TOKYO J. MATH. Vol. 8, No. 2, 1985

On the Isotropy Subgroup of the Automorphism Group of a Parahermitian Symmetric Space

Soji KANEYUKI and Masato KOZAI

Sophia University

Introduction

Let (M, I, g) be a parahermitian symmetric space [2] which is identified with a co-adjoint orbit of a real simple Lie group with Lie algebra g. Such a manifold M can be expressed as an affine symmetric coset space G/C(Z), where G is the analytic subgroup generated by g in the simply connected Lie group corresponding to the complexification of g, and C(Z) is the centralizer in G of an element $Z \in g$ satisfying the condition (C) (see § 1).

The purpose of this paper is to study the isotropy subgroup C(Z)—the number of its connected components and the structure of the identity component. Our method here is classification-free. A main result is Theorem 3.7, which is efficiently used in Kaneyuki and Williams [3], [4], in applying the method of geometric quantization.

NOTATIONS.

 G° the identity component of a Lie group G,

- G_{α} the set of elements in G left fixed by an automorphism α of G,
- C^* (resp. R^*) the multiplicative group of non-zero complex (resp. real) numbers.
- R^+ the multiplicative group of positive real numbers,

 $i = \sqrt{-1}$.

§1. Symmetric triples.

Let g be a real simple Lie algebra and \mathfrak{h} be a subalgebra of g and σ be an involutive automorphism of g such that \mathfrak{h} is the set of σ -fixed elements in g. Then the triple $\{g, \mathfrak{h}, \sigma\}$ is called a simple symmetric triple. Suppose further that $\{g, \mathfrak{h}, \sigma\}$ satisfies the following condition (C) (which is equivalent to (C_3) in [2]):

Received July 17, 1984

SOJI KANEYUKI AND MASATO KOZAI

(C) there exists an element $Z \in g$ such that ad Z is a semisimple operator with eigenvalues 0, ± 1 only and that \mathfrak{h} is the centralizer of Z in g.

We will denote by m^{\pm} the ± 1 eigenspaces in g of ad Z and put $m=m^{+}+m^{-}$. Then it is known [5] that the center $\mathfrak{z}(\mathfrak{h})$ of \mathfrak{h} is of one or two dimension over R. {g, \mathfrak{h}, σ } is said to be of the first category or of the second category, according as $\dim \mathfrak{z}(\mathfrak{h})=1$ or 2. If {g, \mathfrak{h}, σ } is of the second category, then g has a structure of complex Lie algebra and σ is an involutive automorphism of g, regarded as the complex Lie algebra [5]; in particular, \mathfrak{h} is a complex subalgebra of g. Let {g₀, \mathfrak{h}_0, σ } be of the first category, and let g and \mathfrak{h} be the complexifications of \mathfrak{g}_0 and \mathfrak{h}_0 , respectively. Then the triple {g, \mathfrak{h}, σ } satisfies the condition (C) and it is of the second category, where σ is the C-linear extension of the original σ on \mathfrak{g}_0 .

§2. Symmetric triple of the second category.

Let $\{g, \mathfrak{h}, \sigma\}$ be a (complex) simple symmetric triple of the second category (which satisfies the condition (C)). The subalgebra \mathfrak{h} is then reductive and can be written as the direct sum of complex ideals,

$$(2.1) \qquad \qquad \mathfrak{h} = \mathfrak{s} + \mathfrak{z}(\mathfrak{h}) ,$$

where \hat{s} is the commutator (semisimple) subalgebra $[\mathfrak{h}, \mathfrak{h}]$ of \mathfrak{h} and $\mathfrak{g}(\mathfrak{h})$ is the center of \mathfrak{h} . Let us denote by G the simply connected (complex) Lie group generated by Lie $G=\mathfrak{g}$, and let H be the analytic subgroup of Gcorresponding to \mathfrak{h} . We extend σ to an involutive automorphism of G, which is denoted again by σ . Then H coincides with the set of σ -fixed elements in G [5], and so it is closed in G. Let us denote by S the (closed) analytic subgroup of G corresponding to \hat{s} . Then we can write

$$(2.2) H=SZ(H) ,$$

where Z(H) is the analytic subgroup of G corresponding to $\mathfrak{z}(\mathfrak{h})$.

LEMMA 2.1. $Z(H) \cong C^*$.

