rho(c), \rho(d)] \neq 1$. Thus $\operatorname{Ker} \rho \cap DQ = 1$. We set $Q' = \{\rho(C_1), \rho(C_2), \rho(C_3), \rho(C_4), \rho(C_5)\}$. Let $\sigma \in E$. Then $\rho(\sigma)$ induces a permutation $\rho(\sigma)$ on Q'. We denote by ϕ the mapping $\rho(\sigma) \rightarrow \rho(\sigma)$. We can easily check that $\phi(\langle \rho(u_\beta), \rho(u_7), \rho(u_6) \rangle) \cong PSL(2, 5)$ and $\operatorname{Ker} \phi \supset \rho(DQ)$. Therefore $|\rho(E)| = |\rho(E)$: $\operatorname{Ker} \phi ||\operatorname{Ker} \phi| \ge |PSL(2, 5)||\rho(DQ)| = |PSL(2, 5)||DQ| = |E|$. Thus

 ρ is injective. Hence we can regard E as a subgroup of $M_2(\Lambda_{4,-1})$.

The fact $V_{\varrho}(DQ) = M_2(\Lambda_{4,-1})$ and the fact $V_{\varrho}(DQ) \subset V_{\varrho}(E) \subset M_2(\Lambda_{4,-1})$ imply $V_{\varrho}(E) = M_2(\Lambda_{4,-1})$, as desired.

Let G be a perfect subgroup of $M_2(\Delta)$. We assume that G has a normal subgroup N which is isomorphic to DQ.

LEMMA 3.2. If $V_{Q}(G) = M_{2}(\Delta)$, then $|C_{G}(N)| = 2$.

PROOF. In the proof of (3.1) we showed that $DQ \subset M_2(\Lambda_{4,-1})$ and $V_Q(DQ) = M_2(\Lambda_{4,-1})$. Since DQ/[DQ, DQ] is an elementary abelian group of order 16, $Q[DQ/[DQ, DQ]] \cong Q \oplus Q \oplus \cdots \oplus Q$. Because $\dim_Q M_2(\Lambda_{4,-1}) = 16$, $Q[DQ] \cong Q \oplus Q \oplus \cdots \oplus Q \oplus M_2(\Lambda_{4,-1})$. Therefore $V_Q(N) \cong M_2(\Lambda_{4,-1})$. Let P be a Sylow 2-subgroup of $C_G(N)$. Suppose that P has an element x of order 4. Then $V_Q(N) V_Q(\langle x \rangle) \cong V_Q(N) \otimes_Q V_Q(\langle x \rangle) \supset M_2(\Lambda_{4,-1}) \otimes_Q Q(i) \cong M_4(Q(i))$. It contradicts the fact $V_Q(N) V_Q(\langle x \rangle) \subset M_2(\Delta)$. This implies that any element of P is of order ≤ 2 . Thus by [6] P is an elementary abelian group generated by at most 2 elements. It follows from [7] (3.1) that $C_G(N)$ has a normal 2-complement M. Since O(G) = 1 by (2.4), M = 1 and $C_G(N) = P$. If $|C_G(N)| = |P| = 4$, then $V_Q(P) \cong Q \oplus Q$, and by [7] (2.3) G has a normal subgroup of index 2. But it is impossible. Therefore $|C_G(N)| = |P| = 2$.

