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Extended Alexander Matrices of 3-Manifolds 11

—Applications—
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§1. Statement of results.

In this paper we study 8-manifolds obtained from S*® by Dehn surgery
along knots. Let p be a positive integer and ¢ be an integer relatively
prime to p.

DEFINITION. For a knot kcS?, let L(p, ¢; k) be a 8-manifolds obtained
from S* by Dehn surgery along k with coefficient p/q.

Note that when % is an unknot L(p, ¢; k) means just a lens space
L(p, ¢). Clearly L(p, q; k) is a homology lens space and H,(L(p, q; k))=2Z,
is generated by an element corresponding to a meridian of the tubular
neighbourhood N(k) of k. We denote this element by t. Then an element
of a group ring ZH,(L(p, q; k))=Z[Z,] can be represented by a polynomial
of ¢t with integer coefficients where t?=1. We give a necessary condition
for L(p, q; k) to be a lens space.

THEOREM 1. Let k be a knot with the Alexander polynomial 4,.
Suppose that L(p, q; k) is homeomorphic to L(p, q¢'). Let r, r' be integers
such that rq=1(p) and r'q’=1(p). Then there are we Z[Z,] and l,sc Z
such that (p, 8)=1 which satisfy the equation

A+t+---+t"40E)= £tuag@Q+t+ -+ )mod A+t -« +¢77Y)
wn Z[Z,].
As a corollary we can prove:

THEOREM 2. Let k be a knot with trivial Alexander polymomial.
Then L(p, q; k) and L(p, q’) can be homeomorphic only if q=+q'(p) or
qq’ = +1(p).
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In case that k£ is unknotted, Theorem above yields well known classi-
fication of lens spaces which has been proved by Reidemeister [5], Franz
[4] and Brody [1].

§2. Extended Alexander matrices.

In [3] the author and Kanno defined extended Alexander matrices of
Heegaard splittings of 3-manifolds and studied their fundamental properties
(Theorem 1 and Theorem 2 in [3]). We need the following result to
prove Theorem 1:

THEOREM'3. Suppose that there is a homeomorphism f: M— N. Let
(‘é) and (g,) be EA-matrices of H-splittings of M and N. Then there

are m, n € N such that (%%lg: )f‘~ <§:$€”>

§3. An EA-matrix of L(p, q; k).

The precise definition of te H,(L(p, q; k)) is as follows. Let pe
H,(S®*— N(k)) be a homology class represented by a meridian of 6 N(k) where
N(k) denotes a tubular neighbourhood of k. Then ¢ is a image of ¢ under
the homomorphism H,(S*— N(k))— H,(L(p, q; k))=Z,. Then we have:

LEMMA 1. There is an EA-matrix of L(p, q; k) which has the form
1+t+---+t* 0

(A)__ 0 C
B) | 14+t+---+t* 0
* D

where rq=1(p), C and D are square matrices and C is an Alexander
matrix of the knot k.

PrROOF. We suppose that a given knot %k is in regular position in

4

2

FIiGUrE 1
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SP=R*U. Let S,=R%>U and S_=R®U c be upper and lower hemi-
spheres such that overpasses and underpasses lie in S, and S_ respectively.
Let Dj, ---, D, be 2-disks obtained as traces of underpasses projected by

a projection map S_—S,NS_ and let D,=D,N(S*—N(k)). Let N(D)
denote a tubular neighbourhood of D, in S_N(S*— N(k)).

FIGURE 2

Set T=(S, N(S*— N&)))U (U, N(D,)). Then T is a handle body of
genus n and 7z, (T) is a free group generated by «,, :---, «, which cor-
responds to the upperpasses.