PROOF. It is known [5] that the Lie algebra $\mathfrak{z}(\mathfrak{h})$ is generated by both elements Z in the condition (C) and iZ, which satisfies

(2.3)
$$\operatorname{ad}_{\mathfrak{m}} iZ = \begin{cases} i & \operatorname{on} & \mathfrak{m}^+, \\ -i & \operatorname{on} & \mathfrak{m}^-. \end{cases}$$

484

From this it follows that $\operatorname{Ad}_{\mathfrak{g}}Z(H)$ is isomorphic with C^* . On the other hand, G is complex simple and so its center is finite. Therefore Z(H) is isomorphic with C^* .

Let τ be a Cartan involution of g which commutes with σ . Then we have the corresponding Cartan decomposition

$$(2.4) g=t+it,$$

where \mathfrak{k} is a maximal compact subalgebra of \mathfrak{g} . The subalgebra \mathfrak{h} and consequently \mathfrak{s} and $\mathfrak{z}(\mathfrak{h})$ are stable under τ . Therefore we have

$$\mathfrak{h}=\mathfrak{h}\cap\mathfrak{k}+\mathfrak{h}\cap\mathfrak{i}\mathfrak{k},$$

$$\mathfrak{s}=\mathfrak{s}\cap\mathfrak{k}+\mathfrak{s}\cap\mathfrak{i}\mathfrak{k},$$

(2.7)
$$\mathfrak{z}(\mathfrak{h}) = \mathfrak{z}(\mathfrak{h}) \cap \mathfrak{t} + \mathfrak{z}(\mathfrak{h}) \cap \mathfrak{i}\mathfrak{t} .$$

(2.6) is a Cartan decomposition of \mathfrak{S} . Let K, K_s , K_z be the analytic subgroups of G generated by \mathfrak{k} , $\mathfrak{S} \cap \mathfrak{k}$, $\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{k}$ which are maximal compact subgroups of G, S, Z(H), respectively. Then we have

 $(2.8) G=K\cdot P, \quad K\cap P=(1),$

(2.9)
$$S = K_s \cdot P_s , \quad K_s \cap P_s = (1) ,$$

(2.10)
$$Z(H) = K_z \cdot P_z, \quad K_z \cap P_z = (1),$$

where $P = \exp i\mathfrak{k}$, $P_s = \exp(\mathfrak{s} \cap i\mathfrak{k})$ and $P_z = \exp(\mathfrak{s}(\mathfrak{h}) \cap i\mathfrak{k})$.

LEMMA 2.2. $\Gamma = S \cap Z(H)$ is a finite cyclic group.

PROOF. Let us take an arbitrary element $a \in \Gamma$. Then, by (2.9) and (2.10), a can be written as $a = k_1 \exp X_1 = k_2 \exp X_2$, where $k_1 \in K_s$, $X_1 \in \mathfrak{S} \cap i\mathfrak{k}$, $k_2 \in K_z$ and $X_2 \in \mathfrak{z}(\mathfrak{h}) \cap i\mathfrak{k}$. Noting that $[X_1, X_2] = 0$, we have $k_2^{-1}k_1 = \exp(X_2 - X_1)$. So, from (2.8) it follows that $k_2^{-1}k_1 = \exp(X_2 - X_1) = 1$. Since exp: $i\mathfrak{k} \to P$ is a diffeomorphism, we get $X_1 = X_2 \in \mathfrak{S} \cap \mathfrak{z}(\mathfrak{h}) = (0)$. Thus we obtain $a = k_2 \in K$. Since S and Z(H) are closed in G, Γ is closed in the compact group K. Hence, from Lemma 2.1 it follows that Γ is a finite cyclic group.

REMARK 2.3. By general theory of parabolic subgroups of complex semisimple Lie groups, the centralizer $\tilde{C}(Z)$ of Z in G is connected:

LEMMA 2.4. S is simply connected.

PROOF. Let us put $M^+ = \exp m^+ \subset G$. Then the coset space G/H is

the cotangent bundle of $G/H \cdot M^+ = K/K \cap H$ which is a compact irreducible hermitian symmetric space (cf. Takeuchi [6]). $K^* := K \cap H$ is a maximal compact subgroup of H. This implies that $\pi_1(H) \cong \pi_1(K^*)$. Let us consider the exact sequence of the homotopy groups:

(2.12)
$$\cdots \longrightarrow \pi_2(K^*) \longrightarrow \pi_2(K) \longrightarrow \pi_2(K/K^*) \longrightarrow \pi_1(K^*) \longrightarrow \pi_1(K) \longrightarrow \cdots$$