The factor group $G/C_{g}(N)$ is isomorphic to a subgroup of Aut(N). Since $\operatorname{Aut}(N) \cong \langle \alpha, \beta, \gamma, \delta \rangle DQ/[DQ, DQ]$ and $[G, G] = G, G/C_G(N) \cong$ $\langle \beta, \gamma, \delta \rangle DQ/[DQ, DQ]$. We denote this isomorphism by ϕ . Let ρ be the morphism from G to Aut(DQ) determined by the mapping $x \rightarrow \phi(xC_G(N))$. We put $H = \rho^{-1}(\langle \beta, \gamma, \delta \rangle)$. On the other hand $G/C_{G}(C_{G}(N))$ is isomorphic to a subgroup of Aut($C_{a}(N)$). Since $|C_{a}(N)|=2$ and [G, G]=G, we have G= $C_{g}(C_{g}(N))$, and so $C_{g}(N) \subset Z(G)$. Because $H/C_{g}(N) \cong PSL(2, 5)$, H is a central extension of PSL(2, 5) by $C_{a}(N)$. It follows that $[H, H]C_{a}(N)/C_{a}(N) \cong$ $[PSL(2, 5), PSL(2, 5)] \cong PSL(2, 5).$ If $[H, H] \cap C_{a}(N) = 1$, then $[H, H] \cong$ PSL(2, 5) and $[H, H] \subset M_2(\Delta)$. It is a contradiction (see [8]). Therefore $[H, H] \supset C_{g}(N)$ and [H, H] = H. Thus $H \cong SL(2, 5)$. By the definition of E we have $G = HN \cong E$. Let V be an irreducible $M_2(\Delta)$ -module. Put K =the center of $M_2(\Delta)$. Since [G, G] = G, by [7] (2.3) the number of all isomorphism classes of irreducible KN-submodules of V is 1. Therefore $V \cong U \oplus U \oplus \cdots \oplus U$ as KN-module, where U is an irreducible KN-module. Let χ be an irreducible complex character corresponding to U. Since $Q[DQ] \cong Q \oplus Q \oplus \cdots \oplus Q \oplus M_2(\Lambda_{4,-1})$, we have $CN \cong C[DQ] \cong C \oplus C \oplus \cdots \oplus C \oplus C$ $M_4(C)$. This shows $\chi(1)=16$, because χ is faithful character. For any $g \in E$ the irreducible character χ^g has degree 16, and $\chi^g = \chi$, because N has only one irreducible character χ of degree 16. This implies $\chi^{\alpha}|_{N} =$

|G: N| χ . Since $(\chi^{g}, \chi^{g})_{g} = (\chi^{g}|_{N}, \chi)_{N} = |G: N|$, χ^{g} is decomposed into the irreducible complex characters μ_{i} of G, $\chi^{g} = \mu_{1} + \mu_{2} + \cdots + \mu_{i}$, where t = |G: N|. Since $1 \neq (\mu_{i}, \chi^{g})_{g} = (\mu_{i}|_{N}, \chi)_{N}$, $\mu_{i}(1) \geq \chi(1)$. Thus $|G: N|\chi(1) = \chi^{g}(1) = \sum_{i=1}^{t} \mu_{i}(1) \geq |G: N|\chi(1)$, which implies $\mu_{i}(1) = \chi(1) = 16$. Let μ be an irreducible complex character corresponding to V. Since $(\mu|_{N}, \chi)_{N} \neq 1$, we have $\mu(1) = 16$, which shows $\dim_{K} M_{2}(\varDelta) = 16 = \dim_{Q} M_{2}(\varDelta_{4,-1}) = \dim_{K} M_{2}(\varDelta_{4,-1} \otimes_{Q} K)$. Since $M_{2}(\varDelta) \supset M_{2}(\varDelta_{4,-1} \otimes_{Q} K)$, we have $M_{2}(\varDelta) = M_{2}(\varDelta_{4,-1} \otimes_{Q} K)$.

