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Let K/k be a relative algebraic number field of degree =n. It is
known that under a certain condition there exist n elements of K, say
@, -+, ,, satisfying

0x=0,w,B -+ POw, ,

where Oy, O, are the rings of integers of K, k respectively. We call a
set of these w, -:--, w, a relative integral basis w.r.t. K/k. It is not
still easy to have a relative integral basis explicitly. H. Wada have
determined one in case that k=Q(1—3), K=k(¥A) with A being an
element of %, in [1]. In this paper, we have got a basis under some
hypotheses by the same method in [1] when k=Q(/ ' m), K=k(¥ A) with
m being a square free rational integer and A being an element of k.

§1. Now, let m be a square free integer and k be the field Q(1'm)
as we mentioned above. For some cubic free integer A of k, let K be
the field k(¥ A). The purpose of this paper is to get a basis ®,, w,, w,
of O over O,, on the following hypotheses H1, H2:

H1l. Any prime ideal p in O, which divides (8) is principal.

H2. A=fg*, f and g being in O, such that (f) and (g) have no square

ideal factors and are relatively prime.

We will see that these hypotheses H1, H2 are sufficient for the ex-
istance of relative integral basis. But these may not be always necessary.
The hypothesis H2 is necessary only for the convenience of the caleculation
in our method. It seems that the hypothesis H1 is more essential. But
we will not discuss this problem in this paper.

Put A=, =V A and = ¥ A. By the relation 8*=gd, any element
of K can be expressed as the form w=a+80+7F with a, 8, Yek. It can
be easily verified that w is in O, iff there exist s,¢ and » in O, such
‘that 3a=s, —8a*+387fg=t and a*+PA+7*A—3aB7fg=u. Hence
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(BB A-(37)'A=(3-887f9)'=((Ba)* +8¢t)’=(s*+3t)°,
(3R A+(87)*A=3(8a)(8R)(37)fg — (Ba)*+3*u=38s(s*+3t) —s*+3*u ,
are in O0,. Since (4) and (A4) contain no cubic ideal factors, both 33 and

37 are in O0,. Therefore, the following are necesary and sufficient for w
being in Ok: :

w=ﬁﬁgi£5— , where a, b, c are in O, .
(1) befg=a’ mod(3) .
(2) a*+b*A+c*A=3abcfg mod(3) .

First of all, we will prove the following lemma.

LEMMA. Let p be a prime ideal im O, which divides (8), w=
(a+b0+ch)/3 be in Ox where a,b, ¢ are in O,. Then the following con-
ditions are equivalent:

(i) »p divides (a).

(ii) b divides (b).

(ili) p divides (c).

PrROOF. Since w is in O, we have
(1) befg=a? mod p ,
(2) a*+b*A+ctA=3abefg mod p*.

From (1)’, (ii)— (@) and (iii)—_—»(i) are obvious. If both of (i) and (ii) hold,
then from (2)' p* divides (c*A), which implies (iii) by (H2). Similarly we
have (i) and (iii) — (ii). We assume (i). From (1)’ and (2)’, we have

(1)” bB*A-c’A=0 modp®,
(2) BA+c*A=0 modp® .

(1)” says that p* divides (b*A) or (c*A), and (2)” says that p* divides (b°A)}
iff p* divides (c*4). Thus (b°4) and (c*A) are divisible by p?, but from
(H2) we get that p* does not divide both A and A. Therefore we get
(il) or (iii). Q.E.D.

When we begin to consider the congruences (1) and (2), we may
immediately notice that we have to consider them according to the way
of decomposition of the ideal (8) in O,. Fortunately the way of decom-
position of the ideal (p) in O,, where p is a rational prime number, is
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not so complicated and is well known. It depends only on the value of

the Legendre symbol (m/p). Especially when p=38, there are following
three cases. '

(I) m=0 mod3, that is (8)=p* in O,.
(II) m=1 mod3, that is 8)=pp, in O,, p,#p,.
(III) m=—1 mod 8, that is (8)=p in O,.
Since 1, 4, § are in O, we may consider @ modulo 0,0,6D0.F and
except a factor of unit.

§2. Case (I). Let p=(x) with z in O,. In this case we can choose
{0, £1} as a complete system of representatives of O./p and, without
loss of generality, we may assume f#—1, g2 —1 modp. For any w=
(@+b6+c¢h)/3 (a, b, c € 0,), we may consider the only three cases as follows:
(I-1) p* divides (a) and does not divide both () and (c).