Since K is simply connected, compact, semisimple, we have $\pi_2(K) = \pi_1(K) = 0$ (E. Cartan [1]). Therefore $\pi_2(K/K^*) \cong \pi_1(K^*)$, K/K^* is a compact hermitian symmetric space, and so $\pi_1(K/K^*) = 0$. Hence, by the Hurewicz isomorphism, we have $\pi_2(K/K^*) \cong H_2(K/K^*, \mathbb{Z})$. But it is well-known that $H_2(K/K^*, \mathbb{Z}) \cong \mathbb{Z}$. Under the covering homomorphism of $S \times \mathbb{Z}(H)$ onto $H = S\mathbb{Z}(H)$, $\pi_1(S \times \mathbb{Z}(H))$ is regarded as a subgroup of $\pi_1(H) \cong \pi_1(K^*) \cong H_2(K/K^*, \mathbb{Z}) \cong \mathbb{Z}$. Also, by Lemma 2.1, we have $\pi_1(S \times \mathbb{Z}(H)) \cong \pi_1(S) \times \pi_1(\mathbb{Z}(H)) \cong \pi_1(S) \times \mathbb{Z}$. Therefore we should have $\pi_1(S) = 0$.

LEMMA 2.5. We have the decomposition

(2.13) $H = \tilde{S} \cdot P_z$, (direct product)

where $\tilde{S} = SK_z$ and $P_z \cong \mathbb{R}^+$.

PROOF. $\Gamma = S \cap Z(H)$ is a finite group and so it is contained in the maximal compact subgroup K_z of Z(H). Take an element $r \in SK_z \cap P_z$ and write r = st, where $s \in S$, $t \in K_z$. Then $s = rt^{-1} \in S \cap Z(H) = \Gamma \subset K_z$. Hence $r = st \in K_z \cap P_z = (1)$ (cf. (2.10)).

§ 3. Symmetric triple of the first category.

Let $\{g_0, \mathfrak{h}_0, \sigma\}$ be a simple symmetric triple of the first category satisfying the condition (C). Let g and \mathfrak{h} be the complexifications of g_0 and \mathfrak{h}_0 , respectively. Then, as is mentioned in §1, $\{g, \mathfrak{h}, \sigma\}$ is a (complex) simple symmetric triple of the second category. All arguments in §2 are then valid for $\{g, \mathfrak{h}, \sigma\}$ here. We will keep the notations in §2.

LEMMA 3.1. The element $Z \in g_0$ satisfying the condition (C) is contained in $\mathfrak{z}(\mathfrak{h}) \cap i\mathfrak{k}$; $\mathfrak{z}(\mathfrak{h})$ is spanned by Z and iZ over **R**.

PROOF. (C) implies that the eigenvalues of ad Z on g are also $0, \pm 1$. By (2.7) we can write Z=Z'+Z'', $Z' \in \mathfrak{z}(\mathfrak{h}) \cap \mathfrak{k}$, $Z'' \in \mathfrak{z}(\mathfrak{h}) \cap \mathfrak{i}\mathfrak{k}$. We have ad $Z=\operatorname{ad} Z'+\operatorname{ad} Z''$; here ad Z' is a semisimple operator and has purely imaginary eigenvalues only, and ad Z'' is also semisimple with real eigenvalues only. So, ad Z'=0 and consequently Z'=0. Hence we get $Z=Z'' \in \mathfrak{z}(\mathfrak{h}) \cap i\mathfrak{k}$. The second assertion is evident, since $\mathfrak{z}(\mathfrak{h})$ is the complexification of the center $\mathfrak{z}(\mathfrak{h}_0)$ of \mathfrak{h}_0 .

Let G_0 be the analytic subgroup of G generated by g_0 , and C(Z) be the centralizer of Z in G_0 . The conjugation θ of g with respect to g_0 extends to an involutive automorphism of G which is denoted again by θ .

LEMMA 3.2. We have

$$(3.1) C(Z) = H_{\theta} ,$$

where H_{θ} denotes the set of elements in H left fixed by θ .

PROOF. Since G is simply connected, the set G_{θ} of θ -fixed elements in G is connected; so we have $G_{\theta} = G_0$. Let $\tilde{C}(Z)$ be the centralizer of Z in G. Then, by (2.11), we get $H = \tilde{C}(Z)$. Therefore $H_{\theta} = (\tilde{C}(Z))_{\theta} = \tilde{C}(Z) \cap$ $G_0 = C(Z)$.

Since Γ is a finite cyclic group, it is given by

(3.2)
$$\Gamma = \{1, z, z^2, \cdots, z^{m-1}\} \cong \mathbb{Z}_m .$$

Let 2Γ be the subgroup of the squares of elements in Γ . We will define a homomorphism ω of C(Z) to $\Gamma/2\Gamma \cong \mathbb{Z}_2$. Let us take an arbitrary element $x \in C(Z)$ and write it in the form

(3.3)
$$x=ab$$
, where $a \in S$ and $b \in Z(H)$.

