Extended Alexander Matrices of 3-Manifolds II

-Applications-

Shinji FUKUHARA

Tsuda College

§1. Statement of results.

In this paper we study 3-manifolds obtained from S^3 by Dehn surgery along knots. Let p be a positive integer and q be an integer relatively prime to p.

DEFINITION. For a knot $k \subset S^3$, let L(p, q; k) be a 3-manifolds obtained from S^3 by Dehn surgery along k with coefficient p/q.

Note that when k is an unknot L(p, q; k) means just a lens space L(p, q). Clearly L(p, q; k) is a homology lens space and $H_1(L(p, q; k)) = \mathbb{Z}_p$ is generated by an element corresponding to a meridian of the tubular neighbourhood N(k) of k. We denote this element by t. Then an element of a group ring $\mathbb{Z}H_1(L(p, q; k)) = \mathbb{Z}[\mathbb{Z}_p]$ can be represented by a polynomial of t with integer coefficients where $t^p = 1$. We give a necessary condition for L(p, q; k) to be a lens space.

THEOREM 1. Let k be a knot with the Alexander polynomial Δ_k . Suppose that L(p, q; k) is homeomorphic to L(p, q'). Let r, r' be integers such that $rq \equiv 1(p)$ and $r'q' \equiv 1(p)$. Then there are $u \in \mathbb{Z}[\mathbb{Z}_p]$ and $l, s \in \mathbb{Z}$ such that (p, s) = 1 which satisfy the equation

$$(1+t+\cdots+t^{r-1})\Delta_k(t)\equiv \pm t^l u \bar{u}(1+t^s+\cdots+t^{s(r'-1)}) \bmod (1+t+\cdots+t^{p-1})$$
in $Z[Z_p]$.

As a corollary we can prove:

THEOREM 2. Let k be a knot with trivial Alexander polynomial. Then L(p, q; k) and L(p, q') can be homeomorphic only if $q \equiv \pm q'(p)$ or $qq' \equiv \pm 1(p)$.

Received May 28, 1984 Revised September 27, 1984 In case that k is unknotted, Theorem above yields well known classification of lens spaces which has been proved by Reidemeister [5], Franz [4] and Brody [1].

§2. Extended Alexander matrices.

In [3] the author and Kanno defined extended Alexander matrices of Heegaard splittings of 3-manifolds and studied their fundamental properties (Theorem 1 and Theorem 2 in [3]). We need the following result to prove Theorem 1:

THEOREM 3. Suppose that there is a homeomorphism $f: M \to N$. Let $\binom{A}{B}$ and $\binom{A'}{B'}$ be EA-matrices of H-splittings of M and N. Then there are $m, n \in N$ such that $\binom{A \oplus E_m}{B \oplus 0_m}^{f*} \sim \binom{A' \oplus E_n}{B' \oplus 0_n}$.

§3. An EA-matrix of L(p, q; k).

The precise definition of $t \in H_1(L(p, q; k))$ is as follows. Let $\mu \in H_1(S^3 - N(k))$ be a homology class represented by a meridian of $\partial N(k)$ where N(k) denotes a tubular neighbourhood of k. Then t is a image of μ under the homomorphism $H_1(S^3 - N(k)) \to H_1(L(p, q; k)) = \mathbb{Z}_p$. Then we have:

LEMMA 1. There is an EA-matrix of L(p, q; k) which has the form

$$egin{pmatrix} A \ B \end{pmatrix} = egin{pmatrix} 1 + t + \cdots + t^{p-1} & 0 \ 0 & C \ 1 + t + \cdots + t^{r-1} & 0 \ * & D \end{pmatrix}$$

where $rq \equiv 1(p)$, C and D are square matrices and C is an Alexander matrix of the knot k.

PROOF. We suppose that a given knot k is in regular position in

FIGURE 1

 $S^3 = \mathbb{R}^3 \cup \infty$. Let $S_+ = \mathbb{R}^3_+ \cup \infty$ and $S_- = \mathbb{R}^3_- \cup \infty$ be upper and lower hemispheres such that overpasses and underpasses lie in S_+ and S_- respectively. Let D'_1, \dots, D'_n be 2-disks obtained as traces of underpasses projected by a projection map $S_- \to S_+ \cap S_-$ and let $D_i = D'_i \cap (S^3 - \mathring{N}(k))$. Let $N(D_i)$ denote a tubular neighbourhood of D_i in $S_- \cap (S^3 - \mathring{N}(k))$.

