Non-solvable Multiplicative Subgroups of Simple Algebras of Degree 2

Michitaka HIKARI

Keio University

Let $M_{2}(\Delta)$ be the full matrix algebra of degree 2 over a division algebra Δ of characteristic 0 . In [8] we determined the non-abelian simple groups which are homomorphic images of multiplicative subgroups of $M_{2}(\Delta)$. In this paper we will study the non-solvable multiplicative subgroups G of $M_{2}(\Delta)$ such that $V_{\mathbf{Q}}(G)=M_{2}(\Delta)$, where $V_{\mathbf{Q}}(G)=\left\{\sum \alpha_{i} g_{i} \mid \alpha_{i} \in\right.$ $\left.\boldsymbol{Q}, g_{i} \in G\right\}$. Let N be the largest solvable normal subgroup of G. In $\S 1$ we will prove that G / N is isomorphic to a subgroup W of $\operatorname{Aut}(T)$ with $W \supset T$, where $T \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times P S L(2,5)$. Let H be the largest normal subgroup of G such that $[H, H]=H$. We will prove in $\S 2$ and $\S 3 H \cong S L(2,5), S L(2,9), S L(2,5) \times S L(2,5)$ or E, where E is an extension of $\operatorname{PSL}(2,5)$ by $D Q$, the central product of the dihedral group D of order 8 and the quaternion group Q of order 8 . In $\S 4$ first we will characterize G in the case where G has a normal subgroup M such that $V_{Q}(M) \cong \Delta_{1} \oplus \Delta_{2}$ for some division algebras Δ_{1} and Δ_{2}. In the other case we will show the following;
(1) $O(G)$ is a Z-group (i.e. all Sylow subgroups of $O(G)$ are cyclic).
(2) G has a normal subgroup G_{1} such that $G_{1} \supset O(G), G / G_{1}$ is a 2-group of order $\leqq 8$, and $G_{1} / O(G) \cong S L(2,5) P, S L(2,9)$ or E, where P is a cyclic 2 -group or a dihedral group of order $2^{n} \geqq 4$, and $S L(2,5) P$ is the central product of $S L(2,5)$ and P.

§1. The largest solvable normal subgroup.

All division algebras considered in this paper are of characteristic 0 . As usual \boldsymbol{Q} and \boldsymbol{C} denote respectively the rational number field and the complex number field. By a subgroup of $M_{2}(\Delta)$ we mean a finite multiplicative subgroup of $M_{2}(\Delta)$. Let Δ be a division algebra and let K be a field contained in the center of Δ. Let G be a subgroup of $M_{2}(\Delta)$. We define $V_{K}(G)=\left\{\sum \alpha_{i} g_{i} \mid \alpha_{i} \in K, g_{i} \in G\right\}$ as a K-subalgebra of $M_{2}(\Delta)$.

[^0]Let \mathscr{C} be the class of finite groups G which satisfies the following conditions (a) and (b):
(a) A Sylow 3-subgroup of G is an abelian group generated by at most 2-elements.
(b) A non-abelian simple group which occurs as a composition factor of G is isomorphic to $\operatorname{PSL}(2,5)$ or $\operatorname{PSL}(2,9)$.
If G is a subgroup of $M_{2}(4)$, then by [6] and [8] $G \in \mathscr{C}$. Let N be the largest solvable normal subgroup of G. As is easily seen, $G / N \in \mathscr{C}$ and the largest solvable normal subgroup of G / N is trivial.

Lemma 1.1. Let G be an element of \mathscr{C}. We assume that G is nonsolvable and that the largest solvable normal subgroup of G is trivial. Then we have
(1) Let H be a normal subgroup of G which is the direct product of non-abelian simple groups $S_{i}, H=S_{1} \times S_{2} \times \cdots \times S_{n}$. Then $n \leqq 2$ and $H \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times P S L(2,5)$.
(2) Let M be a minimal normal subgroup of G with $M \neq 1$. Then $M \cong \operatorname{PSL}(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times \operatorname{PSL}(2,5)$.
(3) If $C_{G}(H) \supset M$, then $H \cong M \cong P S L(2,5)$.
(4) There exists a normal subgroup T of G such that $C_{G}(T)=1$ and $T \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times \operatorname{PSL}(2,5)$.

Proof. (1) By the condition (b) S_{i} is isomorphic to $\operatorname{PSL}(2,5)$ or $P S L(2,9), i=1,2, \cdots, n$. Since a Sylow 3-subgroup of $\operatorname{PSL}(2,5)$ (resp. $P S L(2,9)$) is a cyclic group (resp. an elementary abelian group of order 9), (1) follows directly from the condition (a).
(2) It is well known that $M \cong S \times S \times \cdots \times S$ for some simple group S. Since the largest solvable normal subgroup of G is trivial, S is nonabelian. Therefore by (1) $M \cong \operatorname{PSL}(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times \operatorname{PSL}(2,5)$.
(3) The condition $C_{G}(H) \supset M$ means $M H \cong M \times H$, because $M \cap H \subset$ $C_{G}(H) \cap H=1$. Since $M H \triangleleft G$, it follows from (1) and (2) that $M \cong H \cong$ $\operatorname{PSL}(2,5)$.
(4) Let L be a non-trivial minimal normal subgroup of G. By (2) $L \cong P S L(2,5), \quad \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times P S L(2,5)$. If $C_{G}(L)$ is solvable, then by the assumption $C_{G}(L)=1$. Thus we may assume that $C_{G}(L)$ is non-solvable. Let M be a minimal normal subgroup of G such that $1 \neq$ $M \subset C_{G}(L)$. By (3) $M \cong L \cong P S L(2,5)$. Suppose that $C_{G}(L M)$ is not solvable. Let K be a minimal normal subgroup of G such that $1 \neq K \subset C_{G}(L M)$. Then by (3) $L M \cong K \cong P S L(2,5)$, which contradicts the fact $L M \cong$ $P S L(2,5) \times P S L(2,5)$. Hence $C_{G}(L M)$ is solvable, and $C_{G}(L M)=1$. In this case, if we put $T=L M$, then we get the assertion (4).

Using this lemma we have
Proposition 1.2. Let Δ be a division algebra. Let G be a non-solvable subgroup of $M_{2}(\Delta)$. Then we have
(1) The largest solvable normal subgroup N of G is non-trivial.
(2) G / N is isomorphic to a subgroup W of $\operatorname{Aut}(T)$ with $W \supset T$, where $T \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times \operatorname{PSL}(2,5)$.

Proof. By (1.1) (4) there exists a normal subgroup T of G / N such that $C_{G / N}(T)=1$ and $T \cong P S L(2,5), \quad P S L(2,9)$ or $P S L(2,5) \times P S L(2,5)$. Hence G / N is isomorphic to a subgroup of $\operatorname{Aut}(T)$. If $N=1$, then either $P S L(2,5)$ or $P S L(2,9)$ is a subgroup of $M_{2}(4)$. But it contradicts the main result in [8]. Therefore $N \neq 1$.

As is well known, $\operatorname{Aut}(P S L(2,5)) / P S L(2,5)$ and $\operatorname{Aut}(P S L(2,9)) / P S L(2,9)$ are 2-groups.

Lemma 1.3. $\operatorname{Aut}(P S L(2,5) \times P S L(2,5)) /(P S L(2,5) \times P S L(2,5))$ is a 2group.

Proof. Let τ_{1} (resp. τ_{2}) be the morphism from $\operatorname{PSL}(2,5)$ to $P S L(2,5) \times P S L(2,5)$ determined by $\tau_{1}(a)=(a, 1)\left(\operatorname{resp} . \tau_{2}(a)=(1, a)\right)$. Let μ_{i} be the projection of $\operatorname{PSL}(2,5) \times P S L(2,5)$ on the i-th component. Let σ be an automorphism of $\operatorname{PSL}(2,5) \times P S L(2,5)$. We denote by $\sigma_{i j}$ the morphism $\mu_{i} \sigma \tau_{j}$ from $\operatorname{PSL}(2,5)$ to $\operatorname{PSL}(2,5)$. Since $\operatorname{PSL}(2,5)$ is simple, $\operatorname{Ker} \sigma_{i j}=1$ or $\operatorname{PSL}(2,5)$.

Now we will prove that one of the following holds:
(1) Ker $\sigma_{11}=\operatorname{Ker} \sigma_{22}=1$, Ker $\sigma_{12}=\operatorname{Ker} \sigma_{21}=\operatorname{PSL}(2,5)$; or
(2) Ker $\sigma_{11}=\operatorname{Ker} \sigma_{22}=\operatorname{PSL}(2,5)$, $\operatorname{Ker} \sigma_{12}=\operatorname{Ker} \sigma_{21}=1$.