Then we have the following

LEMMA 3.3. The element $y = a^{-1}\theta(a) = b\theta(b^{-1})$ is in Γ .

PROOF. Since $x \in G_0$, we have $a^{-1}\theta(a) = b\theta(b^{-1})$. θ leaves \mathfrak{h} stable and so does \mathfrak{s} . Since S is connected, we get $\theta(a) \in S$. By Lemma 3.1, $\theta(b^{-1}) \in Z(H)$. So we get $a^{-1}\theta(a) = b\theta(b^{-1}) \in S \cap Z(H) = \Gamma$.

We define a map ω by putting

$$(3.4) \qquad \qquad \omega(x) = [y]$$

where [y] denotes the equivalence class of y in $\Gamma/2\Gamma$. It can be verified (cf. Proof of Theorem 3.5 below) that $\omega(x)$ is well-defined, that is, $\omega(x)$ does not depend on the choices of a and b in (3.3).

LEMMA 3.4. $\omega: C(Z) \rightarrow \Gamma/2\Gamma$ is a homomorphism.

PROOF. Take two elements x=ab, $x_1=a_1b_1$, where a, $a_1 \in S$ and b, $b_1 \in Z(H)$. Then, since $a^{-1}\theta(a) \in \Gamma \subset Z(H)$, we have $a^{-1}\theta(a) \cdot a_1^{-1}\theta(a_1) =$

 $a_1^{-1}(a^{-1}\theta(a))\theta(a_1) = (aa_1)^{-1}\theta(aa_1)$, which implies $\omega(x)\omega(x_1) = \omega(xx_1)$. Let π be the natural projection of Γ onto $\Gamma/2\Gamma$. We denote $\pi^{-1}(\omega(C(Z)))$ by Γ_0 , which is a subgroup of Γ . Note that $\omega(C(Z)) = \Gamma_0/2\Gamma$.

THEOREM 3.5. $S_{\theta}Z(H)_{\theta}$ is a normal subgroup of C(Z), and ω induces the following isomorphism:

$$(3.5) C(Z)/S_{\theta}Z(H)_{\theta} \cong \Gamma_0/2\Gamma$$

PROOF. Let us take an element $x \in S_{\theta}Z(H)_{\theta}$. We can write x in two ways: $x=ab=a_1b_1$, where $a \in S_{\theta}$, $b \in Z(H)_{\theta}$, $a_1 \in S$, $b_1 \in Z(H)$. Then we get $a_1^{-1}a=b_1b^{-1} \in S \cap Z(H)=\Gamma$, and so we have $a=a_1z^i$, $b_1=bz^i$. Γ is a finite subgroup of Z(H) and so it is contained in a unique maximal compact subgroup K_z of Z(H). Since $K_z = \exp RiZ$, we have $\theta(\gamma) = \gamma^{-1}$ for $\gamma \in \Gamma$. Noting this in mind, $a_1^{-1}\theta(a_1) = (az^{-1})^{-1}\theta(az^{-1}) = z^ia^{-1}\theta(a)z^i = z^{2i} \in 2\Gamma$, which implies $S_{\theta}Z(H)_{\theta} \subset \operatorname{Ker} \omega$.

Conversely, let us take $x \in \operatorname{Ker} \omega$, and write it in the form of (3.3). Then $y = a^{-1}\theta(a) = b\theta(b^{-1}) \in 2\Gamma$; we write $y = y_1^2$, $y_1 \in \Gamma$. Then we put $x = a_1b_1$, where $a_1 = ay_1$ and $b_1 = y_1^{-1}b$. Then we have $\theta(a_1) = \theta(ay_1) = \theta(a)\theta(y_1) = \theta(a)y_1^{-1} = ayy_1^{-1} = ay_1 = a_1$, which implies $a_1 \in S_{\theta}$. Analogously we have $\theta(b_1) = b_1$, which implies $b_1 \in Z(H)_{\theta}$. These arguments show that $\operatorname{Ker} \omega \subset S_{\theta}Z(H)_{\theta}$.

Let φ be the isomorphism of Z(H) onto C^* given in Lemma 2.1, and let us consider the conjugation $\tilde{\theta} = \varphi \theta \varphi^{-1}$ of C^* . Then it is easily verified that $\tilde{\theta}$ is the restriction of the usual complex conjugation of C to C^* . Therefore $\varphi(Z(H)_{\theta}) = (\varphi(Z(H)))_{\bar{\theta}} = C^*_{\bar{\theta}} = R^*$. We will give the structure of the subgroup $S_{\theta}Z(H)_{\theta}$.