Hence by (2.2) and (2.7) we have

THEOREM 3.3. Let Δ be a division algebra. Let G be a perfect subgroup of $M_2(\Delta)$. Then one of the following holds:

(1) $G \cong SL(2, 5)$ and $V_{Q}(G) \cong \Lambda_{10,-1}$;

(2) $G \cong SL(2, 5)$ and $V_{\boldsymbol{Q}}(G) \cong \boldsymbol{Q} \bigoplus \Lambda_{10,-1};$

(3) $G \cong SL(2, 5) \times SL(2, 5)$ and $V_{Q}(G) \cong \Lambda_{10,-1} \bigoplus \Lambda_{10,-1};$

(4) $G \cong SL(2, 5)$ and $V_{Q}(G) \cong M_{2}((Q(\zeta_{3}), \tau, -1))$

(5) $G \cong SL(2, 9)$ and $V_Q(G) \cong M_2((Q(\zeta_3), \tau, -1));$ or

(6) $G \cong E$ and $V_{\varrho}(G) \cong M_2(\Lambda_{4,-1} \otimes_{\varrho} K)$ for some commutative field K.

§4. Non-solvable groups.

In this section we consider non-solvable subgroups of $M_2(\varDelta)$.

Let G be a non-solvable subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. Then G has a perfect normal subgroup H such that G/H is solvable. By [7] (2.1) $V_Q(H) \cong \Delta_1, \ \Delta_1 \bigoplus \Delta_2$ or $M_2(\Delta_1)$ for some division algebras $\Delta_1, \ \Delta_2$.

LEMMA 4.1. Let N be a normal subgroup of G. Assume that $V_{\mathbf{Q}}(N) \cong \Delta_1 \bigoplus \Delta_2$. Then

(1) G has a normal subgroup G_0 of index 2.

(2) Put $G/G_0 = \{G_0, gG_0\}$. Then there exist normal subgroups T_1, T_2 of G_0 and relatively prime integers m, r such that $T_1 \cap T_2 = 1, T_1^g = T_2, G_0/T_1 \cong SL(2, 5) \times G_{m,r}$ and $\Delta \cong \Lambda_{10,-1} \bigotimes_Q \Lambda_{m,r}$.

PROOF. By [7] (2.3) G has a normal subgroup G_0 of index 2 such that $V_{\varrho}(G_0) \cong \Delta \oplus \Delta$. Moreover G_0 has normal subgroups T_1 , T_2 satisfying $T_1 \cap T_2 = 1$, $T_1^{\varrho} = T_2$ and $G_0/T_1 \cong \rho(G_0)$, where $\{1, g\}$ is a set of representatives of G/G_0 in G and ρ is the projection of $V_{\varrho}(G_0)$ on the first component of $\Delta \oplus \Delta$. Therefore $G_0/T_1 \cong G_0/T_2$. If G_0/T_1 is solvable, then G_0/T_1 and $T_1T_2/T_2 \cong T_1$ are solvable. This means that G_0 is solvable. But it is impossible. Therefore G_0/T_1 is non-solvable. Since $V_{\varrho}(\rho(G_0)) = \Delta$, it follows from (2.1) that $\rho(G_0) \cong SL(2, 5) \times G_{m,r}$ and $\Delta \cong \Lambda_{10,-1} \otimes_{\varrho} \Lambda_{m,r}$ for some relatively prime integers m, r.

LEMMA 4.2. Assume that $V_{Q}(H) \cong \Delta_1$ or $M_2(\Delta_1)$. Let P be a non-cyclic 2-subgroup of $M_2(\Delta)$ of order >4.

(1) If $V_Q(P) \cong \Gamma_1$ or $\Gamma_1 \bigoplus \Gamma_2$ for some division algebras Γ_1 , Γ_2 , then $[H, P] \neq 1$.

(2) Especially, if P is the quaternion group of order 8 or an abelian group, then $[H, P] \neq 1$.