Since $\mu_{i} \sigma$ is a surjection, $\operatorname{Ker} \sigma_{i 1}=1$ or $\operatorname{Ker} \sigma_{i 2}=1$. We assume that Ker $\sigma_{i 1}=\operatorname{Ker} \sigma_{i 2}=1$. Let a, b be a pair of elements of $\operatorname{PSL}(2,5)$ satisfying $[a, b] \neq 1$. We put $a^{\prime}=\sigma_{i 1}^{-1}(a), b^{\prime}=\sigma_{i 2}^{-1}(b)$. Then $\tau_{1}\left(a^{\prime}\right)=\left(a^{\prime}, 1\right)$ and $\tau_{2}\left(b^{\prime}\right)=$ ($1, b^{\prime}$), which implies $\left[\tau_{1}\left(a^{\prime}\right), \tau_{2}\left(b^{\prime}\right)\right]=1$ and $\left[\mu_{i} \sigma \tau_{1}\left(a^{\prime}\right), \mu_{i} \sigma \tau_{2}\left(b^{\prime}\right)\right]=1$. It is impossible because $a=\mu_{i} \sigma \tau_{1}\left(a^{\prime}\right)$ and $b=\mu_{i} \sigma \tau_{2}\left(b^{\prime}\right)$. Next we assume that $\operatorname{Ker} \sigma_{1 j}=\operatorname{Ker} \sigma_{2 j}=1$. Then $\sigma \tau_{1}(P S L(2,5))=\sigma \tau_{2}(P S L(2,5))=P S L(2,5) \times 1$ if $j=1,=1 \times \operatorname{PSL}(2,5)$ if $j=2$. It is a contradiction.

Let ν be an automorphism of $\operatorname{PSL}(2,5) \times P S L(2,5)$ determined by $\nu(a, b)=(b, a) . \quad$ In the case (1) $\sigma=\left(\sigma_{11}, \sigma_{22}\right) \in \operatorname{Aut}(P S L(2,5)) \times \operatorname{Aut}(P S L(2,5))$. In the case (2) $\nu \sigma \in \operatorname{Aut}(\operatorname{PSL}(2,5)) \times \operatorname{Aut}(\operatorname{PSL}(2,5))$. Thus $\operatorname{Aut}(P S L(2,5) \times P S L(2,5)) /(P S L(2,5) \times P S L(2,5))$ is a 2 -group.

In [7] we proved that a solvable subgroup of $M_{2}(\Delta)$ has a normal

Hall $\{2,3,5,7\}^{\prime}$-subgroup. This result can be generalized to any subgroup of $M_{2}(\Delta)$.

Corollary 1.4. Let Δ be a division algebra. Let G be a subgroup of $M_{2}(\Delta)$. Then G has a normal Hall $\{2,3,5,7\}^{\prime}$-subgroup.

Proof. We may assume that G is non-solvable. Let N be the largest solvable normal subgroup of G. Let $\pi=\{2,3,5,7\}$. Let H be a normal Hall π^{\prime}-subgroup of N. Since $P S L(2,5)$ and $P S L(2,9)$ are π-groups, $\operatorname{Aut}(P S L(2,5)), \operatorname{Aut}(P S L(2,9))$ and $\operatorname{Aut}(P S L(2,5) \times P S L(2,5))$ are π-groups. By (1.2) H is a normal Hall π^{\prime}-subgroup of G.

§ 2. Perfect groups.

A group G is perfect if $[G, G]=G$. In this paper we denote by D, $Q, D Q$ and $D D$ respectively the dihedral group of order 8 , the quaternion group of order 8 , the central product of D and Q and the central product of D and D. In this section we will determine all perfect subgroups of $M_{2}(\Delta)$ such that no normal subgroup of G is isomorphic to $D Q$. Let m, r be relatively prime integers, and put $s=(r-1, m), t=m / s ; n=$ the minimal positive integer satisfying $r^{n} \equiv 1 \bmod m$. Denote by $G_{m, r}$ the group generated by two elements a, b with the relations: $a^{m}=1, b^{n}=a^{t}$ and $b a b^{-1}=a^{r}$. Let ζ_{m} be a fixed primitive m-th root of unity and let $\sigma=\sigma_{r}$ be the automorphism of $\boldsymbol{Q}\left(\zeta_{m}\right)$ determined by the mapping $\zeta_{m} \rightarrow \zeta_{m}^{r}$. We denote by $\Lambda_{m, r}$ the cyclic algebra ($\left.Q\left(\zeta_{m}\right), \sigma_{r}, \zeta_{s}\right)$.

First we recall the results in Amitsur [1].
(2.1) ([1]). Let G be a finite group and let Δ be a divison algebra. Assume that $G \subset \Delta$. Then we have
(1) The odd Sylow subgroups of G are cyclic and the even Sylow subgroups of G are cyclic or generalized quaternion.
(2) If all Sylow subgroups of G are cyclic, then $G \cong G_{m, r}$ for some relatively prime integers m, r with $(n, t)=1$.
(3) A group $G_{m, r}$ can be embedded in a division algebra if and only if $\Lambda_{m, r}$ is a division algebra; then we have $V_{Q}\left(G_{m, r}\right) \cong \Lambda_{m, r}$ and the isomorphism is obtained by the correspondence $a \leftrightarrow \zeta_{m}, b \leftrightarrow \sigma_{r}$.
(4) If G is not solvable, then $G \cong S L(2,5) \times G_{m, r}$ and $V_{Q}(G) \cong \Lambda_{10,-1} \bigotimes_{Q} \Lambda_{m, r} \cong$ $\left(\Lambda_{4,-1} \otimes_{\mathbf{Q}} \boldsymbol{Q}(\sqrt{5})\right) \otimes_{\mathbf{Q}} \Lambda_{m, r}$.

Corollary 2.2. Let G be a non-trivial perfect subgroup of $M_{2}(\Delta)$.
(1) If $V_{Q}(G) \cong \Delta_{1}$ for some division algebra Δ_{1}, then $G \cong S L(2,5)$ and $V_{\mathbf{Q}}(G) \cong \Lambda_{10,-1}$.
(2) If $V_{Q}(G) \cong \Delta_{1} \oplus \Delta_{2}$ for some division algebras Δ_{1}, Δ_{2}, then one of the following holds:
(i) $G \cong S L(2,5)$ and $V_{Q}(G) \cong \boldsymbol{Q} \oplus \Lambda_{10,-1}$; or
(ii) $G \cong S L(2,5) \times S L(2,5)$ and $V_{Q}(G) \cong \Lambda_{10,-1} \oplus \Lambda_{10,-1}$.

Proof. Since $[G, G]=G$, the assertion (1) follows directly from (2.1)(4).
We now assume that $V_{Q}(G) \cong \Delta_{1} \oplus \Delta_{2}$ for some division algebras Δ_{1}, Δ_{2}. Let ρ_{i} be the projection of $V_{Q}(G)$ on the i-th component of $\Delta_{1} \oplus \Delta_{2}$. Since $G \subset V_{Q}(G)$, the morphism $\rho: G \rightarrow \rho_{1}(G) \times \rho_{2}(G)$ determined by the mapping $g \rightarrow\left(\rho_{1}(g), \rho_{2}(g)\right)$ is injective. Because $[G, G]=G,\left[\rho_{i}(G), \rho_{i}(G)\right]=\rho_{i}(G)$ and $V_{\boldsymbol{Q}}\left(\rho_{i}(G)\right)=\Delta_{i}$. By (1), $\rho_{i}(G) \cong 1$ and $\Delta_{i} \cong \boldsymbol{Q}$, or $\rho_{i}(G) \cong S L(2,5)$ and $\Delta_{i} \cong \Lambda_{10,-1}$. Therefore $V_{\boldsymbol{Q}}(G) \cong \Lambda_{1} \bigoplus \Lambda_{2} \cong \boldsymbol{Q} \oplus \Lambda_{10,-1}$ or $\Lambda_{10,-1} \oplus \Lambda_{10,-1}$, because $G \neq 1$. In the case where $V_{\mathbf{Q}}(G) \cong \boldsymbol{Q} \oplus \Lambda_{10,-1}$, we may assume that $\rho_{1}(G)=1$ and $\rho_{2}(G) \cong$ $S L(2,5)$. Then since $\left|\rho_{2}(G)\right| \leqq|G| \leqq\left|\rho_{1}(G) \times \rho_{2}(G)\right|=\left|\rho_{2}(G)\right|, \quad G \cong \rho_{2}(G) \cong$ $S L(2,5)$.

Next we assume that $\Lambda_{1} \cong \Delta_{2} \cong \Lambda_{10,-1}$. Put $K_{i}=\operatorname{Ker} \rho_{i}, i=1,2$. Since ρ is injective, $K_{1} \cap K_{2}=1$. Since $K_{1} K_{2} / K_{i} \triangleleft S L(2,5), K_{1} K_{2} / K_{i} \cong 1, Z(S L(2,5))$ or $S L(2,5)$. The fact $\left|G: K_{i}\right|=|S L(2,5)|$ implies $\left|K_{1}\right|=\left|K_{2}\right|$. If $\left|K_{1} K_{2} / K_{1}\right|=$ $\left|K_{1} K_{2} / K_{2}\right|=1$, then $K_{1}=K_{2}=1$ and $G \cong S L(2,5)$. By [10] $Q[S L(2,5)] \cong$ $\boldsymbol{Q} \oplus M_{5}(\boldsymbol{Q}) \oplus M_{3}\left(\Lambda_{4,-1}\right) \oplus M_{2}\left(\Delta_{3}\right) \oplus M_{4}(\boldsymbol{Q}) \oplus M_{3}(\boldsymbol{Q}(\sqrt{5})) \oplus \Lambda_{10,-1}$, where $\quad \Delta_{3} \cong$ $\left(\boldsymbol{Q}\left(\zeta_{3}\right), \tau,-1\right)$. Hence $V_{Q}(S L(2,5)) \neq \Lambda_{10,-1} \oplus \Lambda_{10,-1}$. Thus $\left|K_{1} K_{2} / K_{1}\right|=\left|K_{1} K_{2} / K_{2}\right| \neq 1$. Suppose that $K_{1} K_{2} / K_{1} \cong K_{1} K_{2} / K_{2} \cong Z(S L(2,5))$. Since $\quad \rho\left(K_{1} K_{2}\right) \subset$ $\rho_{1}\left(K_{1} K_{2}\right) \times \rho_{2}\left(K_{1} K_{2}\right) \subset Z(S L(2,5)) \times Z(S L(2,5))$, we get $K_{1} K_{2} \subset Z(G)$. Therefore G is a central extension of $\operatorname{PSL}(2,5)$ with $[G, G]=G$. Since the Schur multiplier of $P S L(2,5)$ is 2 , we have that $\left|K_{1} K_{2}\right| \leqq 2$. But it is impossible. In fact, by the assumption, $\left|K_{1} K_{2}\right|=\left|K_{1} \times K_{2}\right|=\left|K_{1}\right|^{2}=|Z(S L(2,5))|^{2}=4$. Thus $K_{1} K_{2} / K_{i} \cong S L(2,5) . \quad$ Since $\quad K_{1} \cong K_{1} K_{2} / K_{2} \cong S L(2,5), \quad|S L(2,5) \times S L(2,5)|=$ $\left|K_{1} K_{2}\right| \leqq|G| \leqq\left|\rho_{1}(G) \times \rho_{2}(G)\right|=|S L(2,5) \times S L(2,5)|$. Hence we conclude that $G \cong S L(2,5) \times S L(2,5)$ if $V_{Q}(G) \cong \Lambda_{10,-1} \oplus \Lambda_{10,-1}$.