FIGURE 2

Set $T = (S_+ \cap (S^3 - \mathring{N}(k))) \cup (\bigcup_{i=1}^n N(D_i))$. Then T is a handle body of genus n and $\pi_1(T)$ is a free group generated by x_1, \dots, x_n which corresponds to the upperpasses.

FIGURE 3

Let $T'=L(p,q;k)-\dot{T}$ then T' is also a handle body of genus n.

Next we investigate meridian disks of T'. Consider 2-disks WD_i $(i=2, \dots, n)$ wrapping D'_i as in Figure 4 which correspond to relators of Wirtinger presentation of the knot group. We can suppose that $\partial WD_i \subset (S_+ \cap S_-)$.

FIGURE 4

Let m and l be a meridian and a preferred longitude of $\partial N(k)$. We can assume that m and l lie on $\partial T \cap \partial N(k)$ and m is mapped to x_1 by the homomorphism $\pi_1(\partial T) \to \pi_1(T)$. Then we can choose simple loops a_1 , b_1 on $\partial T \cap \partial N(k)$ such that, as homotopy classes, $a_1 = m^p l^q x$ and $b_1 = m^r l^s y$ where x and y belong to the commutator subgroup generated by l and m and $r, s \in N$ satisfy ps - qr = -1 (see Figure 5).

FIGURE 5

By the definition of p/q Dehn surgery, we can assume that $S^1 \times D^2$ is attached to $S^3 - \dot{N}(k)$ such that a meridian $\{*\} \times \partial D^2$ $(* \in S^1)$ is identified with a_1 and a preferred longitude $S^1 \times \{**\}$ $(\{**\} \in \partial D^2)$ is identified with b_1 .

Since L(p, q; k) is obtained from T by attaching 2-handles corresponding to $\{*\} \times D^2$, WD_2 , WD_3 , \cdots , WD_n and a 3-ball, thus $\{\{*\} \times D^2$, WD_2 , WD_3 , \cdots , WD_n } is a system of meridian disks of $T' = L(p, q; k) - \mathring{T}$. Let a_i $(i=2, \cdots, n)$ denote loops on $\partial T = \partial T'$ which are obtained from ∂WD_i $(i=2, \cdots, n)$ by connecting to the base point p_0 . Then $a_1, a_2, \cdots, a_n, b_1$ form a part of m-l system. Choose simple loops b_2, \cdots, b_n such that $\{a_i, b_i\}$ should be a m-l system of T' (This is an abuse of the term 'm-l system', but readers should not be confused).

Now for an inclusion map $h: \partial T' - D_0 \hookrightarrow T$, let us compute $(\partial h(a_i)/\partial x_j)^{\alpha}$ and $(\partial h(b_i)/\partial x_j)^{\alpha}$. First, since $(x_1, \cdots, x_n|h(a_2), \cdots, h(a_n))$ is the Wirtinger presentation of the knot group $\pi_1(S^3 - N(k))$, the matrix $(\partial h(a_i)/\partial x_j)_{i=2,\dots,n}^{\alpha}$ is the Alexander matrix reduced from Z[Z] to $Z[Z_p]$. Next let us compute $(\partial h(a_1)/\partial x_j)^{\alpha}$ and $(\partial h(b_1)/\partial x_j)^{\alpha}$. Let $\alpha_j = (\partial l^q x/\partial x_j)^{\alpha}$ and $\beta_j = (\partial l^s y/\partial x_j)^{\alpha}$. Then we have

$$\left(\frac{\partial h(a_1)}{\partial x_j}\right)^{\alpha} = \begin{cases} 1 + t + \dots + t^{p-1} + t^p \alpha_1 & (j=1) \\ t^p \alpha_j & (j=2, \dots, n) \end{cases}$$

and

$$\left(rac{\partial h(b_1)}{\partial x_j}
ight)^{lpha} = egin{cases} 1+t+\cdots+t^{r-1}+t^reta_1 & (j=1) \ t^reta_j & (j=2,\cdots,n) \ . \end{cases}$$

Thus an EA-matrix $\binom{A}{B}$ has the form

$$egin{aligned} \left(1+t+\cdots+t^{p-1}+t^plpha_{_1},\,t^plpha_{_2},\,\cdots,\,t^plpha_{_n}\ &\left(\left(rac{\partial h(lpha_{_i})}{\partial x_j}
ight)^lpha_{_{i=2},\cdots,n}\ &1+t+\cdots+t^{r-1}+t^reta_{_1},\,t^reta_{_2},\,\cdots,\,t^reta_{_n}\ &\left(\left(rac{\partial h(b_{_i})}{\partial x_i}
ight)^lpha
ight)_{_{i=2},\cdots,n} \end{aligned}$$

We use the following sublemma the proof of which will be given later.