PROOF. (1) By (3.3) $V_{\varrho}(H) \supset \Lambda_{4,-1} \ni 1$ or $V_{\varrho}(H) \supset M_2(Q(\zeta_3)) \supset M_2(Q) \ni 1$. First we assume that $V_{\varrho}(P) \cong \Gamma_1$. Since P is not cyclic, it follows from (2.1) that P is generalized quaternion and $V_{\varrho}(P) \supset \Lambda_{4,-1} \ni 1$. By (2.3) we have that $[H, P] \neq 1$. Next we assume that $V_{\varrho}(P) \cong \Gamma_1 \oplus \Gamma_2$. In the case where $V_{\varrho}(H) \supset M_2(Q) \ni 1$, if [H, P] = 1 then $M_2(\Delta) \supset M_2(Q) \otimes_{\varrho}(\Gamma_1 \oplus \Gamma_2) \cong M_2(\Gamma_1) \oplus M_2(\Gamma_2)$. It is a contradiction. So we may assume that $V_{\varrho}(H) \supset \Lambda_{4,-1} \ni 1$. In the case where P is abelian, since P is generated by at most 2 elements, |P| > 4 implies that P has an element of order 4. Thus $V_{\varrho}(P) \supset Q \oplus Q(i) \ni 1$. If [P, H] = 1, then $M_2(\Delta) \supset \Lambda_{4,-1} \otimes_{\varrho}(Q \oplus Q(i)) \cong \Lambda_{4,-1} \oplus M_2(Q(i))$, which is a contradiction. Therefore $[P, H] \neq 1$. In the case where P is non-abelian, $\Gamma_1 \supset \Lambda_{4,-1}$ or $\Gamma_2 \supset \Lambda_{4,-1}$. Thus $V_{\varrho}(P) \supset Q \oplus \Lambda_{4,-1} \ni 1$. If [H, P] = 1, then $M_2(Q) \otimes_{\varrho}(Q \oplus \Lambda_{4,-1}) \cong M_2(Q) \oplus M_2(\Lambda_{4,-1})$. Thus $[H, P] \neq 1$.

(2) If P is the quaternion group of order 8 or an abelian group, then QP does not contain a simple algebla which is isomorphic to $M_2(\Gamma)$ for some division algebra Γ . Thus $V_Q(P) \cong \Gamma_1$ or $\Gamma_1 \bigoplus \Gamma_2$ for some division algebra Γ_1, Γ_2 . Therefore by (1) $[H, P] \neq 1$.

We now have

THEOREM 4.3. Let Δ be a division algebra. Let G be a non-solvable subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. Then G satisfies one of the following conditions (1) and (2).

(1) G has a normal subgroup G_0 of index 2. Put $G/G_0 = \{G_0, gG_0\}$. Then there exist normal subgroups T_1 , T_2 of G_0 and relatively prime integers m, r such that $T_1 \cap T_2 = 1$, $T_1^g = T_2$, $G_0/T_1 \cong SL(2, 5) \times G_{m,r}$ and $\Delta \cong \Lambda_{10,-1} \bigotimes_Q \Lambda_{m,r}$.

(2) Let H be the perfect normal subgroup of G such that G/H is solvable. Then H and $C_{g}(H)$ satisfy the one of the following conditions.

(i) $H \cong SL(2, 5)$, SL(2, 9) or E, and $C_{g}(H) \cong G_{m,r}$ for some relatively prime integers m, r.

(ii) $H \cong SL(2, 5)$, $O(C_{g}(H)) \cong G_{m,r}$ for some relatively prime integers $m, r, and C_{g}(H)/O(C_{g}(H))$ is a cyclic 2-group or a dihedral group of order $2^{n} \ge 4$.

PROOF. Let H be the perfect normal subgroup of G such that G/H

is solvable. We assume that G does not satisfy the condition (1). Then (4.1) implies that $V_{\varrho}(H) \cong \Delta_1$ or $M_2(\Delta_1)$, $V_{\varrho}(C_{\mathfrak{g}}(H)) \cong \Delta_2$ or $M_2(\Delta_2)$ for some division algebras Δ_1 , Δ_2 . Since G/H is solvable, $C_{\mathfrak{g}}(H)/(H \cap C_{\mathfrak{g}}(H))$ is solvable, which implies $C_{\mathfrak{g}}(H)$ is solvable.