(I-2) p divides (a) only once.
(I-8) p does not divide (a).

Case (I-1). Since p divides (a), from the lemma, we have (b), (¢) are
divisible by p. Thus (1) holds. And (2) is equivalent to b*A+¢*A=0 mod *,
from which we can see that p* divides (b) iff p* divides (¢). This says
both (b) and (¢) are divisible by p only once.

Put b=er, c=¢'nr, where we may assume e, ¢’= =+1, because (72) =(3).
Then (2) is equivalent to

(3) (eg+e'f)fg=0 mod p*.

Since (fg) is divisible at most once by p, we have eg= —e’f mod p?, which
says f=g=1 modp and e=—e’#0. Then (3) is equivalent to

efg(g—f)=0 modp’,
9=f mod p° .

In this case, w=(—8)/x.
Case (I-2). Similarly as in (I-1), we see that p divides (b), (¢) and
thus (1) holds. Putting ax, bz, cxr instead of a, b, ¢ in (2), we have

a’+b¥fg*+cf*g=3abcfg mod p®.

Repeating the same argument in (I-1), we may assume a=1, b=e, c=¢’
with e, =0, 1, and (2) is

(4) 1+efg*+e'f?g=38ee’fg mod p* .

This shows that fg#0 mod p. Thus f=g=1 modp. Put f=1l+zx, g=
l14+7y with 2, ¥ in O,. Then (4) is



124 KIYOSHI NAGATA

(47  (L+e+e)+(e—e)@—y)m +{ey +22y) +¢ @+ 2uy))m =3¢’ mod p* .

Replacing mod p* by mod p, we have 1+e+e'=0 modp. Hence (e €)=
(O: —1)1 ('_1’ O) or (19 1)'
When e¢=0, ¢'=—1, (4) is

(x—y)(A—72)=0 modyp*,

=y mod p* .
When e¢e=—1, ¢'=0, (4) is

(x—y)1—7y)=0 mod§y®,

r=y mod p* .
When e=1, ¢'=1, (4) is

(@*+y*+4xy)n*=0, modp®,
(x—y)>*=0 mod p,
=y mod p .

Hence we only have the following two cases
1—¢6 1-6 1+6+6 .
xr 0w T
1+6+6
T

f=g modp® and w=

f=g modp* and w=

Case (I-3). In this case, since there exists the inverse of ¢ mod 3,
we may assume a=1. Then (1) and (2) become as follows:

(5) befg=1 mod p*.
1+ 0% g*+c%f*g—8befg=0 mod p°,
A—-bfg°)(c’f*g— 1)+ (befg)*—8bcfg+2=0 modp°®,
1=019)(c*f*g—1) + (befg—1)*(befg+2)=0 mod p°.
Applying (5) to (befg—1)*(befg+2),
(6) b f*—D(f?g—1)=0 mod p°.
From (5), we have
(befg)*—8(befg):+8bcfg—1=0 mod p°,

(befg)’—1=38bcfg(bcfg—1) mod p°,
(befg)i=1 mod p* .



PURELY CUBIC FIELDS 125

From (6), ¢’/*g—1 or b’fg*—1 is divisible by . For example, let b*fg*—1
be divisible by p*. Then

b’ f*=1=0b%""g° mod p*,
which says
f’9g=1 modyp®.
Hence (6) is equivalent to
(7) b g*=c*f’g=1 mod p*.

Now let (O./p)*, (O./p*)* be the multiplicative groups of O,/p?, O./p°
respectively and put o=—1+x, v=1+7° Since (0,/p)*, (0,/p")* have
order 6, 18 respectively and from the tables 1, 2 we have

(0u/p*)* =<0 mod p*) ,
(04/9°)* = <o mod p*) x (z mod ) .

TABLE 1.
o | o | 1 | 2 | s |
o* mod p? 1| -t | 14 | 2 |
order ¢=6
TABLE 2.
8 0 1 | 2 8
o* mod p? 1 —14r l 1—2r4=* -1
order ¢=6
t 0 S 3
7 mod »® 1 1472 l 1—=z2 1
order r=3

Since b, ¢ appear in (7) as b% ¢ with modulus » and f=g=1 mod p,
we may put b=d’, ¢=0°, f=0"c", g=0%7" with integers b, ¢, f, §, ', '
such that 0<b, ¢<6, 0<fF, 7, f, 5’<8. And (7) is

gL 142" = pSetaf 202+ =1  mod P .
We see that this is equivalent to
(8) F'=0" and 85+2f+4§=3¢+4f+2§=0 mod6,
85+2Ff+45=0 mod 6 says f=§ mod3. Hence f=g. Therefore we have



126 KIYOSHI NAGATA

f'’=§', f=g§, b=even, é=even.
This means (7) is equivalent to
(9) Sf=g modp®, b=c=1 modp.
Applying this to (5), we also have
(10) bef:t=1 modp®.