SUBLEMMA. α_j and β_j have the forms $\alpha_j = \sum_{i=2}^n c_i (\partial h(a_i)/\partial x_j)^{\alpha}$ and $\beta_j = \sum_{i=2}^n d_i (\partial h(a_i)/\partial x_j)^{\alpha}$ where coefficients c_i and d_i are independent of j.

Then by multiplying to $\binom{A}{B}$ the following matrix

$$egin{bmatrix} 1, & -t^p c_2, & \cdots, & -t^p c_n \ 0, & 1 & \cdots & 0 \ & & \ddots & \ddots \ 0 & & & \ddots & 1 \ \hline 0, & -t^r d_2, & \cdots, & -t^r d_n & 1 \ & & & t^{-p} \overline{c}_2 & 1 & 0 \ & & & \ddots & \ddots \ t^{-p} \overline{c}_n & 0 & \ddots 1 \end{bmatrix}$$

from left, we obtain

$$egin{pmatrix} 1+t+\cdots+t^{p-1} & 0 \ & \left(\left(rac{\partial h(a_i)}{\partial x_j}
ight)^lpha
ight)_{i=2,\cdots,n} \ & 1+t+\cdots+t^{r-1} & 0 \ & * \end{pmatrix}.$$

As is well known (See Crowell-Fox [2], pp. 122-123), the linear combination of all columns of $((\partial h(a_i)/\partial x_j)^{\alpha})_{i=2,\dots,n}$ is zero. Thus the above matrix is equivalent to the matrix of the following form

$$egin{pmatrix} 1+t+\cdots+t^{p-1} & 0 \ 0 & C \ 1+t+\cdots+t^{r-1} & 0 \ * & D \end{pmatrix}$$

where C is also an Alexander matrix. Since $\binom{A}{B}$ is equivalent to the above matrix, we complete the proof except for Sublemma.

PROOF OF SUBLEMMA. Since l^qx and l^*y are presented as products of conjugates of l and l^{-1} , it is sufficient to prove that for a product of conjugates of l or l^{-1} , say z, $(\partial h(z)/\partial x_j)^{\alpha}$ has the form $\sum_{i=2}^n m_i(\partial h(a_i)/\partial x_j)^{\alpha}$. As is well known h(l) is mapped to the second commutator subgroup by $k: \pi_1(T) \to \pi_1(S^3 - N(k))$. l is represented by l_0r where l_0 belongs to the second commutator group of $\pi_1(T)$ and r belongs to ker k. Since l_0 is negligible when we consider free differential calculus, it follows that $(\partial l/\partial x_j)^{\alpha} = (\partial r/\partial x_j)^{\alpha}$. Note that r is represented by a product of conjugates of $h(a_2), \dots, h(a_n)$ and their inverses, and

holds. Hence $(\partial r/\partial x_j)^{\alpha}$ has the form $\sum_{i=2}^n m_i (\partial h(a_i)/\partial x_j)^{\alpha}$. Furthermore, since z is the product of conjuates of l and l^{-1} , $(\partial z/\partial x_j)^{\alpha}$ also has the form $\sum_{i=2}^n m_i (\partial h(a_i)/\partial x_i)^{\alpha}$ as required.

§4. Proofs of theorems.

Now we will prove Theorem 1.

PROOF OF THEOREM 1. For L(p,q;k), by Lemma 1, there is an EAmatrix $\binom{A}{B}$ of the form:

$$egin{pmatrix} A \ B \end{pmatrix} = egin{pmatrix} 1 + t + \cdots + t^{r-1} & 0 \ 0 & C \ 1 + t + \cdots + t^{r-1} & 0 \ * & D \end{pmatrix}$$

where $rq \equiv 1(p)$, C is an Alexander matrix and $\det C$ equals to the Alexander polynomial of the knot k. For the lens space L(p, q') there is an EA-matrix $\binom{A'}{B'}$ of the form

$$\binom{A'}{B'} = \binom{1+\tau+\cdots+\tau^{p-1}}{1+\tau+\cdots+\tau^{r'-1}}$$

where $r'q' \equiv 1(p)$.