First we assume that $V_{\varrho}(H) \cong M_2(\varDelta_1)$. Then it follows from (2.3) $V_{\varrho}(C_{\sigma}(H)) \cong \varDelta_2$. By (2.1) and (4.2) a Sylow 2-subgroup of $C_{\sigma}(H)$ is cyclic, and $C_{\sigma}(H) \cong G_{m,r}$ for some relatively prime integers m, r. By (3.3) $H \cong SL(2, 5), SL(2, 9)$ or E.

We assume that $V_{\mathbf{Q}}(H) \cong \Delta_1$. In this case $H \cong SL(2, 5)$ and $V_{\mathbf{Q}}(H) \cong \Delta_{10,-1}$, by (3.3). If $V_{\mathbf{Q}}(C_{\mathbf{G}}(H)) \cong \Delta_2$, then $C_{\mathbf{G}}(H) \cong G_{\mathbf{m},\mathbf{r}}$ for some relatively prime integers m, r. Thus we may assume that $V_{\mathbf{Q}}(C_{\mathbf{G}}(H)) \cong M_2(\Delta_2)$.

Let P be a Sylow 2-subgroup of $C_{\sigma}(H)$. Suppose that P is abelian. By [7] (3.1) $C_{\sigma}(H)/O(C_{\sigma}(H)) \cong P$. If P is a non-cyclic group of order >4, then $[P, H] \neq 1$ by (4.2). It is a contradiction. Thus P is a cyclic group or an elementary abelian group of order 4.

Next we suppose that P is not abelian. We will prove that P is a dihedral group. By (4.2) $V_{\varrho}(P) \cong M_2(\Gamma)$ for some division algebra Γ . If Γ is not a commutative field, then $M_2(\Gamma) \supset M_2(\Lambda_{4,-1}) \ni 1$. Since $V_{\varrho}(H) \supset \Lambda_{4,-1} \ni 1$, it follows from (2.3) $[P, H] \neq 1$. It is impossible. Thus Γ is a commutative field. If P does not have a cyclic subgroup of index 2, then P has a subgroup P_0 of index 2 such that $V_{\varrho}(P_0) \cong \Gamma \bigoplus \Gamma$. Since Γ is commutative, P_0 is an abelian group. By (4.2) $|P_0| \leq 4$, and P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. In the case where $P \cong \langle a, b | a^{2^n} = 1, b^2 = 1, bab^{-1} = a^{1+2^{n-1}} \rangle$ $n \geq 3$, $Z(P) = \langle a^2 \rangle$ and $\Gamma \ni i$. Therefore $V_{\varrho}(P) \supset M_2(Q(i)) \ni 1$. It contradicts the fact $P \subset C_{\alpha}(H)$ by (2.3). Hence it follows from (4.2) that P is a dihedral group.

We will show that $C_{g}(H)/O(C_{g}(H)) \cong P$. Suppose that $C_{g}(H)/O(C_{g}(H)) \not\cong P$. Then $C_{g}(H)$ has normal subgroups K_{0} , K_{1} , K_{2} such that $C_{g}(H) \supset K_{2} \supset K_{1} \supset K_{0} = O(C_{g}(H))$, K_{2}/K_{1} is an elementary abelian *p*-group for some odd prime *p* and K_{1}/K_{0} is a 2-group. If K_{1}/K_{0} is abelian, then by [7] (3.1) K_{2} has a normal 2-complement *K*. Since *K* is a characteristic subgroup of K_{2} , $C_{g}(H) \supset K$ and $O(C_{g}(H)) \supset K$, which is a contradiction. Thus K_{1}/K_{0} is a dihedral group and $\operatorname{Aut}(K_{1}/K_{0})$ is a 2-group. Let L/K_{0} be a Sylow *p*-subgroup of $C_{K_{2}/K_{0}}(K_{1}/K_{0})$. Then $[L/K_{0}, K_{1}/K_{0}] = 1$ and $L/K_{0} \cong K_{2}/K_{1}$, because $|K_{2}/K_{0} \in C_{K_{2}/K_{0}}(K_{1}/K_{0})| ||\operatorname{Aut}(K_{1}/K_{0})|$. Thus we have that $K_{2}/K_{0} \cong (L/K_{0}) \times (K_{1}/K_{0})$. Hence K_{2} has a normal 2-complement *L*, which is a contradiction. Thus we conclude that $C_{g}(H)/O(C_{g}(H)) \cong P$.