Let T'=L(p, q; k)—T then T’ is also a handle body of genus n.
Next we investigate meridian disks of 7’. Consider 2-disks WD,
(=2, -+, n) wrapping D; as in Figure 4 which correspond to relators of

Wirtinger presentation of the knot group. We can suppose that o WD,C
S+nS).
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Let m and ! be a meridian and a preferred longitude of dN(k). We can
assume that m and [ lie on dTNoN(k) and m is mapped to z, by the
homomorphism 7,(0T)—n,(T). Then we can choose simple loops a,, b, on
0T NoN(k) such that, as homotopy classes, a,=m?l%c and b,=m"l'y where
2 and y belong to the commutater subgroup generated by ! and m and
r, s € N satisfy ps—qr= —1 (see Figure 5).

FIGURE b

By the definition of p/q Dehn surgery, we can assume that S'xD? is
attached to S’—I\'T(k) such that a meridian {*}xoD? (x ¢ S") is identified
with a, and a preferred longitude S'Xx {**} ({**} € 9D?) is identified with b,.

Since L(p, ¢; k) is obtained from T by attaching 2-handles correspond-
ing to {*x}xD? WD, WD,, ---, WD, and a 3-ball, thus {{*}xD? WD,
WD,, ---, WD,} is a system of meridian disks of T'=L(p, ¢; k)—T. Let
a; (t=2, --+, n) denote loops on ¢T=0T’ which are obtained from o WD,
(=2, -++, n) by connecting to the base point p,. Then a, a, -+, a,, b,
form a part of m-l system. Choose simple loops b,, ---, b, such that
{a;, b} should be a m-l system of T’ (This is an abuse of the term
‘m-l system’, but readers should not be confused).
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Now for an inclusion map h:oT’'—D,=> T, let us compute (9h(a,)/dx;)*
and (0h(b,)/ox;)*. First, since (x, ---, x,|k(a,), - -+, h(a,)) is the Wirtinger
presentation of the knot group =,(S*— N(k)), the matrix (oh(a.)/0x;)i-.... .
is the Alexander matrix reduced from Z[Z] to Z[Z,]. Next let us com-
pute (0h(a,)/0x;)* and (oh(b)/ox;)*. Let a;=(ol"«/ox;)* and B,;=(dl'y/dox;)".
Then we have

(M)“={1+t+“'+t""1+t”% (G=1)
0%; t*a; (=2, +++, n)
and
(M)«____{l+t+---+t’“1+t'ﬁl (G=1)
ow; /v, (=2, ++, 1) .

Thus an EA-matrix (‘g,) has the form

1+t+-. - +t2 Py, tPa, - - -, tPa,
()
axj i=2,000,n

Lttt e+t 428, tBsy »+ v, U8,
(5e2) omn

We use the following sublemma the proof of which will be given later.

SUBLEMMA. a«; and 3; have the forms a;=31, c,(0h(a,)/dx;)* and B;=
i d(0h(a,)[0x;)* where coefficients ¢, and d, are independent of j.

Then by multiplying to (‘é) the following matrix

1, —t?c, -+, —t*c, \
0, 1-. 0 | 0
0 e
0, —t'dy, -+, —t"d, | 1
t7?e, 1-, O
0 ",
tre, O 1

from left, we obtain
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L1+t+ oo +t2 0

(C-w NI

L+t+---+t 0

*

As is well known (See Crowell-Fox [2], pp. 122-123), the linear
combination of all columns of ((6k(a,)/0%;)*);=s,....., iS zero. Thus the above
matrix is equivalent to the matrix of the following form

L4t4 -4t . 0
0 C
) 0
D

*

where C is also an Alexander matrix. Since (‘é) is equivalent to the
above matrix, we complete the proof except for Sublemma.