Suppose that there is a homeomorphism $f: L(p, q') \to L(p, q: k)$. Then, by Theorem 3, there are matrices G, $\begin{pmatrix} U & 0 \\ W & \pm^* U^{-1} \end{pmatrix}$ with $\det G$, $\det U \in \pm H_1(L(p, q: k))$ and $m, n \in N$ such that, for stabilized EA-matrices $\begin{pmatrix} R \\ S \end{pmatrix} = \begin{pmatrix} A \bigoplus E_m \\ B \bigoplus 0_m \end{pmatrix}$ and $\begin{pmatrix} R' \\ S' \end{pmatrix} = \begin{pmatrix} A' \bigoplus E_n \\ B' \bigoplus 0_n \end{pmatrix}^{f*}$, $\begin{pmatrix} U & 0 \\ W & \pm^* U^{-1} \end{pmatrix} \begin{pmatrix} R \\ S \end{pmatrix}^{g-1} = \begin{pmatrix} R' \\ S' \end{pmatrix}$ holds. This means

$$UR = R'G$$
 and

$$*UWR \pm S = *US'G.$$

Let $f_*\colon H_1(L(p,q'))\to H_1(L(p,q;k))$ be represented by $f_*(\tau)=t^s$ for some $s\in N$ relatively prime to p and s< p. Set $\alpha=1+t+\cdots+t^{p-1}$, $\beta=1+t+\cdots+t^{p-1}$, $\beta'=1+t^s+\cdots+t^{s(\tau'-1)}$. Then R,S,R' and S' are represented as follows:

$$R\!=\!egin{pmatrix} lpha & 0 \ 0 & X \end{pmatrix}$$
 , $S\!=\!egin{pmatrix} eta & 0 \ Z & Y \end{pmatrix}$, $R'\!=\!egin{pmatrix} lpha & 0 \ 0 & E \end{pmatrix}$, $S'\!=\!egin{pmatrix} eta' & 0 \ 0 & 0 \end{pmatrix}$

where $\det X = \det C$ coincides with the Alexander polynomial $\mathcal{\Delta}_k(t)$ up to multiplication of $\pm t^j$ and E denotes a unit matrix. Set $U = \begin{pmatrix} u_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ and $G = \begin{pmatrix} g_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$ where u_{11} , g_{11} are 1×1 matrices.

From (1) we obtain

$$u_{11}\alpha = \alpha g_{11} ,$$

$$(4)$$
 $U_{_{12}}X=lpha G_{_{12}}$,

$$(5) \hspace{3cm} U_{21} lpha \! = \! G_{21}$$
 ,

$$(6) U_{22}X = G_{22}.$$

Next we compare the (1, 1)-th entries of the both sides of the equation (2). Since the (1, 1)-th entry of *UWR is a multiple of α and the (1, 1)-th entry of *US'G is $\bar{u}_{11}g_{11}\beta'$, we obtain

$$\pm \beta \equiv \bar{u}_{11}g_{11}\beta' \mod \alpha.$$

Since det U, det $G \in \pm H_1(L(p, q; k))$, we can set det $U = \pm t^k$, det $G = \pm t^l$ for some $k, l \in \mathbb{Z}$. Consider the equation $U\begin{pmatrix} 1 & 0 \\ 0 & X \end{pmatrix} = \begin{pmatrix} u_{11} & U_{12}X \\ U_{21} & U_{22}X \end{pmatrix}$. Then, since $U_{12}X \equiv 0 \mod \alpha$ by (4),

$$(8) \pm t^k \det X = \det U \det X \equiv u_{11} \det U_{22} \det X \mod \alpha.$$

Furthermore, since $G_{21} \equiv 0 \mod \alpha$ by (5), we have

$$\pm t^{l} = \det G \equiv g_{11} \det G_{22} \mod \alpha.$$

Thus

$$u_{11}(\pm t^{i}) \equiv u_{11}g_{11} \det G_{22} \mod \alpha \quad \text{by (9)}$$

= $u_{11}g_{11} \det U_{22} \det X \quad \text{by (6)}$
 $\equiv g_{11}(\pm t^{k} \det X) \mod \alpha \quad \text{by (8)}.$

This means

(10)
$$g_{11} \det X \equiv \pm t^{l'} u_{11} \mod \alpha$$
 for some $l' \in \mathbb{Z}$.