Finally we will prove that $O(C_{\mathcal{G}}(H)) \cong G_{m,r}$ for some relatively prime

integers m, r. If $V_{\varrho}(O(C_{\sigma}(H))) \cong \Delta_1 \bigoplus \Delta_2$ for some division algebras Δ_1, Δ_2 , then by (4.1) G satisfies the condition (1). So $V_{\varrho}(O(C_{\sigma}(H)))$ is a division algebra. It follows from (2.1) that $O(C_{\sigma}(H)) \cong G_{m,r}$ for some relatively prime integers m, r.

THEOREM 4.4. Let Δ be a division algebra. Let G be a non-solvable subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. Assume that G does not satisfy the condition (1) in (4.3). Then there exists a chain of normal subgroups of G, $G \supset G_1 \supset G_2 = O(G)$, which satisfies the following conditions (1)-(3).

(1) $G_1/G_2 \cong SL(2, 5)P$, SL(2, 9) or E, where P is a cyclic 2-group or a dihedral group of order $2^n \ge 4$, and SL(2, 5)P is the central product of SL(2, 5) and P.

(2) G/G_1 is a 2-group. The order $|G/G_1| \leq 4$ if $G_1/G_2 \approx SL(2, 5)P$, ≤ 8 if $G_1/G_2 \approx SL(2, 9)$, ≤ 2 if $G_1/G_2 \approx E$.

(3) $O(G) \cong G_{m,r}$ for some relatively prime integers m, r with (n, t) = 1.

PROOF. Let H be the perfect normal subgroup of G such that G/H is solvable. Let N be the largest solvable normal subgroup of G. Since G does not satisfy the condition (1) in (4.3), it follows from (4.1) that $V_Q(O(G))$ is a division algebra. By (2.1) $O(G) \cong G_{m,r}$ for some relatively prime integers m, r with (n, t) = 1, and $N \supset O(G)$.

Suppose that $H \cong SL(2, 5)$ or SL(2, 9). For any $h \in H$, $n \in N$, we have $[h, n] = \pm 1$, because $H \cap N = \{\pm 1\}$. Therefore $n^{-2}hn^2 = h$, which implies $|N: C_N(H)| \leq 2$. Since $C_G(H)$ is a solvable normal subgroup of G by (4.3), we have $N \supseteq C_G(H)$ and $C_N(H) = C_G(H) \supseteq O(G)$. We put $G_1 = HC_G(H)$. Since $|\operatorname{Aut}(PSL(2, 5))/PSL(2, 5)| = 2$ and $|\operatorname{Aut}(PSL(2, 9))/PSL(2, 9)| = 4$, it follows from (1.2) that $|G/HN| \leq 2$ if $H \cong SL(2, 5)$, ≤ 4 if $H \cong SL(2, 9)$. Thus $|G/HC_G(H)| \leq 4$ if $H \cong SL(2, 5)$, ≤ 8 if $H \cong SL(2, 9)$.

Let P be a Sylow 2-subgroup of $C_{g}(H)$. Then HP is the central product of H and P. By (4.3) if $H \cong SL(2, 5)$, then P is a cyclic group or a dihedral group of order ≥ 4 . Suppose that $H \cong SL(2, 9)$. By the proof of (4.3) and by (3.3) $V_{\varrho}(H) \cong M_{2}((Q(\zeta_{3}), \tau, -1))$ and $V_{\varrho}(C_{g}(H))$ is a division algebra. If $C_{g}(H)$ has an element of order 4, then $V_{\varrho}(C_{g}(H)) \supset$ $Q(i) \geq 1$, and $M_{2}(A) \supset M_{2}((Q(\zeta_{3}), \tau, -1)) \otimes_{\varrho} Q(i) \cong M_{4}(Q(i))$. But it is impossible. Therefore |P|=2 if $H \cong SL(2, 9)$.