PROOF OF SUBLEMMA. Since !‘%¢ and [*y are presented as products of
conjugates of I and [, it is sufficient to prove that for a product of
conjugates of [ or ™', say z, (0h(z)/ox;)* has the form >, m,oh(a,)/ox;)*.
As is well known A(l) is mapped to the second commutater subgroup by
k: n(T)—n(S*—N(k)). | is represented by l,» where [, belongs to the
second commutater group of =,(T) and r belongs to ker k. Since [, is
negligible when we consider free differential calculus, it follows that
(0l/ox;)*=(0r/ox;)*. Note that r is represented by a product of conjugates

of h(a,), -+, h(a,) and their inverses, and
ogh(a)g " \* _ 1 _ of 09 \* . af OR(a)\ _ oh(a)\*
(—ax,- —(1—h(a) (ax,-) +g <—ax,. )‘“<g)(_ax,. )

holds. Hence (9r/ox;)* has the form >.7., m,(oh(a,)/0x;)*. Furthermore,
since z is the product of conjuates of I and [, (02/0x;)" also has the form
>t m(oh(a,)/ox;)* as required.

§4. Proofs of theorems.

Now we will prove Theorem 1.

PROOF OF THEOREM 1. For L(p, q; k), by Lemma 1, there is an EA-

matrix (‘g) of the form:
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Lttt 0

(A)_ 0 c
B | 14+t+--- 4t 0
* D

where rg=1(p), C is an Alexander matrix and detC equals to the
Alexander polynomial of the knot k. For the lens space L(p, ¢') there

is an EA-matrix <‘§:> of the form
<A'>_<1+‘c+-~+z‘?"1>
B') \l4z4-- 477"
where r’'q'=1(p).

Suppose that there is a homeomorphism f: L(p, q¢')— L(p, q: k).
Then, by Theorem 3, there are matrices G, (IgV +*([)J_1) with det G,
det Ue = H,(L(p, q: k)) and m, n € N such that, for stabilized EA-matrices

(3)-(380) w0 (5)=(588)" (7 =8-E) =(8) i
(1) UR=PR'G and
(2) *UWR+S=*US'G .

Let f.: H(L(p, q")) — H,(L(p, q: k)) be represented by f,.(z)=t* for some
s€ N relatively prime to p and s<p. Set a=1+t+---+t*", =1+
t+eeo 4t B=14+t"+ - +t*""Y, Then R, S, R’ and S’ are represented
as follows: '

a0 (B0 , [a 0 , (8 0
R‘(O X) S‘(Z Y)’ R“(O E> S‘(O 0)

where det X=det C coincides with the Alexander polynomial 4,(¢t) up to
multiplication of +%¢/ and E denotes a unit matrix. Set U= (?J“ gﬂ and

21 22
G=<%%‘ g“) where u,, g,, are 1x1 matrices.

21 22
From (1) we obtain

(3) | U =ag,, ,
(4) U X=aG, ,
(5) U.a=G, ,
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(6) UnX=G, .

Next we compare the (1, 1)-th entries of the both sides of the equa-
tion (2). Since the (1, 1)-th entry of *UWR is a multiple of « and the
(1, 1)-th entry of *US'G is #,,9,8’, we obtain

(7) +B=1,9,8 moda .

Since det U, det Ge +=H,(L(p, ¢: k)), we can set det U= =+t*, det G= +t¢
for some k,lecZ. Consider the equation U(l 0 u“ U“X) Then,
since U,X=0 mod a« by (4),

(8) +t*det X=det Udet X=u,, det U,det X mod « .
Furthermore, since G,,=0 mod a« by (5), we have

(9) +tt=det G=g, det G,, mod .

Thus

uu(itl) =u,g, det G,, mod a by (9)
=u,g, det U,det X by (6)
=g,(xt*det X) moda by (8).

This means
(10) g det X= +t"u,, mod a for some l'eZ.
From (7) and (10), we have
B det X= +1,,9,8 det X=+t"u,%,,8 moda .
Since det X=4,(t) we have, by setting I=1" and u=wu,,,
A+t+--+t"4E) = £tuad+t*+ - - +t*"""") mod a

as required.

The following lemma is used to prove Theorem 2.