From (7) and (10), we have

$$\beta \det X \equiv \pm \bar{u}_{11} g_{11} \beta' \det X \equiv \pm t^{l'} u_{11} \bar{u}_{11} \beta' \mod \alpha$$
.

Since det $X = \Delta_k(t)$ we have, by setting l = l' and $u = u_{11}$,

$$(1+t+\cdots+t^{r-1})\Delta_k(t)\equiv \pm t^l u\bar{u}(1+t^s+\cdots+t^{s(r'-1)}) \mod \alpha$$

as required.

The following lemma is used to prove Theorem 2.

LEMMA 2. For $u \in \mathbb{Z}[\mathbb{Z}_p]$ and $q, q', k, s \in \mathbb{Z}$ such that q, q' and s are relatively prime to p, if it holds that

(11)
$$u\bar{u}(1+t+\cdots+t^{q-1}) \equiv \pm t(1+t^{s}+\cdots+t^{s(q'-1)}) \mod (1+t+\cdots+t^{p-1})$$

then $q \equiv \pm q'(p)$ or $qq' \equiv \pm 1(p)$.

PROOF. First we assume that 0 < q, q' < p/2. For the given identity

(11), multiplying 1-t to the both sides we obtain

(12)
$$u\bar{u}(1-t^q) = \pm t^k(1-t)(1+t^s+\cdots+t^{s(q'-1)}).$$

Set $u = a_0 + a_1 t + \cdots + a_{p-1} t^{p-1}$. Then

$$u\bar{u} = \sum_{i=0}^{p-1} a_i^2 + \sum_{i=0}^{p-1} a_i a_{i+1} t + \dots + \sum_{i=0}^{p-1} a_i a_{i+p-1} t^{p-1}$$

where indices are thought as integer mod p.

Let us express the right hand side of (12) as a linear combination of $1, t, \cdots, t^{p-1}$ over Z, then the coefficient of 1 is 0 or ± 1 because t^s is a generater of Z_p and 0 < q' < p/2. Comparing this coefficient with that of the left hand side of (12), we obtain $\sum_{i=0}^{p-1} a_i^2 - \sum_{i=0}^{p-1} a_i a_{i-q} = 0$ or ± 1 . If $\sum_{i=0}^{p-1} a_i^2 - \sum_{i=0}^{p-1} a_i a_{i-q} = 0$ then $\sum_{i=0}^{p-1} (a_i - a_{i-q})^2 = 0$, thus $a_i = a_{i-q}$ for any i. Since p and q are coprime, this means that $a_0 = a_1 = \cdots = a_{p-1}$. Hence $u = a_0(1+t+\cdots+t^{p-1})$ and thus (1-t)u=0. Then from (11) we obtain $(1-t)(1+t^s+\cdots+t^{s(q'-1)})=0$. This is a contradiction. Hence $\sum_{i=0}^{p-1} a_i^2 - \sum_{i=0}^{p-1} a_i a_{i-q} = \pm 1$. But the case of -1 does not occur because $\sum_{i=0}^{p-1} a_i^2 - \sum_{i=0}^{p-1} a_i a_{i-q} = (1/2) \sum_{i=0}^{p-1} (a_i - a_{i-q})^2 > 0$. Thus $\sum_{i=0}^{p-1} a_i^2 - \sum_{i=0}^{p-1} a_i a_{i-q} = 1$. This means $\sum_{i=0}^{p-1} (a_i - a_{i-q})^2 = 2$. Thus there are $n, l \in N$ and $a \in Z$ such that l < p/2 and $a_n = a$, $a_{n-q} = a_{n-2q} = \cdots = a_{n-lq} = a \pm 1$, $a_{n-(l+1)q} = \cdots = a_{n-(p-1)q} = a$. Hence

$$\begin{split} u \overline{u} &\equiv (t^{n-q} + t^{n-2q} + \dots + t^{n-lq}) \overline{(t^{n-q} + t^{n-2q} + \dots + t^{n-lq})} \\ &\equiv (1 + t^q + \dots + t^{(l-1)q}) \overline{(1 + t^q + \dots + t^{(l-1)q})} \\ &\equiv t^{-(l-1)q} (1 + t^q + \dots + t^{(l-1)q})^2 \\ &\mod (1 + t + \dots + t^{p-1}) \ . \end{split}$$