Lemma 2.3. Let Δ be a division algebra. Let G_{1} and G_{2} be subgroups of $M_{2}(\Delta)$. Let 1 be the unit element of $M_{2}(\Delta)$. Assume that $V_{Q}\left(G_{i}\right)$ contains the simple algebra A_{i} with $A_{i} \ni 1, i=1,2$. If A_{1} and A_{2} satisfy one of the following conditions (1)-(4), then we have $\left[G_{1}, G_{2}\right] \neq 1$.
(1) $\quad A_{1} \cong A_{2} \cong M_{2}(\boldsymbol{Q})$.
(2) $\quad A_{1} \cong A_{2} \cong \Lambda_{4,-1}$.
(3) $A_{1} \cong A_{4,-1}$ and $A_{2} \cong M_{2}\left(\boldsymbol{Q}\left(\zeta_{3}\right)\right)$.
(4) $\quad A_{1} \cong \Lambda_{4,-1}$ and $A_{2} \cong M_{2}(\boldsymbol{Q}(i))$.

Proof. Suppose that $\left[G_{1}, G_{2}\right]=1$. In any case the center of $A_{1}=\boldsymbol{Q}$. Since $a_{1} a_{2}=a_{2} a_{1}$ for any element $a_{i} \in A_{i}, i=1,2, A_{1} \otimes_{Q} A_{2}$ is isomorphic to
a Q-subalgebra $A_{1} A_{2}$ of $M_{2}(\Delta)$. On the other hand $M_{2}(\boldsymbol{Q}) \otimes_{\mathbb{Q}} M_{2}(\boldsymbol{Q}) \cong M_{4}(\boldsymbol{Q})$, $\Lambda_{4,-1} \otimes_{Q} \Lambda_{4,-1} \cong M_{4}(\boldsymbol{Q}), \quad \Lambda_{4,-1} \otimes_{Q} M_{2}\left(\boldsymbol{Q}\left(\zeta_{3}\right)\right) \cong M_{4}\left(\boldsymbol{Q}\left(\zeta_{3}\right)\right) \quad$ and $\quad \Lambda_{4,-1} \otimes_{Q} M_{2}(\boldsymbol{Q}(i)) \cong$ $M_{4}(\mathbb{Q}(i))$. Hence in any case $M_{2}(\Delta)$ contains a Q-subalgebra which is isomorphic to $M_{4}(\boldsymbol{Q})$. It is a contradiction. Thus we obtain $\left[G_{1}, G_{2}\right] \neq 1$.

Lemma 2.4. Let G be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=$ $M_{2}(4)$. Then $O(G)$ (the largest normal 2^{\prime}-subgroup of G) is trivial.

Proof. We assume that $O(G) \neq 1$. If $V_{Q}(O(G))$ is not a division algebra, by [7] (2.3) G has a normal subgroup of index 2, contradicting the assumption $[G, G]=G$. Therefore $V_{Q}(O(G))$ is a division algebra. By (2.1) all Sylow subgroups of $O(G)$ are cyclic. Let p be the maximal prime number which divides the order of $O(G)$. Let P be a Sylow p-subgroup of $O(G)$. Then it is well known that P is a normal subgroup of $O(G)$ (see [5]). Thus P is a normal subgroup of G. Since $G / C_{G}(P)$ is abelian, we have $G=C_{G}(P)$. Let S_{p} be a Sylow p-subgroup of G. Set $R=$ $S_{p} \cap Z\left(N_{G}\left(S_{p}\right)\right.$). Then $R \supset P$. Since S_{p} is abelian (See [6] Proposition 2.), by [5] (20.12) there exists a normal subgroup G_{0} of G such that $G / G_{0} \cong R$. Since $[G, G]=G$, we have $G=G_{0}$, and $R=1$. Hence $P=1$. It is a contradiction. Therefore $O(G)=1$.

Lemma 2.5. Let G be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{\mathbf{Q}}(G)=$ $M_{2}(\Delta)$. We assume that no normal subgroup of G is isomorphic to $D Q$. Let N be a normal subgroup of G. If N is a 2-group, then $N \subset Z(G)$ and N is cyclic.

Proof. The proof is by induction on $|N|$. Let $\Phi(N)$ be the Frattini subgroup of N. By induction $\Phi(N) \subset Z(G)$ and $\Phi(N)$ is cyclic.

First we will prove that N is generated by at most 3 elements.
By [7] $V_{Q}(N) \cong \Delta_{1}, \Delta_{1} \oplus \Delta_{2}$ or $M_{2}\left(\Delta_{1}\right)$ for some division algebras Δ_{1} and Δ_{2}. If $V_{Q}(N) \cong \Delta_{1} \oplus \Delta_{2}$, then it follows from [7] (2.3) that G has a normal subgroup of index 2. It contradicts the assumption $[G, G]=G$. Therefore $V_{Q}(N) \cong \Delta_{1}$ or $M_{2}\left(\Delta_{1}\right)$. In the case where $V_{Q}(N) \cong \Delta_{1} N$ is cyclic or generalized quaternion. It follows that N is generated by at most 2 elements. Hence we may assume that $V_{Q}(N) \cong M_{2}\left(\Delta_{1}\right)$. Suppose that Δ_{1} is a commutative field. Then $V_{c}(N) \cong M_{2}\left(\Delta_{1}\right) \otimes_{\Lambda_{1}} C \cong M_{2}(C)$. By [6] Lemma $3 N$ has a normal subgroup N_{0} of index 2 such that $V_{\boldsymbol{c}}\left(N_{0}\right) \cong \boldsymbol{C} \oplus C$. It is easy to see that N_{0} is an abelian group generated by at most 2 elements. Therefore N is generated by at most 3 elements. So it may be assumed that Δ_{1} is not commutative. If $|\Phi(N)|=1$, then N is abelian, which contradicts the assumption $V_{Q}(N) \cong M_{2}\left(\Delta_{1}\right)$. Therefore $|\Phi(N)| \geqq 2$. Suppose $|Z(N)|>2$. Since $Z(N) \subset$ the center of $M_{2}\left(\Delta_{1}\right), Z(N)$ is cyclic. Put $K=$ the center of
$M_{2}\left(\Delta_{1}\right)$. By $|Z(N)|>2 K$ has an element of order 4, which implies $K \ni i$. Since K is a splitting field for N, it follows that $\Delta_{1}=K$. However Δ_{1} is not commutative. Thus $|Z(N)| \leqq 2$. Because $\Phi(N) \subset Z(G), \quad 2 \leqq|\Phi(N)| \leqq$ $|Z(N)| \leqq 2$. Therefore $\Phi(N)=Z(N)$ and $|\Phi(N)|=2$. On the other hand $N / \Phi(N)$ is an elementary abelian group of order $\leqq 2^{4}$ by [7]. Suppose that $|N / \Phi(N)|=2^{4}$. Since N is not abelian, $[N, N]=\Phi(N)$. Thus N is an extra-special 2 -group of order 32. It is well known that $N \cong D D$ or $D Q$ (see [3]). And by the assumption $N \cong D D$. Since \boldsymbol{Q} is a splitting field for $D D$ (See [3].), it follows that Δ_{1} is commutative. It is a contradiction. Thus $|N / \Phi(N)| \leqq 2^{3}$ and N is generated by at most 3 elements.

Assume that $G / C_{G}(N)$ is non-solvable. By (1.2) $G / C_{G}(N)$ has an element of order 5. Let g be an element of G such that the order of $g C_{G}(N)$ is 5. Since $N / \Phi(N)$ is an elementary abelian group of order $\leqq 2^{3}$, $|\operatorname{Aut}(N / \Phi(N))|\left||G L(3,2)|=2^{3} \cdot 3 \cdot 7\right.$. Therefore for any $n \in N g^{-1} n g \Phi(N)=$ $n \Phi(N)$. We put $z=n^{-1} g^{-1} n g$ and $a=$ the order of $\Phi(N)=2^{t}$. Then $\left(g^{a}\right)^{-1} n g^{a}=n z^{a}=n$. And the order of $g C_{G}(N)$ divides $a=2^{t}$, which is a contradiction. Thus we obtain that $G / C_{G}(N)$ is a solvable group. By the assumption $[G, G]=G$ we get $G=C_{G}(N)$. This means $N \subset Z(G)$. Since $N \subset Z(G) \subset$ the center of $M_{2}(\Delta)$, it follows that N is cyclic. The proof of the lemma is completed.