Consequently we have following three cases. The first is f#g mod p*
and any element of Oy is given as a linear combination of 1, 6, § over
O,. The second is f=g mody?, f£g modp* and any element of Oy is
given as a linear combination of 1, 4, (1+68+6)/xr over O,. The last case
is f=g modp® and in thiscase 1,6, 8, 1+60+8)/x, 1 —8)/x, 1—8)/x, (6—8)/=,
(1+b0+cf)/3, where b=¢c=1 modp and bcf*=1 mod p?, are sufficient to
generate Oy over O,.

We will show that we can choose 1, (1—8)/x, (f +6+8)/3 for basis. If
we take b, ¢ as b=c=f"" mod y* then b, ¢ satisfy b=c=1 mod p and bef?=1
mod p*. Since (1+bf+¢f)/3 is in O so is (f + fb6+fcd)/3 and we may see
(f+6+6)/8is in Ox. Now we must only show that any element of Oy is ex-
~ pressed as a linear combination of 1, (1—6)/x, (f+6+6)/3. Let (a+b0+c8)/3
be in Ok, then so is (a+b0+cF)/8—c(f+0+6)8={(a—cf)+(b—c)6}/3. But
{a—cf)+(b—c)0}/8 becomes 0 or +(1—8)/x mod 0,0,6p0.,8. Hence
(a+b8+ch)/3 is given as a linear combination of 1, (1—0)/x, (f +6+8)/3.
Thus we have proved the following theorem.

THEOREM I. Let k=Q(Vm) with m=0 mod3,K=k(¥A) with an
integer A of k. We assume that H1 and H2 hold and f==—1 modp, g*—1
mod p. Put 6= ¥V A, §=6*g, p=(x). Then a basis of O as O,-module
and the relative discriminant d(K/k) are given as follows:

(@) When f#g mody? then {1, 0, 8} is a basis and d(K[k)=(3f?g?.

(b) When fz£g modyp?, f*g modp® then (1, 6, 1+60+8)/%} is a basis
and d(K/k)=(3'f*g").

() When f=g mody®, then {1, 1—0)/x, (f+6+8)/x} is a basis and
d(K/k)=(f"g").

§3. Case (II). Let p,=(w), p.=(w,) with 7, 7, in O,. In this case
we can also choose {0, +=1} as a complete system of representatives of
O,/p, 1=1,2). Put fi==xf, g.==%g so that f,#—1, g;—1 mod p, and
put A,=fg:, A,=fig, 0,= VA, and 6,= VA, (i=1,2). Then K=k(6)=
k)=k(@,), 6=+60,=+0, and §=+8,==+6F,. From the lemma for any
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w=(a+b0+c)/3 (a, b, ce0,), we may consider the only three cases as
follows:

(II-1) p, does not divide (a) and p, divides (a).

(II-2) p, divides (a) and p, does not divide (a).

(IT-8) Neither p, nor p, divides (a).

Case (II-1). Since both (b) and (c) are divisible by p,, from the lemma
® is expressed as the form w,=(a+b6,+cd,)/x, and (1) and (2) become as
follows:

bef.g,=a’ | mod p, ,

@’ +b'f1gt + 79, =8abef,g, mod P},
where we may assume a=1, b, c==+1. Thus (1) and (2) are equivalent
to the following (11) and (12):

(11) befig.=1 mod p, ,
(12) - 14+-b¥gt+ g, =8befg, mod P},

where b, c=+1. And (12) is equivalent to
(1—-b1gD)(’fi9,— 1) + (bef19,—1)*(befig,+2)=0 mod p .

From (11) we can see bcfig,—1=bcf,9,+2=0 modp,. Hence (12) is
equivalent to

(13) (1-b%1g)(c’fig,—1)=0 mod p} .