We now assume that $H \cong E$. Since $Q[DQ] \cong Q \oplus Q \oplus \cdots \oplus Q \oplus M_2(\Lambda_{4,-1})$ we have $V_Q(DQ) \cong M_2(\Lambda_{4,-1})$. It follows from (2.3) that $V_Q(C_G(DQ))$ is a division algebra. If $C_G(DQ)$ has an element of order 4, then $V_Q(C_G(DQ)) \supset Q(i) \ni 1$, which is a contradiction. Therefore the order of a Sylow 2-subgroup of $C_G(DQ)$ is 2. We set $G_1 = EC_G(DQ)$. Since $|\operatorname{Aut}(DQ): (E/[DQ, DQ])| = 2$, $|G/EC_G(DQ)| \leq 2$. Thus we have $O(G) = O(C_G(DQ))$, which means $G_1/G_2 \cong E$, because $|E \cap C_{d}(DQ)| = 2$. The proof of the theorem is completed.

§ 5. Additional result.

Let G be a subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. Let P be a Sylow 2-subgroup of G. Then $V_Q(P) \cong \Delta_1$, $\Delta_1 \bigoplus \Delta_2$ or $M_2(\Delta_1)$, where Δ_1 and Δ_2 are commutative fields or the quaternion algebras $\Lambda_{2^n,-1}$ (see [6]). We put $H_n = \Lambda_{2^n,-1}$. In [7] we considered all finite subgroups of $M_2(\Delta)$ with abelian Sylow 2-groups. So we may assume that P is not abelian. If $V_Q(P) \cong \Delta_1$, then P is a generalized quaternion group.

Here we will prove a proposition which gives an information on G in the case where $V_Q(P) \cong \Delta_1 \bigoplus \Delta_2$ or $M_2(\Delta_1)$.

PROPOSITION 5.1. Let Δ be a division algebra. Let G be a subgroup of $M_2(\Delta)$ such that $V_Q(G) = M_2(\Delta)$. Let P be a Sylow 2-subgroup of G. Assume that $V_Q(P)$ satisfies one of the following conditions.

(1) $V_{\mathbf{Q}}(P) \cong H_n \bigoplus K$, $n \ge 3$, where K is a commutative field.

(2) $V_{\mathbf{Q}}(P) \cong H_n \bigoplus H_m, n \ge 3, n \ge m \ge 2.$

 $(3) \quad V_{\boldsymbol{\varrho}}(P) \cong M_2(H_n), \ n \ge 3.$

Then the Schur index of Δ is 2, and G is a subgroup of GL(4, C).

To prove this proposition we will use the following result.

(5.2) (Benard-Schacher [2]). Let χ be an irreducible complex character of finite group. Then $\zeta_m \in Q(\chi)$, if $m_Q(\chi) = m$.

PROOF OF PROPOSITION. Let s be the Schur index of Δ . Then by (5.2) ζ_s is contained in the center of Δ . Thus $V_{Q(\zeta_s)}(P) \subset M_2(\Delta)$. We denote by L_n the center of H_n . Then $L_n = Q(\zeta_a + \zeta_a^{-1})$, where $a = 2^n$.