Lemma 2.6. Let G be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{\mathbf{Q}}(G)=$ $M_{2}(\Delta)$. We assume that no normal subgroup of G is isomorphic to $D Q$. Let N be the largest solvable normal subgroup of G. Then we have
(1) $G / N \cong \operatorname{PSL}(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times \operatorname{PSL}(2,5)$.
(2) N is a cyclic 2-group and $N=Z(G) \neq 1$.

Proof. By (1.2) G / N is isomorphic to a subgroup W of $\operatorname{Aut}(T)$ with $W \supset T$, where $T \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times P S L(2,5)$. It follows from (1.3) that $\operatorname{Aut}(T) / T$ is a 2 -group. Therefore $[G, G]=G$ means that $G / N \cong T$.

Next we will show the assertion (2). Suppose that N is not a 2-group. Since $O(G)=1$ by (2.4), there exist normal subgroups N_{0}, N_{1} of G such that $N \supset N_{1} \supset N_{0} \neq 1, N_{0}$ is a 2 -group and N_{1} / N_{0} is an elementary abelian p-group for some odd prime p. By (2.5) N_{0} is a cyclic group and $N_{0} \subset Z(G)$, which implies $N_{1} \cong N_{0} \times\left(N_{1} / N_{0}\right)$. Thus $O(G) \supset N_{1} / N_{0} \neq 1$. But it is impossible. Hence we obtain that N is a 2-group. By (2.5) $N \subset Z(G)$, and $N=Z(G)$ because $G / N \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,5) \times P S L(2,5)$.

Now we determine all perfect subgroups G of $M_{2}(\Delta)$ such that no normal subgroup of G is isomorphic to $D Q$.

Proposition 2.7. Let Δ be a division algebra. Let G be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=M_{2}(\Delta)$. If no normal subgroup of G is isomorphic to $D Q$, then $G \cong S L(2,5)$ or $S L(2,9)$, and $\Delta \cong\left(Q\left(\zeta_{3}\right), \tau,-1\right)$, where $\langle\tau\rangle=\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{3}\right) / \boldsymbol{Q}\right)$.

Proof. Let N be the largest solvable normal subgroup of G. By (2.6) $G / N \cong P S L(2,5), \operatorname{PSL}(2,9)$ or $P S L(2,5) \times P S L(2,5)$, and $Z(G)=N$. This means that G is a central extension of G / N with $[G, G]=G$. The central extensions of $P S L(2,5), P S L(2,9)$ and $P S L(2,5) \times P S L(2,5)$ are well known (see [9] V § 25).

First we assume that $G / N \cong P S L(2,5)$. Since $\left|H^{2}\left(P S L(2,5), C^{\times}\right)\right|=2$, $|N|=2$ and $G \cong S L(2,5)$.

In the case where $G / N \cong P S L(2,9)$, since $\left|H^{2}\left(P S L(2,9), C^{\times}\right)\right|=6$ and N is a 2 -group, we have that $|N|=2$ and $G \cong S L(2,9)$.

Suppose that $G / N \cong P S L(2,5) \times P S L(2,5)$. Since $H^{2}(P S L(2,5) \times P S L(2,5)$, $\left.C^{\times}\right) \cong H^{2}\left(P S L(2,5), C^{\times}\right) \times H^{2}\left(P S L(2,5), C^{\times}\right)$, there exists an epimorphism ρ from $S L(2,5) \times S L(2,5)$ to G. Put $G_{1}=\rho(S L(2,5) \times 1)$ and $G_{2}=$ $\rho(1 \times S L(2,5))$. Since N is cyclic and $P S L(2,5)$ is not a subgroup of $M_{2}(\Delta), G_{i} \cong S L(2,5),\left|G_{1} \cap G_{2}\right|=2$ and $\left[G_{1}, G_{2}\right]=1$. If $V_{Q}\left(G_{i}\right) \cong \Delta_{1} \oplus \Delta_{2}$ for some division algebras Δ_{1}, Δ_{2}, then G has a normal subgroup of index 2 by [7] (2.3), contradicting the assumption $[G, G]=G$. Thus $V_{Q}\left(G_{i}\right) \cong \Delta^{(i)}$ or $M_{2}\left(\Delta^{(i)}\right)$ for some division algebra $\Delta^{(i)}, i=1,2$. By (2.2) $\Delta^{(i)} \cong \Lambda_{10,-1} \cong \Lambda_{4,-1} \otimes_{Q} Q(\sqrt{5})$ if $V_{Q}\left(G_{i}\right) \cong \Delta^{(i)}$. By [10] $\Delta^{(i)} \cong\left(Q\left(\zeta_{3}\right), \tau,-1\right)$ if $V_{Q}\left(G_{i}\right) \cong M_{2}\left(\Delta^{(i)}\right)$. In any case it follows from (2.3) that $\left[G_{1}, G_{2}\right] \neq 1$. But it is impossible. Thus $G / N \not \equiv P S L(2,5) \times P S L(2,5)$.

In the case where $G \cong S L(2,5)$ or $S L(2,9)$, if $Q G \bigoplus>M_{2}(\Delta)$, then $\Delta \cong$ $\left(\boldsymbol{Q}\left(\zeta_{3}\right), \tau,-1\right)$ (see [10]). The proof of proposition is completed.

§3. The extra-special 2-group $D Q$.

In this section we will determine all perfect subgroups of $M_{2}(\Delta)$. In $\S 2$ we determined these groups G if no normal subgroup of G is isomorphic to $D Q$. Thus we may assume that G has a normal subgroup which is isomorphic to $D Q$.

We put $D=\left\langle a, b \mid a^{4}=1, b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$ and $Q=\langle c, d| c^{4}=1, c^{2}=d^{2}$, $\left.d c d^{-1}=c^{-1}\right\rangle$. Let set $S=\left\{x \mid x \in D Q, x^{2}=1\right\}-\{1\}$. Then S is decomposed into the disjoint conjugate classes of $D Q, S=C_{0} \cup C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}$, where $C_{0}=\left\{a^{2}\right\}, C_{1}=\left\{b, a^{2} b\right\}, C_{2}=\left\{a b, a^{3} b\right\}, C_{3}=\left\{a c, a^{3} c\right\}, C_{4}=\left\{a d, a^{3} d\right\}$ and $C_{5}=\{a c d$, $\left.a^{3} c d\right\}$. We set $\Omega=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{3}\right\}$. Let τ be an automorphism of $D Q$. Since $C_{0}^{\tau}=C_{0}, \tau$ induces a permutation $\tilde{\tau}$ on Ω. Let ϕ be the homomorphism from $\operatorname{Aut}(D Q)$ to S_{5} determined by $\phi(\tau)=\tilde{\tau}$. Let $\tau \in \operatorname{Ker} \phi$. Then
τ induces the identity map on $D Q /[D Q, D Q]$, and, as is well known, τ is an inner automorphism of $D Q$. Thus $\operatorname{Ker} \phi=\operatorname{Inn} \operatorname{Aut}(D Q)$. Let $\alpha, \beta, \gamma, \delta$ be the automorphisms of $D Q$ determined by the following;

$$
\begin{aligned}
& a^{\alpha}=a, b^{\alpha}=a b, c^{\alpha}=c, d^{\alpha}=d, \\
& a^{\beta}=b c^{-1}, b^{\beta}=a b, c^{\beta}=c, d^{\beta}=a^{-1} b c d, \\
& a^{\gamma}=b d^{-1}, b^{r}=a b, c^{r}=a b c d, d^{r}=d, \text { and } \\
& a^{\delta}=a^{2} b c d, b^{\delta}=a b, c^{\delta}=a^{-1} b d, d^{\delta}=a b c .
\end{aligned}
$$

Then $\phi(\alpha)=\left(C_{1}, C_{2}\right), \phi(\beta)=\left(C_{1}, C_{2}, C_{3}\right), \phi(\gamma)=\left(C_{1}, C_{2}, C_{4}\right)$ and $\phi(\delta)=\left(C_{1}, C_{2}, C_{5}\right)$. Since $\phi(\alpha), \phi(\beta), \phi(\gamma)$ and $\phi(\delta)$ generate $S_{5}, \operatorname{Aut}(D Q) / \operatorname{Inn} \operatorname{Aut}(D Q) \cong S_{5}$ and $\phi(\langle\beta, \gamma, \delta\rangle) \cong A_{5} \cong P S L(2,5)$. It is easy to see that β, γ, δ can be regarded as permutations on $\{b, a b, a c, a d, a c d\}$. For any $\sigma \in \operatorname{Aut}(D Q), \sigma=1$ if σ is the identity permutation on $\{b, a b, a c, a d, a c d\}$. Therefore we obtain that $\langle\beta, \gamma, \delta\rangle \cong A_{5} \cong P S L(2,5)$. Let H be a central extension of $\langle\beta, \gamma, \delta\rangle$ by $\left\langle a^{2}\right\rangle$ with $[H, H]=H$. Then $H \cong S L(2,5)$ (see [9] V § 25). Let $\left\{u_{\sigma} \mid \sigma \in\right.$ $\langle\beta, \gamma, \delta\rangle\}$ be a set of representatives of $\langle\beta, \gamma, \delta\rangle$ in H. The set $H D Q$ forms a group if we define $u_{\sigma}^{-1} x u_{\sigma}=x^{\sigma}, \sigma \in\langle\beta, \gamma, \delta\rangle, x \in D Q$. We denote this group by E. Since $H \cap D Q=\left\langle a^{2}\right\rangle, E$ is an extension of $\operatorname{PSL}(2,5)$ by $D Q$.