LEMMA 2. For weZ[Z,)) and q,q', k, s€ Z such that q, ¢’ and s are
relatively prime to p, if it holds that

(11) U +t+- -+t N=HtA+t"+ -« +") mod A+t+ -+ 41777
then q= +q'(p) or qq'= +1(p).
PrOOF. First we assume that 0<gq, ¢'<p/2. For the given identity
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(11), multiplying 1—¢ to the both sides we obtain
(12) uﬁ(l—t")-_-. it"(]_ _t)(]_ Y SR +tc(q’—-1)) .

Set u=a,+a,t+-+++a,_t*~'. Then

S
|

-
i

-

?

-1
un= >, ai+ 2 A+ e+ 12‘(,] 0 0 A £

-,
]
-3

where indices are thought as integer mod p.

Let us express the right hand side of (12) as a linear combination of
1,¢, ---,t>' over Z, then the coefficient of 1 is 0 or +1 because ¢ is a
generater of Z, and 0<¢’<p/2. Comparing this coefficient with that of
the left hand side of (12), we obtain 7=l qi— iwaa,_,=0or +1. If
el —rta,a,_ =0 then 32} (@;—a;_,)*=0, thus a,=a,_, for any i. Since
p and g are coprime, this means that ay=a,=+-+=a,_,. Hence u=
ay(1+t+-+++t**) and thus (1—¢t)u=0. Then from (11) we obtain 1 —¢)(1+
U4 +t*)=0. This is a contradiction. Hence i ai—-Xitaa, =
+1. But the case of —1 does not occur because 32-! ai—305 a0, =
(1/2) 3375 (@i —a,_)*>0. Thus 32=1q2— S2-2 aa,_,=1. This means

= (a;—a,,)*=2. Thus there are n,le N and acZ such that l<p/2
and a,=a, @, =@, ;=" =Que=aF1, Qp_gsy¢="*"*=0p_p-y,=a. Hence

UAS (B e IO T )
5(1 +tq+ .o o +t(l—1)q)(1+tq+ R _I_t(l—l)q)
Et-—(l—l)q(l +tq+ c e +t<l—1)q)2

mod (1+¢+.--+¢t*7%),

From (11) and above we have

AA e FtVPA A oo ) = £ (L - - - 20D
mod (1+t+--.+¢tr ), '

Multiplying (1—%9)(1—t)(1—t*) to the both sides of the above equation we
obtain

(13) (L— 91— ) = (1 —£)(1 — $9)(1 —£7") .

First we see that ¢l is relatively prime to p. If g.c.d.(ql, p)=d>1,
then, for £=exp(2mi/d), substitute ¢ of (13) by & Then left hand side
equals zero while right hand side does not. This is a contradiction.
Thus ¢l is relatively prime to p. Then by applying Franz Independence
Lemma ([6], p. 406 and [4]), {gl, gl, 5}={1, g, 53’} where 7 denotes i mod p.
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Since 1e{gl, gl, 5}, gl=1 or §=1. :

Case 1: 5=1. If G#1 then g’=¢. If g=1 then G'=1. Therefore
if §=1 then 7’'=q7.

Case 2: gl=1. If g=1 then g’=1. If g=1 then 57'=1 and g=5.

Thus in this case gg’=1. Therefore if gl=1 then gg’'=1.

Concluding these we have g=¢q'(p) or ¢¢'=1(p). Recall that we
assumed that 0<gq, ¢'<p/2. Without the assumption we have ¢= +q'(p)
or qq¢’'= +1(p) completing the proof of Lemma 2.

Since t* is a generator of Z,, Lemma 2 can be restated as follows:

LEMMA 2'. ForueZ[Z,) and q,4', k, s€ Z such that q, ¢’ and s are
relatively prime to p, if it holds that

(A1) (@ +t+---+e)=tuad+tt+ - HC0) mod (L+E+- -+
then q==xq'(p) or q¢'==x1(p).

Now Theorem 2 is an immediate cosequence of Theorem 1 and
Lemma 2'.
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