Again from (11) we have 0=(bcf.g,—1)*=(bcf.9.)*—8(bef.9.)*+3(bef,g,)—1
mod p;. Replacing mod p! by mod p? we have (befig.)*=1 mod p?, which
says that b°f,gi=1 mod p? iff ¢*f?9,=1 mod p>. Hence we have

(14) b*figi=1 mod p?, cfig;=1 mod pi,

which is equivalent to (11) and (13). The assumption f;, g,% —1 mod p,
says that figi=f%g,=1 modp, and b*=c*=1 modp,. Thus we have b=c=1,
figi=1, flg,=1 mod pi.

As (0,/pD* is an abelian group of order 6, it is cyclic. Let ¢ mod p?
be a generator, we can express f,=o0’1, g,=0° mod p? with integers f,, g,
such that 0<f,, §,<6 and (14) is equivalent to

(14)’ fi+25,=0 mod6, 2f,+5,=0 mod6.

We can easily verify that (14)’ is equivalent to f,=g, mod 6 under the
assumption f,, g,%—1 modp,. Thus w,=1+8,+68)/x, is in O iff fi=g,
mod . ' '
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Case (II-2). Similarly as in (II-1), we have that @, =(1+6,+8,)/r, is
in O iff f,=g. mod 3.

Case (II-3). Let w=(a+bf+ch)/3 be an element in O satisfying the
condition of (II-3). We may have w,=7,w, w.=m® satisfying the con-
dition of (II-1), (II-2) respectively. Hence f,=g, mod i, f.=g. mod ¥; hold
and w,=1+6,+6,)/7,, w,=(1+06,+8,)/m,. Conversely for any 2, ¥ in O,

W, +Yw, =—1—{(m2 +ym) + @m0, +y1.0:) + (@m0, + Y. 0,)}

17T

= —%—{:s(am:2 +ym,) +e(Xoem,+yr)0 +e(Lam. ym,)0}

where ¢ is the unit in O, such that 3=emz,. As p, b, are relatively
prime, we may choose z, ¥ so that the coefficient of § in the numerator of
the above formula is one. For such #, ¥y put w= 2w, +yw,=(a+bo+8)/3.
We will show that {1,6, w} is a basis of Or as O,-module. For any
@' =@ +b0+c'6)/3 in O,

o —cw =-;-’~{(a’ —c'a)+(b'—c'b)6} .

From the lemma both (a’—c’a) and (b’—c’d) must be divisible by p,, p..
So they are divisible by (3). Then

o —-cw=s+10,
o =s+t+cw,

where s=(a’'—c'a)/3, t=(b'—c'b)/3 in O,. Thus we have proved the follow-
ing theorem.

TueoreM II. Let k=Q(/m) with m=1 mod3, K=(¥A) with an
integer A of k. We assume that H1 and H2 hold and f,%—1 mod p,,
g.%—1 modp, (i=1,2). Put 8,= ¥fg%, 6.=6%9. (m)=p; (i=1,2). Then
a basis of Ox as O,-module and the relative discriminant d(K/k) are
given as follows:

(a) When fi#9, mod §?, f,%g, mod i, then {1, 6, 4} is a basis and
d(K/k)=@3'f*g").

(b) When f,=g. mod ¥, f;%g; mod p; (¢, 5=1, 2, 1), then {1, 0, g}
18 a basis and d(K/k)=pp}(f*g").

(¢) When f,=g, mod§:, f;=g, mod i, then {1,0, ®} is a basis and
d(K/k)=3fg").

(Here w,=(1+0,4+0)/n, (i=1,2), o=20,+yw. with x,y in Oy such
that the coefficient of 8 in 3w is one.)
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§4. Case (III). From the lemma, we may only consider the case
that none of (a), (b), (¢) is divisible by (8) and in this case we may assume
a=1, since a mod(3) has the inverse in O,. Thus (1) is equivalent to

(15) befg=1 mod(3) ,
and (2) is equivalent to ' |
(A=bf0*)(c"f’9—1) + (befg —1)*(befg+2)=0 mod(3)* .
Applying (15) to (befg—1)*(befg+2)
(16) - 1A-=b0g)(fg—1)=0 mod(3)®.
From (15) we also have
(befg)’=1 mod(3)*,

which says 8’f¢*=1 mod(3)? iff ¢*f’9g=1 mod(8):.. From (16), b*fg>—1 or
cf'g—1 is divisible by (3):.. Hence (16) is equivalent to

an bfg°=1 mod(3), Sflg=1 mod(3)*.