Lemma 3.1. E is a subgroup of $M_{2}\left(\Lambda_{4,-1}\right)$ and $V_{Q}(D Q)=V_{Q}(E)=$ $M_{2}\left(\Lambda_{4,-1}\right)$.

Proof. $\Lambda_{4,-1}$ is the ordinary quaternion algebra over \boldsymbol{Q}, i.e. $\Lambda_{4,-1}=$ $\boldsymbol{Q}+\boldsymbol{Q} i+\boldsymbol{Q} j+\boldsymbol{Q} k$ with the relations; $i^{2}=j^{2}=k^{2}=-1$, $i j=-j i=k$. Let ρ be the homomorphism from E to $M_{2}\left(\Lambda_{4,-1}\right)$ determined by

$$
\begin{array}{ll}
\rho(a)=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), & \rho(b)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \rho(c)=\left(\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right), \quad \rho(d)=\left(\begin{array}{ll}
j & 0 \\
0 & j
\end{array}\right), \\
\rho\left(u_{\beta}\right)=\left(\begin{array}{rr}
x & -x \\
\bar{x} & \bar{x}
\end{array}\right), \quad \rho\left(u_{r}\right)=\left(\begin{array}{rr}
y & -y \\
\bar{y} & \bar{y}
\end{array}\right) \quad \text { and } \quad \rho\left(u_{\delta}\right)=\left(\begin{array}{rr}
z & -z \\
\bar{z} & \bar{z}
\end{array}\right),
\end{array}
$$

where $x=(1-i) / 2, y=(1-j) / 2$ and $z=(1-k) / 2$. It is easy to see that $V_{\mathbf{Q}}(\rho(D Q))=M_{2}\left(\Lambda_{4,-1}\right)$.

We will show that ρ is injective. Suppose that $\operatorname{Ker} \rho \cap D Q \neq 1$. Then $\operatorname{Ker} \rho \cap Z(D Q) \neq 1$. Since $|Z(D Q)|=2$, $\operatorname{Ker} \rho \supset Z(D Q)$. Therefore $\rho(D Q) \cong$ $D Q / \operatorname{Ker} \rho$ is an abelian group, because $D Q / Z(D Q)$ is an elementary abelian group. However $[\rho(c), \rho(d)] \neq 1$. Thus Ker $\rho \cap D Q=1$. We set $\Omega^{\prime}=\left\{\rho\left(C_{1}\right)\right.$, $\left.\rho\left(C_{2}\right), \rho\left(C_{3}\right), \rho\left(C_{4}\right), \rho\left(C_{5}\right)\right\}$. Let $\sigma \in E$. Then $\rho(\sigma)$ induces a permutation $\widetilde{\rho(\sigma)}$ on Ω^{\prime}. We denote by ϕ the mapping $\rho(\sigma) \rightarrow \widetilde{\rho(\sigma)}$. We can easily check that $\phi\left(\left\langle\rho\left(u_{\beta}\right), \rho\left(u_{\tau}\right), \rho\left(u_{\delta}\right)\right\rangle\right) \cong P S L(2,5)$ and $\operatorname{Ker} \phi \supset \rho(D Q)$. Therefore $|\rho(E)|=\mid \rho(E):$ Ker $\phi||\operatorname{Ker} \phi| \geqq|P S L(2,5)|| \rho(D Q)|=|P S L(2,5)|| D Q|=|E|$. Thus
ρ is injective. Hence we can regard E as a subgroup of $M_{2}\left(\Lambda_{4,-1}\right)$.
The fact $V_{Q}(D Q)=M_{2}\left(\Lambda_{4,-1}\right)$ and the fact $V_{Q}(D Q) \subset V_{Q}(E) \subset M_{2}\left(\Lambda_{4,-1}\right)$ imply $V_{\mathbf{Q}}(E)=M_{2}\left(\Lambda_{4,-1}\right)$, as desired.

Let G be a perfect subgroup of $M_{2}(\Delta)$. We assume that G has a normal subgroup N which is isomorphic to $D Q$.

Lemma 3.2. If $V_{Q}(G)=M_{2}(\Delta)$, then $\left|C_{G}(N)\right|=2$.
Proof. In the proof of (3.1) we showed that $D Q \subset M_{2}\left(\Lambda_{4,-1}\right)$ and $V_{Q}(D Q)=M_{2}\left(\Lambda_{4,-1}\right)$. Since $D Q /[D Q, D Q]$ is an elementary abelian group of order 16, $\boldsymbol{Q}[D Q /[D Q, D Q]] \cong Q \oplus Q \oplus \cdots \oplus Q$. Because $\operatorname{dim}_{\boldsymbol{Q}} M_{2}\left(\Lambda_{4,-1}\right)=16$, $\boldsymbol{Q}[D Q] \cong \boldsymbol{Q} \oplus \boldsymbol{Q} \oplus \cdots \oplus \boldsymbol{Q} \oplus M_{2}\left(\Lambda_{4,-1}\right)$. Therefore $V_{Q}(N) \cong M_{2}\left(\Lambda_{4,-1}\right)$. Let P be a Sylow 2 -subgroup of $C_{G}(N)$. Suppose that P has an element x of order 4. Then $V_{\mathbf{Q}}(N) V_{Q}(\langle x\rangle) \cong V_{Q}(N) \bigotimes_{Q} V_{Q}(\langle x\rangle) \supset M_{2}\left(\Lambda_{4,-1}\right) \bigotimes_{Q} Q(i) \cong M_{4}(Q(i))$. It contradicts the fact $V_{\mathbf{Q}}(N) V_{\mathbf{Q}}(\langle x\rangle) \subset M_{2}(\Delta)$. This implies that any element of P is of order $\leqq 2$. Thus by [6] P is an elementary abelian group generated by at most 2 elements. It follows from [7] (3.1) that $C_{G}(N)$ has a normal 2-complement M. Since $O(G)=1$ by (2.4), $M=1$ and $C_{G}(N)=P$. If $\left|C_{G}(N)\right|=|P|=4$, then $V_{Q}(P) \cong \boldsymbol{Q} \oplus Q$, and by [7] (2.3) G has a normal subgroup of index 2. But it is impossible. Therefore $\left|C_{G}(N)\right|=|P|=2$.

The factor group $G / C_{G}(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N)$. Since $\operatorname{Aut}(N) \cong\langle\alpha, \beta, \gamma, \delta\rangle D Q /[D Q, D Q]$ and $[G, G]=G, G / C_{G}(N) \cong$ $\langle\beta, \gamma, \delta\rangle D Q /[D Q, D Q]$. We denote this isomorphism by ϕ. Let ρ be the morphism from G to $\operatorname{Aut}(D Q)$ determined by the mapping $x \rightarrow \phi\left(x C_{G}(N)\right)$. We put $H=\rho^{-1}(\langle\beta, \gamma, \delta\rangle)$. On the other hand $G / C_{G}\left(C_{G}(N)\right)$ is isomorphic to a subgroup of $\operatorname{Aut}\left(C_{G}(N)\right)$. Since $\left|C_{G}(N)\right|=2$ and $[G, G]=G$, we have $G=$ $C_{G}\left(C_{G}(N)\right)$, and so $C_{G}(N) \subset Z(G)$. Because $H / C_{G}(N) \cong P S L(2,5), H$ is a central extension of $\operatorname{PSL}(2,5)$ by $C_{G}(N)$. It follows that $[H, H] C_{G}(N) / C_{G}(N) \cong$ $[P S L(2,5), P S L(2,5)] \cong P S L(2,5)$. If $[H, H] \cap C_{G}(N)=1$, then $[H, H] \cong$ $P S L(2,5)$ and $[H, H] \subset M_{2}(\Delta)$. It is a contradiction (see [8]). Therefore $[H, H] \supset C_{G}(N)$ and $[H, H]=H$. Thus $H \cong S L(2,5)$. By the definition of E we have $G=H N \cong E$. Let V be an irreducible $M_{2}(\Delta)$-module. Put $K=$ the center of $M_{2}(4)$. Since $[G, G]=G$, by [7] (2.3) the number of all isomorphism classes of irreducible $K N$-submodules of V is 1 . Therefore $V \cong U \bigoplus U \bigoplus \cdots \oplus U$ as $K N$-module, where U is an irreducible $K N$-module. Let χ be an irreducible complex character corresponding to U. Since $\boldsymbol{Q}[D Q] \cong Q \oplus Q \oplus \cdots \oplus Q \oplus M_{2}\left(\Lambda_{4,-1}\right)$, we have $C N \cong C[D Q] \cong C \oplus C \oplus \cdots \oplus C \oplus$ $M_{4}(C)$. This shows $\chi(1)=16$, because χ is faithful character. For any $g \in E$ the irreducible character χ^{g} has degree 16 , and $\chi^{g}=\chi$, because N has only one irreducible character χ of degree 16. This implies $\left.\chi^{G}\right|_{N}=$
$|G: N| \chi$. Since $\left(\chi^{G}, \chi^{\sigma}\right)_{G}=\left(\left.\chi^{G}\right|_{N}, \chi\right)_{N}=|G: N|, \chi^{G}$ is decomposed into the irreducible complex characters μ_{i} of $G, \chi^{G}=\mu_{1}+\mu_{2}+\cdots+\mu_{t}$, where $t=$ $|G: N|$. Since $1 \neq\left(\mu_{i}, \chi^{G}\right)_{G}=\left(\left.\mu_{i}\right|_{N}, \chi\right)_{N}, \mu_{i}(1) \geqq \chi(1)$. Thus $|G: N| \chi(1)=\chi^{G}(1)=$ $\sum_{i=1}^{t} \mu_{i}(1) \geqq|G: N| \chi(1)$, which implies $\mu_{i}(1)=\chi(1)=16$. Let μ be an irreducible complex character corresponding to V. Since ($\left.\left.\mu\right|_{N}, \chi\right)_{N} \neq 1$, we have $\mu(1)=16$, which shows $\operatorname{dim}_{K} M_{2}(\Delta)=16=\operatorname{dim}_{Q} M_{2}\left(\Lambda_{4,-1}\right)=\operatorname{dim}_{K} M_{2}\left(\Lambda_{4,-1} \otimes_{Q} K\right)$. Since $M_{2}(\Delta) \supset M_{2}\left(\Lambda_{4,-1} \otimes_{\mathrm{Q}} K\right)$, we have $M_{2}(\Delta)=M_{2}\left(\Lambda_{4,-1} \otimes_{\mathrm{Q}} K\right)$.