First we show that $Q(\zeta_s)$ is not a splitting field for H_n . Assume that $Q(\zeta_s)$ is a splitting field for H_n . In the case (1), $M_2(\varDelta) \supset V_{Q(\zeta_s)}(P) \cong Q(\zeta_s) \otimes_{L_n} H_n \bigoplus Q(\zeta_s) \otimes_{K} K \cong M_2(L_n(\zeta_s)) \bigoplus K(\zeta_s)$, which is a contradiction. In the case (2), $M_2(\varDelta) \supset V_{Q(\zeta_s)}(P) \cong M_2(L_n(\zeta_s)) \bigoplus Q(\zeta_s) \otimes_{L_m} H_n$, which is a contradiction. If $V_Q(P) \cong M_2(H_n)$, then $V_{Q(\zeta_s)}(P) \cong Q(\zeta_s) \otimes_{L_n} M_2(H_n) \cong M_4(L_n(\zeta_s))$, which implies $V_{Q(\zeta_s)}(P) \not \subset M_2(\varDelta)$. Thus $Q(\zeta_s)$ is not a splitting field for H_n .

Next we show that $Q(\zeta_s)$ is a splitting field for H_n if s>2. Since $L_n(\zeta_s) \supset Q(\zeta_s + \zeta_s^{-1}) = Q(\sqrt{2})$ by the assumption on n, the local degrees of $L_n(\zeta_s)$ at all primes of $L_n(\zeta_s)$ extending the rational prime (2) are even. If s>2, then $L_n(\zeta_s)$ is totally imaginary. It follows from [4] that $L_n(\zeta_s)$ is a splitting field for $H_2 = \Lambda_{4,-1}$. Thus $H_n \bigotimes_{L_n} Q(\zeta_s) \cong (\Lambda_{4,-1} \bigotimes_Q L_n) \bigotimes_{L_n} Q(\zeta_s) \cong \Lambda_{4,-1} \bigotimes_Q L_n(\zeta_s)$. Hence we conclude that $s \leq 2$.

Finally we show that s=2. Suppose that s=1. Then Δ is a field,

and $V_{\varrho}(P) \subset M_{2}(\varDelta) \subset M_{2}(\varDelta) \otimes_{d} C = M_{2}(C)$. It follows that $V_{c}(P) \subset M_{2}(C)$. But it is impossible. In fact, $V_{c}(P) \cong (H_{n} \otimes_{L_{n}} C) \bigoplus (K \otimes C) \cong M_{2}(C) \bigoplus C$ if $V_{\varrho}(P) \cong$ $H_{n} \bigoplus K$, $V_{c}(P) \cong (H_{n} \otimes_{L_{n}} C) \bigoplus (H_{m} \otimes_{L_{m}} C) \cong M_{2}(C) \bigoplus M_{2}(C)$ if $V_{\varrho}(P) \cong H_{n} \bigoplus H_{m}$, and $V_{c}(P) \cong M_{2}(H_{n}) \otimes_{L_{n}} C \cong M_{4}(C)$ if $V_{\varrho}(P) \cong M_{2}(H_{n})$.

References

- [1] S. AMITSUR, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386.
- [2] M. BENARD and M. M. SCHACHER, The Schur subgroup, II, J. Algebra, 22 (1972), 378-385.
- [3] L. DORNHOFF, Group Representation Theory, Part A, Marcel Dekker, New York, 1971.
- [4] B. FEIN, B. GORDON and J. H. SMITH, On the representation of -1 as a sum of two squares in an algebraic number field, J. Number Theory, **3** (1971), 310-315.
- [5] W. FEIT, Characters of Finite Groups, Benjamin, New York, 1967.
- [6] M. HIKARI, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374.
- [7] M. HIKARI, On finite multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 28 (1976), 737-748.
- [8] M. HIKARI, On simple groups which are homomorphic images of multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 35 (1983), 563-569.
- [9] B. HUPPERT, Endliche Gruppen I, Springer, Berlin, 1976.
- [10] G. J. JANUSZ, Simple components of Q[SL(2, q)], Comm. Algebra, 1 (1974), 1-22.

Present Address: DEPARTMENT OF MATHEMATICS KEIO UNIVERSITY HIYOSHI KOHOKU-KU, YOKOHAMA 223