In (17) we may consider f, g mod(3)* and b, ¢ mod(8). Now put
m=—1+8l, 6=1+1V'm and t=1+8¢. Then (0,/@3))* is the cyclic group
of order 8 generated by o mod(3) and (0,/(3))* is the direct produect of
the cyclic group of order 24 generated by ¢ mod(3)’ and the cyclic group
of order 3 generated by = mod(8)* (see Table 3, 4). Hence we may put
b=ac*, c=0°, f=0'77, g=0"¢" with integers b, ¢, f, g, F/, 3’ such that
0<b, <8, 0=f, §<24, 0<f, §<38, and (15) and (17) are equivalent to
the following (15)’ and (17)":

15y b+e+f+g=0 mod 8 ,
a7 8b+f+2=3¢+2f+5=0 mod 24, =g .

Since (17)’ induces (15), the necessary and sufficient condition for the
existence of an integer w=(1+af+ch)/3 in O is that there exist b and
¢, satisfying (17)', which is equivalent to f=g mod3. Turning to f, g,
F=g mod 3, f'=g" mod 3, for f=07z" mod(3)?, g=0'r" mod(8)® is equivalent
to fg~'=0"" mod(3)* for some integer k. In this case we may choose
b, ¢ so that b*fg’=1 mod(8)}, c*f’¢g=1 mod(3)>. Let % be in O, such that
h=¢" mod(3)}, then h*=g%=fg mod(3):. Put b, ¢ in O, such that b=
h~'g™, c¢=hf mod(3). Then b*=h*g=(fg ) g*=f""9g"?, c*=h'f=
(fa™)f*=f"9"" mod(3)* and (1+b6+ch)/38 is in Or. For any c¢ in O,, c*
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always denotes an element in O, such that c*¢=1mod(3). Since (1+b8-+ch)/3
is in O iff (¢*+c*b0+8)/8 is in Ox. In this case,

h*f+h*f)h*g*6+6 _ h*f+h**fg*6+6
3 3

is in O, and fg*=h® mod(8) says (A*f+hO-+8)/38 is also in Ox. Now what
we have to do is to show that {1, 6, (h*f+h6+6)/3} is a basis. For any
w=(a+b6+ch)/8in Og, w—c(h*f+h8+6)/3={(a—ch*f)+ (b—ch)6}/3 is in O.
From the lemma, this implies that both a—ch*f and b—ch are divisible

by 3 and w—c(h*f+h6+6)/8 is in 0,680,0. Thus we have proved the
following theorem.

THEOREM III. Let k=Q(1/m) with m=—1 mod3, K=k(¥A) with
an integer A of k. We assume that H2 holds. Put g=1+1v"m, r=1+380.
Then any element of (0./(8))* 18 uniquely expressed in the form o°z* with
integers x, Y such that 02 <24, 0<y<38, and a basis of Ox as O,-module
and the relative discriminant d(K/k) are given as follows:

(@) When fg—'%o** mod(8) for any integer kh, then {1, 6, 4} is a basis
and d(K/k)=(3fg?.

(b) When fg~*= o mod(3) for some integer h, then {1, 8, (h*f+h6+8&)/3}
18 a basis and d(K/k)=(3f*g%.

(Here h, h* are elements of O, satisfying h=¢* mod(®), h*=g*
mod(3).)

TABLE 3.
o=1+Vm, 0@ =N3(1-3=) =8
e | | 2 | 3 | 4 |
a'mod(3)| 1+~/7n'i| —vm | I—V—m—l -1 I
TABLE 4.

o=14++vm, r=1+30s, m=—1+38l,
H0/ @)1= Ne:(1- =) =8-9=3-24,

NS
s | 1 | 2 |
Fmod @ |  1+vm | —vm+si+vm |
| 3 | 4 5 |

| 1-vVm+814Q+0vm) | —1+3(—1+D+IWm) | —1—Vm—8(1-+1-+DVm) |
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6 7 8
vVm—8lvm —14+vVm—8l1+vm) 1+3{(—=1+D+IvVm}
9 10 11
14+vVm—81+1+)vVm} —vVm—=3{+1+)vVm} 1-vVm+31-)A—vm)
12
-1

a*=1mod(3) (s#0) iff s=8 or 16
When I=0mod 8, then ¢*=1—38, ¢!*=1-+3 mod(3)2.
When l=1mod 3, then ¢*=1+43vVm, 0¥=1—38v'm mod(3)%. _
When [=—1mod 3, then o*=1+31—+m), ¢*=1—8(1—+'m) mod(3).
e | 1 | 2 | s
7t mod(8)? I 1+8¢ I 1—8s I 1
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