Hence by (2.2) and (2.7) we have
Theorem 3.3. Let Δ be a division algebra. Let G be a perfect subgroup of $M_{2}(4)$. Then one of the following holds:
(1) $G \cong S L(2,5)$ and $V_{Q}(G) \cong \Lambda_{10,-1}$;
(2) $G \cong S L(2,5)$ and $V_{Q}(G) \cong Q \oplus \Lambda_{10,-1}$;
(3) $G \cong S L(2,5) \times S L(2,5)$ and $V_{Q}(G) \cong \Lambda_{10,-1} \bigoplus \Lambda_{10,-1}$;
(4) $G \cong S L(2,5)$ and $V_{Q}(G) \cong M_{2}\left(\left(\boldsymbol{Q}\left(\zeta_{3}\right), \tau,-1\right)\right)$
(5) $G \cong S L(2,9)$ and $V_{Q}(G) \cong M_{2}\left(\left(\boldsymbol{Q}\left(\zeta_{3}\right), \tau,-1\right)\right)$; or
(6) $G \cong E$ and $V_{Q}(G) \cong M_{2}\left(\Lambda_{4,-1} \bigotimes_{Q} K\right)$ for some commutative field K.

§ 4. Non-solvable groups.

In this section we consider non-solvable subgroups of $M_{2}(\Delta)$.
Let G be a non-solvable subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=M_{2}(\Delta)$. Then G has a perfect normal subgroup H such that G / H is solvable. By [7] (2.1) $V_{Q}(H) \cong \Delta_{1}, \Delta_{1} \oplus \Delta_{2}$ or $M_{2}\left(\Delta_{1}\right)$ for some division algebras Δ_{1}, Δ_{2}.

Lemma 4.1. Let N be a normal subgroup of G. Assume that $V_{Q}(N) \cong$ $\Delta_{1} \oplus \Delta_{2}$. Then
(1) G has a normal subgroup G_{0} of index 2.
(2) Put $G / G_{0}=\left\{G_{0}, g G_{0}\right\}$. Then there exist normal subgroups T_{1}, T_{2} of G_{0} and relatively prime integers m, r such that $T_{1} \cap T_{2}=1, T_{1}^{g}=T_{2}$, $G_{0} / T_{1} \cong S L(2,5) \times G_{m, r}$ and $\Delta \cong \Lambda_{10,-1} \bigotimes_{Q} \Lambda_{m, r}$.

Proof. By [7] (2.3) G has a normal subgroup G_{0} of index 2 such that $V_{Q}\left(G_{0}\right) \cong \Delta \bigoplus \Delta$. Moreover G_{0} has normal subgroups T_{1}, T_{2} satisfying $T_{1} \cap T_{2}=1, T_{1}^{g}=T_{2}$ and $G_{0} / T_{1} \cong \rho\left(G_{0}\right)$, where $\{1, g\}$ is a set of representatives of G / G_{0} in G and ρ is the projection of $V_{Q}\left(G_{0}\right)$ on the first component of $\Delta \bigoplus \Delta$. Therefore $G_{0} / T_{1} \cong G_{0} / T_{2}$. If G_{0} / T_{1} is solvable, then G_{0} / T_{1} and $T_{1} T_{2} / T_{2} \cong T_{1}$ are solvable. This means that G_{0} is solvable. But it is impossible. Therefore G_{0} / T_{1} is non-solvable. Since $V_{Q}\left(\rho\left(G_{0}\right)\right)=\Delta$, it follows from (2.1) that $\rho\left(G_{0}\right) \cong S L(2,5) \times G_{m, r}$ and $\Delta \cong \Lambda_{10,-1} \bigotimes_{Q} \Lambda_{m, r}$ for some relatively prime integers m, r.

Lemma 4.2. Assume that $V_{Q}(H) \cong \Delta_{1}$ or $M_{2}\left(\Delta_{1}\right)$. Let P be a non-cyclic 2-subgroup of $M_{2}(\Delta)$ of order >4.
(1) If $V_{Q}(P) \cong \Gamma_{1}$ or $\Gamma_{1} \oplus \Gamma_{2}$ for some division algebras Γ_{1}, Γ_{2}, then $[H, P] \neq 1$.
(2) Especially, if P is the quaternion group of order 8 or an abelian group, then $[H, P] \neq 1$.

Proof. (1) By (3.3) $V_{\mathbf{Q}}(H) \supset \Lambda_{4,-1} \ni 1$ or $V_{\mathbf{Q}}(H) \supset M_{2}\left(Q\left(\zeta_{3}\right)\right) \supset M_{2}(\mathbb{Q}) \ni 1$. First we assume that $V_{Q}(P) \cong \Gamma_{1}$. Since P is not cyclic, it follows from (2.1) that P is generalized quaternion and $V_{Q}(P) \supset \Lambda_{4,-1} \ni 1$. By (2.3) we have that $[H, P] \neq 1$. Next we assume that $V_{Q}(P) \cong \Gamma_{1} \oplus_{2}$. In the case where $V_{\boldsymbol{Q}}(H) \supset M_{2}(\boldsymbol{Q}) \ni 1$, if $[H, P]=1$ then $M_{2}(\Delta) \supset M_{2}(\boldsymbol{Q}) \bigotimes_{\mathbf{Q}}\left(\Gamma_{1} \oplus \Gamma_{2}\right) \cong$ $M_{2}\left(\Gamma_{1}\right) \oplus M_{2}\left(\Gamma_{2}\right)$. It is a contradiction. So we may assume that $V_{Q}(H) \supset$ $\Lambda_{4,-1} \ni 1$. In the case where P is abelian, since P is generated by at most 2 elements, $|P|>4$ implies that P has an element of order 4. Thus $V_{\mathbf{Q}}(P) \supset \boldsymbol{Q} \oplus Q(i) \ni 1$. If $[P, H]=1$, then $M_{2}(\Delta) \supset \Lambda_{4,-1} \bigotimes_{\mathbf{Q}}(\boldsymbol{Q} \oplus Q(i)) \cong \Lambda_{4,-1} \oplus$ $M_{2}(Q(i))$, which is a contradiction. Therefore $[P, H] \neq 1$. In the case where P is non-abelian, $\Gamma_{1} \supset \Lambda_{4,-1}$ or $\Gamma_{2} \supset \Lambda_{4,-1}$. Thus $V_{Q}(P) \supset Q \oplus \Lambda_{4,-1} \ni 1$. If $[H, P]=1$, then $M_{2}(\boldsymbol{Q}) \bigotimes_{\mathbf{Q}}\left(\boldsymbol{Q} \oplus \Lambda_{4,-1}\right) \cong M_{2}(\boldsymbol{Q}) \oplus M_{2}\left(\Lambda_{4,-1}\right)$. Thus $[H, P] \neq 1$.
(2) If P is the quaternion group of order 8 or an abelian group, then $Q P$ does not contain a simple algebla which is isomorphic to $M_{2}(\Gamma)$ for some division algebra Γ. Thus $V_{Q}(P) \cong \Gamma_{1}$ or $\Gamma_{1} \oplus \Gamma_{2}$ for some division algebra Γ_{1}, Γ_{2}. Therefore by (1) $[H, P] \neq 1$.