From (11) and above we have

$$(1+t^{q}+\cdots+t^{(l-1)q})^{2}(1+\cdots+t^{q-1})\equiv \pm t^{k'}(1+t^{s}+\cdots+t^{s(q'-1)})$$
 mod $(1+t+\cdots+t^{p-1})$.

Multiplying $(1-t^q)(1-t)(1-t^s)$ to the both sides of the above equation we obtain

$$(13) \qquad (1-t^{lq})^2(1-t^s) = \pm t^{k'}(1-t)(1-t^q)(1-t^{sq'}).$$

First we see that ql is relatively prime to p. If g.c.d.(ql, p)=d>1, then, for $\xi=\exp(2\pi i/d)$, substitute t of (13) by ξ . Then left hand side equals zero while right hand side does not. This is a contradiction. Thus ql is relatively prime to p. Then by applying Franz Independence Lemma ([6], p. 406 and [4]), $\{\bar{q}l, \bar{q}l, \bar{s}\}=\{\bar{1}, \bar{q}, \bar{s}\bar{q}'\}$ where \bar{i} denotes $i \mod p$.

Since $\overline{1} \in {\overline{q}l, \overline{q}l, \overline{s}}, \overline{q}l = \overline{1}$ or $\overline{s} = \overline{1}$.

Case 1: $\bar{s} = \bar{1}$. If $\bar{q} \neq \bar{1}$ then $\bar{q}' = \bar{q}$. If $\bar{q} = \bar{1}$ then $\bar{q}' = \bar{1}$. Therefore if $\bar{s} = \bar{1}$ then $\bar{q}' = \bar{q}$.

Case 2: $\overline{q}l = \overline{1}$. If $\overline{q} = \overline{1}$ then $\overline{q}' = \overline{1}$. If $\overline{q} \neq \overline{1}$ then $\overline{s}\overline{q}' = \overline{1}$ and $\overline{q} = \overline{s}$. Thus in this case $\overline{q}\overline{q}' = \overline{1}$. Therefore if $\overline{q}l = \overline{1}$ then $\overline{q}\overline{q}' = \overline{1}$.

Concluding these we have $q \equiv q'(p)$ or $qq' \equiv 1(p)$. Recall that we assumed that 0 < q, q' < p/2. Without the assumption we have $q \equiv \pm q'(p)$ or $qq' \equiv \pm 1(p)$ completing the proof of Lemma 2.

Since t^* is a generator of Z_p , Lemma 2 can be restated as follows:

LEMMA 2'. For $u \in \mathbb{Z}[\mathbb{Z}_p]$ and $q, q', k, s \in \mathbb{Z}$ such that q, q' and s are relatively prime to p, if it holds that

(11')
$$(1+t+\cdots+t^{q-1}) \equiv \pm t^k u \bar{u} (1+t^s+\cdots+t^{s(q'-1)}) \mod (1+t+\cdots+t^{p-1})$$
 then $q \equiv \pm q'(p)$ or $qq' \equiv \pm 1(p)$.

Now Theorem 2 is an immediate cosequence of Theorem 1 and Lemma 2'.

References

- [1] E. J. Brody, The topological classification of the lens spaces, Ann. of Math. (2), 71 (1960), 163-184.
- [2] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, GTM No. 57, Springer, Berlin-Heidelberg-New York, 1977.
- [3] S. FUKUHARA and J. KANNO, Extended Alexander matrices of 3-manifolds I, Tokyo J. Math., 8 (1985), 107-120.
- [4] W. Franz, Uber die Torsion einer Überdeckung, J. Reine Angew. Math., 173 (1935), 245-254.
- [5] K. Reidemeister, Homotopieringe und Linseräume, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 102-109.
- [6] J. W. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 385-426.

Present Address:
DEPARTMENT OF MATHEMATICS
TSUDA COLLEGE
TSUDA-MACHI, KODAIRA, TOKYO 187