We now have
Theorem 4.3. Let Δ be a division algebra. Let G be a non-solvable subgroup of $M_{2}(\Delta)$ such that $V_{\mathbf{Q}}(G)=M_{2}(\Delta)$. Then G satisfies one of the following conditions (1) and (2).
(1) G has a normal subgroup G_{0} of index 2. Put $G / G_{0}=\left\{G_{0}, g G_{0}\right\}$. Then there exist normal subgroups T_{1}, T_{2} of G_{0} and relatively prime integers m, r such that $T_{1} \cap T_{2}=1, T_{1}^{g}=T_{2}, G_{0} / T_{1} \cong S L(2,5) \times G_{m, r}$ and $\Delta \cong$ $\Lambda_{10,-1} \otimes_{\mathbf{e}} \Lambda_{m, r}$
(2) Let H be the perfect normal subgroup of G such that G / H is solvable. Then H and $C_{G}(H)$ satisfy the one of the following conditions.
(i) $H \cong S L(2,5), S L(2,9)$ or E, and $C_{G}(H) \cong G_{m, r}$ for some relatively prime integers m, r.
(ii) $H \cong S L(2,5), O\left(C_{G}(H)\right) \cong G_{m, r}$ for some relatively prime integers m, r, and $C_{G}(H) / O\left(C_{G}(H)\right)$ is a cyclic 2-group or a dihedral group of order $2^{n} \geqq 4$.

Proof. Let H be the perfect normal subgroup of G such that G / H
is solvable. We assume that G does not satisfy the condition (1). Then (4.1) implies that $V_{Q}(H) \cong \Delta_{1}$ or $M_{2}\left(\Delta_{1}\right), V_{Q}\left(C_{G}(H)\right) \cong \Delta_{2}$ or $M_{2}\left(U_{2}\right)$ for some division algebras Δ_{1}, Δ_{2}. Since G / H is solvable, $C_{G}(H) /\left(H \cap C_{G}(H)\right)$ is solvable, which implies $C_{G}(H)$ is solvable.

First we assume that $V_{Q}(H) \cong M_{2}\left(U_{1}\right)$. Then it follows from (2.3) $V_{Q}\left(C_{G}(H)\right) \cong \Delta_{2}$. By (2.1) and (4.2) a Sylow 2 -subgroup of $C_{G}(H)$ is cyclic, and $C_{G}(H) \cong G_{m, r}$ for some relatively prime integers m, r. By (3.3) $H \cong$ $S L(2,5), S L(2,9)$ or E.

We assume that $V_{\varrho}(H) \cong \Delta_{1}$. In this case $H \cong S L(2,5)$ and $V_{\varrho}(H) \cong$ $\Lambda_{10,-1}$, by (3.3). If $V_{Q}\left(C_{G}(H)\right) \cong \Delta_{2}$, then $C_{G}(H) \cong G_{m, r}$ for some relatively prime integers m, r. Thus we may assume that $V_{Q}\left(C_{G}(H)\right) \cong M_{2}\left(\Delta_{2}\right)$.

Let P be a Sylow 2 -subgroup of $C_{G}(H)$. Suppose that P is abelian. By [7] (3.1) $C_{G}(H) / O\left(C_{G}(H)\right) \cong P$. If P is a non-cyclic group of order >4, then $[P, H] \neq 1$ by (4.2). It is a contradiction. Thus P is a cyclic group or an elementary abelian group of order 4.

Next we suppose that P is not abelian. We will prove that P is a dihedral group. By (4.2) $V_{Q}(P) \cong M_{2}(\Gamma)$ for some division algebra Γ. If Γ is not a commutative field, then $M_{2}(\Gamma) \supset M_{2}\left(\Lambda_{4,-1}\right) \ni 1$. Since $V_{Q}(H) \supset$ $\Lambda_{4,-1} \ni 1$, it follows from (2.3) $[P, H] \neq 1$. It is impossible. Thus Γ is a commutative field. If P does not have a cyclic subgroup of index 2 , then P has a subgroup P_{0} of index 2 such that $V_{Q}\left(P_{0}\right) \cong \Gamma \oplus \Gamma$. Since Γ is commutative, P_{0} is an abelian group. By (4.2) $\left|P_{0}\right| \leqq 4$, and P has a cyclic subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup of index 2. In the case where $P \cong\left\langle a, b \mid a^{2 n}=1, b^{2}=1, b a b^{-1}=a^{1+2 n-1}\right\rangle n \geqq 3$, $Z(P)=\left\langle a^{2}\right\rangle$ and $\Gamma \ni i$. Therefore $V_{Q}(P) \supset M_{2}(\boldsymbol{Q}(i)) \ni 1$. It contradicts the fact $P \subset C_{G}(H)$ by (2.3). Hence it follows from (4.2) that P is a dihedral group.

We will show that $C_{G}(H) / O\left(C_{G}(H)\right) \cong P$. Suppose that $C_{G}(H) / O\left(C_{G}(H)\right) \neq$ P. Then $C_{G}(H)$ has normal subgroups K_{0}, K_{1}, K_{2} such that $C_{G}(H) \supset K_{2} \supset$ $K_{1} \supset K_{0}=O\left(C_{G}(H)\right), K_{2} / K_{1}$ is an elementary abelian p-group for some odd prime p and K_{1} / K_{0} is a 2 -group. If K_{1} / K_{0} is abelian, then by [7] (3.1) K_{2} has a normal 2-complement K. Since K is a characteristic subgroup of $K_{2}, C_{\sigma}(H) \triangleright K$ and $O\left(C_{G}(H)\right) \supset K$, which is a contradiction. Thus K_{1} / K_{a} is not abelian. Since K_{1} / K_{0} is a subgroup of dihedral group, K_{1} / K_{0} is a dihedral group and $\operatorname{Aut}\left(K_{1} / K_{0}\right)$ is a 2 -group. Let L / K_{0} be a Sylow p subgroup of $C_{K_{2} / K_{0}}\left(K_{1} / K_{0}\right)$. Then $\left[L / K_{0}, K_{1} / K_{0}\right]=1$ and $L / K_{0} \cong K_{2} / K_{1}$, because $\left|K_{2} / K_{0}: C_{K_{2} / K_{0}}\left(K_{1} / K_{0}\right)\right|\left|\left|\operatorname{Aut}\left(K_{1} / K_{0}\right)\right|\right.$. Thus we have that $K_{2} / K_{0} \cong$ $\left(L / K_{0}\right) \times\left(K_{1} / K_{0}\right)$. Hence K_{2} has a normal 2-complement L, which is a contradiction. Thus we conclude that $C_{G}(H) / O\left(C_{G}(H)\right) \cong P$.

Finally we will prove that $O\left(C_{G}(H)\right) \cong G_{m, r}$ for some relatively prime
integers m, r. If $V_{Q}\left(O\left(C_{G}(H)\right)\right) \cong \Delta_{1} \oplus \Delta_{2}$ for some division algebras Δ_{1}, Δ_{2}, then by (4.1) G satisfies the condition (1). So $V_{Q}\left(O\left(C_{G}(H)\right)\right)$ is a division algebra. It follows from (2.1) that $O\left(C_{G}(H)\right) \cong G_{m, r}$ for some relatively prime integers m, r.

Theorem 4.4. Let Δ be a division algebra. Let G be a non-solvable subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=M_{2}(\Delta)$. Assume that G does not satisfy the condition (1) in (4.3). Then there exists a chain of normal subgroups of $G, G \supset G_{1} \supset G_{2}=O(G)$, which satisfies the following conditions (1)-(3).
(1) $G_{1} / G_{2} \cong S L(2,5) P, S L(2,9)$ or E, where P is a cyclic 2-group or a dihedral group of order $2^{n} \geqq 4$, and $S L(2,5) P$ is the central product of $S L(2,5)$ and P.
(2) G / G_{1} is a 2-group. The order $\left|G / G_{1}\right| \leqq 4$ if $G_{1} / G_{2} \cong S L(2,5) P$, $\leqq 8$ if $G_{1} / G_{2} \cong S L(2,9), \leqq 2$ if $G_{1} / G_{2} \cong E$.
(3) $O(G) \cong G_{m, r}$ for some relatively prime integers m, r with $(n, t)=1$.

Proof. Let H be the perfect normal subgroup of G such that G / H is solvable. Let N be the largest solvable normal subgroup of G. Since G does not satisfy the condition (1) in (4.3), it follows from (4.1) that $V_{Q}(O(G))$ is a division algebra. By (2.1) $O(G) \cong G_{m, r}$ for some relatively prime integers m, r with $(n, t)=1$, and $N \supset O(G)$.

Suppose that $H \cong S L(2,5)$ or $S L(2,9)$. For any $h \in H, n \in N$, we have [h, n] $= \pm 1$, because $H \cap N=\{ \pm 1\}$. Therefore $n^{-2} h n^{2}=h$, which implies $\left|N: C_{N}(H)\right| \leqq 2$. Since $C_{G}(H)$ is a solvable normal subgroup of G by (4.3), we have $N \supseteqq C_{G}(H)$ and $C_{N}(H)=C_{a}(H) \supseteqq O(G)$. We put $G_{1}=H C_{G}(H)$. Since $|\operatorname{Aut}(P S L(2,5)) / P S L(2,5)|=2$ and $|\operatorname{Aut}(P S L(2,9)) / P S L(2,9)|=4$, it follows from (1.2) that $|G / H N| \leqq 2$ if $H \cong S L(2,5)$, $\leqq 4$ if $H \cong S L(2,9)$. Thus $\left|G / H C_{G}(H)\right| \leqq 4$ if $H \cong S L(2,5)$, $\leqq 8$ if $H \cong S L(2,9)$.

Let P be a Sylow 2-subgroup of $C_{G}(H)$. Then $H P$ is the central product of H and P. By (4.3) if $H \cong S L(2,5)$, then P is a cyclic group or a dihedral group of order $\geqq 4$. Suppose that $H \cong S L(2,9)$. By the proof of (4.3) and by (3.3) $V_{Q}(H) \cong M_{2}\left(\left(\boldsymbol{Q}\left(\zeta_{3}\right), \tau,-1\right)\right.$) and $V_{Q}\left(C_{G}(H)\right)$ is a division algebra. If $C_{G}(H)$ has an element of order 4, then $V_{Q}\left(C_{G}(H)\right) \supset$ $\boldsymbol{Q}(i) \ni 1$, and $M_{2}(\Delta) \supset M_{2}\left(\left(\boldsymbol{Q}\left(\zeta_{3}\right), \tau,-1\right)\right) \bigotimes_{\mathbf{Q}} \boldsymbol{Q}(i) \cong M_{4}(\boldsymbol{Q}(i))$. But it is impossible. Therefore $|P|=2$ if $H \cong S L(2,9)$.

We now assume that $H \cong E$. Since $\boldsymbol{Q}[D Q] \cong \boldsymbol{Q} \oplus \boldsymbol{Q} \oplus \cdots \oplus Q \oplus M_{2}\left(\Lambda_{4,-1}\right)$ we have $V_{Q}(D Q) \cong M_{2}\left(\Lambda_{4,-1}\right)$. It follows from (2.3) that $V_{Q}\left(C_{G}(D Q)\right)$ is a division algebra. If $C_{G}(D Q)$ has an element of order 4, then $V_{Q}\left(C_{G}(D Q)\right) \supset \boldsymbol{Q}(i) \ni 1$, which is a contradiction. Therefore the order of a Sylow 2-subgroup of $C_{G}(D Q)$ is 2. We set $G_{1}=E C_{G}(D Q)$. Since $|\operatorname{Aut}(D Q):(E /[D Q, D Q])|=2$, $\left|G / E C_{G}(D Q)\right| \leqq 2$. Thus we have $O(G)=O\left(C_{G}(D Q)\right)$, which means $G_{1} / G_{2} \cong E$,
because $\left|E \cap C_{G}(D Q)\right|=2$. The proof of the theorem is completed.

§5. Additional result.

Let G be a subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=M_{2}(\Delta)$. Let P be a Sylow 2-subgroup of G. Then $V_{Q}(P) \cong \Delta_{1}, \Delta_{1} \bigoplus \Delta_{2}$ or $M_{2}\left(\Delta_{1}\right)$, where Δ_{1} and Δ_{2} are commutative fields or the quaternion algebras $\Lambda_{2^{n},-1}$ (see [6]). We put $H_{n}=\Lambda_{2^{n},-1}$. In [7] we considered all finite subgroups of $M_{2}(\Delta)$ with abelian Sylow 2-groups. So we may assume that P is not abelian. If $V_{Q}(P) \cong \Delta_{1}$, then P is a generalized quaternion group.

Here we will prove a proposition which gives an information on G in the case where $V_{Q}(P) \cong \Delta_{1} \oplus \Delta_{2}$ or $M_{2}\left(\Delta_{1}\right)$.

Proposition 5.1. Let Δ be a division algebra. Let G be a subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=M_{2}(\Delta)$. Let P be a Sylow 2-subgroup of G. Assume that $V_{Q}(P)$ satisfies one of the following conditions.
(1) $V_{Q}(P) \cong H_{n} \oplus K, n \geqq 3$, where K is a commutative field.
(2) $\quad V_{Q}(P) \cong H_{n} \oplus H_{m}, n \geqq 3, n \geqq m \geqq 2$.
(3) $\quad V_{Q}(P) \cong M_{2}\left(H_{n}\right), n \geqq 3$.

Then the Schur index of Δ is 2, and G is a subgroup of $G L(4, C)$.
To prove this proposition we will use the following result.
(5.2) (Benard-Schacher [2]). Let χ be an irreducible complex character of finite group. Then $\zeta_{m} \in \boldsymbol{Q}(\chi)$, if $m_{\boldsymbol{Q}}(\chi)=m$.

Proof of proposition. Let s be the Schur index of 4 . Then by (5.2) ζ_{s} is contained in the center of Δ. Thus $V_{Q\left(\zeta_{s}\right)}(P) \subset M_{2}(\Delta)$. We denote by L_{n} the center of H_{n}. Then $L_{n}=\boldsymbol{Q}\left(\zeta_{a}+\zeta_{a}^{-1}\right)$, where $a=2^{n}$.

First we show that $\boldsymbol{Q}\left(\zeta_{s}\right)$ is not a splitting field for H_{n}. Assume that $\boldsymbol{Q}\left(\zeta_{\mathrm{s}}\right)$ is a splitting field for H_{n}. In the case (1), $M_{2}(\Delta) \supset V_{Q\left(\zeta_{s}\right)}(P) \cong$ $\boldsymbol{Q}\left(\zeta_{s}\right) \otimes_{L_{n}} H_{n} \oplus \boldsymbol{Q}\left(\zeta_{s}\right) \otimes_{K} K \cong M_{2}\left(L_{n}\left(\zeta_{s}\right)\right) \oplus K\left(\zeta_{s}\right)$, which is a contradiction. In the case (2), $M_{2}(\Delta) \supset V_{Q\left(\zeta_{s}\right)}(P) \cong M_{2}\left(L_{n}\left(\zeta_{s}\right)\right) \oplus Q\left(\zeta_{s}\right) \otimes_{L_{m}} H_{n}$, which is a contradiction. If $V_{\mathbf{Q}}(P) \cong M_{2}\left(H_{n}\right)$, then $V_{Q\left(\zeta_{s}\right)}(P) \cong \boldsymbol{Q}\left(\zeta_{s}\right) \otimes_{L_{n}} M_{2}\left(H_{n}\right) \cong M_{4}\left(L_{n}\left(\zeta_{s}\right)\right)$, which implies $V_{Q\left(\zeta_{s}\right)}(P) \not \subset M_{2}(\Delta)$. Thus $Q\left(\zeta_{s}\right)$ is not a splitting field for H_{n}.

Next we show that $Q\left(\zeta_{s}\right)$ is a splitting field for H_{n} if $s>2$. Since $L_{n}\left(\zeta_{8}\right) \supset \boldsymbol{Q}\left(\zeta_{8}+\zeta_{8}^{-1}\right)=\boldsymbol{Q}(\sqrt{2})$ by the assumption on n, the local degrees of $L_{n}\left(\zeta_{s}\right)$ at all primes of $L_{n}\left(\zeta_{s}\right)$ extending the rational prime (2) are even. If $s>2$, then $L_{n}\left(\zeta_{s}\right)$ is totally imaginary. It follows from [4] that $L_{n}\left(\zeta_{8}\right)$ is a splitting field for $H_{2}=\Lambda_{4,-1}$. Thus $H_{n} \bigotimes_{L_{n}} \boldsymbol{Q}\left(\zeta_{s}\right) \cong\left(\Lambda_{4,-1} \bigotimes_{Q} L_{n}\right) \bigotimes_{L_{n}} \boldsymbol{Q}\left(\zeta_{s}\right) \cong$ $\Lambda_{4,-1} \otimes_{\mathbf{Q}} L_{n}\left(\zeta_{8}\right) \cong M_{2}\left(L_{n}\left(\zeta_{s}\right)\right)$. Hence we conclude that $s \leqq 2$.

Finally we show that $s=2$. Suppose that $s=1$. Then Δ is a field,
and $V_{\mathbf{Q}}(P) \subset M_{2}(\Delta) \subset M_{2}(\Delta) \otimes_{\Delta} C=M_{2}(C)$. It follows that $V_{c}(P) \subset M_{2}(C)$. But it is impossible. In fact, $V_{c}(P) \cong\left(H_{n} \bigotimes_{L_{n}} C\right) \oplus(K \otimes C) \cong M_{2}(C) \oplus C$ if $V_{Q}(P) \cong$ $H_{n} \oplus K, \quad V_{C}(P) \cong\left(H_{n} \bigotimes_{L_{n}} C\right) \oplus\left(H_{m} \bigotimes_{L_{m}} C\right) \cong M_{2}(C) \oplus M_{2}(C) \quad$ if $\quad V_{\mathbf{Q}}(P) \cong H_{n} \oplus H_{m}$, and $V_{C}(P) \cong M_{2}\left(H_{n}\right) \otimes_{L_{n}} C \cong M_{4}(C)$ if $V_{\mathbf{Q}}(P) \cong M_{2}\left(H_{n}\right)$.

References

[1] S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386.
[2] M. Benard and M. M. Schacher; The Schur subgroup, II, J. Algebra, 22 (1972), 378-385.
[3] L. Dornhoff, Group Representation Theory, Part A, Marcel Dekker, New York, 1971.
[4] B. Fein, B. Gordon and J. H. Smite, On the representation of -1 as a sum of two squares in an algebraic number field, J. Number Theory, 3 (1971), 310-315.
[5] W. Feit, Characters of Finite Groups, Benjamin, New York, 1967.
[6] M. Hirari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374.
[7] M. Hikari, On finite multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 28 (1976), 737-748.
[8] M. Hikari, On simple groups which are homomorphic images of multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 35 (1983), 563-569.
[9] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1976.
[10] G. J. Janusz, Simple components of $Q[S L(2, q)]$, Comm. Algebra, 1 (1974), 1-22.

Present Address:
Department of Mathematics
Keio University
Hiyoshi Kohoru-ku, Yokohama 223

[^0]: Received October 31, 1983