LEMMA 3.6. If m in (3.2) is odd, then

$$(3.6) S_{\theta}Z(H)_{\theta} \cong S_{\theta} \times Z(H)_{\theta} \cong S_{\theta} \times \mathbf{R}^*;$$

if m is even, then $S_{\theta}Z(H)_{\theta}$ is connected and

$$(3.7) S_{\theta} Z(H)_{\theta} \cong S_{\theta} \times \mathbf{R}^{+} .$$

PROOF. Suppose first that m is odd. Then it is enough to show $S_{\theta} \cap Z(H)_{\theta} = (1)$. From the fact mentioned just before the lemma, it follows that

(3.8)
$$\varphi(S_{\theta} \cap Z(H)_{\theta}) = \varphi(\Gamma \cap Z(H)_{\theta})$$
$$= \varphi(\Gamma) \cap \varphi(Z(H)_{\theta}) = \varphi(\Gamma) \cap \mathbf{R}^{*} .$$

 $\varphi(\Gamma)$ here, isomorphic to \mathbb{Z}_m , is a cyclic subgroup of U(1), and so $\varphi(\Gamma)$ is the group of the *m*-th roots of unity. Since *m* is odd, $-1 \in \mathbb{R}^*$ is not

contained in $\varphi(\Gamma)$. Therefore $\varphi(\Gamma) \cap \mathbf{R}^* = (1)$, which implies $S_{\theta} \cap Z(H)_{\theta} = (1)$.

Let us consider next the case where *m* is even. In this case, the group $\varphi(\Gamma)$ contains -1, and so $\varphi(\Gamma) \cap \mathbb{R}^* = \{\pm 1\}$. On the other hand, since $Z(H)_{\theta}$ is a central subgroup in C(Z), we have the isomorphisms

$$(3.9) \qquad \qquad S_{\theta}Z(H)_{\theta} \cong (S_{\theta} \times Z(H)_{\theta})/S_{\theta} \cap Z(H)_{\theta} \\ \cong (S_{\theta} \times \boldsymbol{R}^{*})/\{\pm 1\} \ .$$

The natural projection π of $S_{\theta} \times \mathbf{R}^*$ onto $(S_{\theta} \times \mathbf{R}^*)/\{\pm 1\}$ induces an isomorphism of $S_{\theta} \times \mathbf{R}^+$ onto $(S_{\theta} \times \mathbf{R}^*)/\{\pm 1\}$.

THEOREM 3.7. Let $\{g_0, \mathfrak{h}_0, \sigma\}$ be a simple symmetric triple of the first category satisfying the condition (C). Let G_0 be the analytic subgroup, generated by g_0 , of the simply connected Lie group corresponding to the complexification of g_0 . Let C(Z) be the centralizer of Z in G_0 whose identity component is denoted by $C^0(Z)$, and let S_0 be the analytic subgroup of C(Z) generated by the commutator subalgebra $\mathfrak{S}_0 = [\mathfrak{h}_0, \mathfrak{h}_0]$. Then, if m in (3.2) is odd, then

$$(3.10) C(Z) \cong S_0 \times R^* .$$

If m in (3.2) is even, then

furthermore, in this case, we have $[C(Z): C^{\circ}(Z)]=1$ or 2, according as $\Gamma_0=2\Gamma$ or $\Gamma_0=\Gamma$.

PROOF. By Lemma 2.4, S is simply connected and so S_{θ} is connected [5]. Therefore we have $S_{\theta} = S \cap G_0 = S_0$. Suppose first that m is odd. Then $2\Gamma = \Gamma$ and so $\Gamma_0 = 2\Gamma$. By Theorem 3.5 and Lemma 3.6, we have the first assertion. The other case follows also from Theorem 3.5 and Lemma 3.6.

References

- [1] E. CARTAN, La Topologie des Groupes de Lie, Hermann, Paris, 1936.
- [2] S. KANEYUKI and M. KOZAI, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81-98.
- [3] S. KANEYUKI and F. WILLIAMS, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., **99** (1985), 173-187.
- [4] S. KANEYUKI and F. WILLIAMS, On a class of quantizable co-adjoint orbits, Algebras Groups Geom., 2 (1985), 70-94.

SOJI KANEYUKI AND MASATO KOZAI

[5] S.S. KOH, On affine symmetric spaces, Trans. Amer. Math. Soc., 119 (1965), 291-309.

 [6] M. TAKEUCHI, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sect. I, 12 (1965), 81-192.

.

Present Address: DEPARTMENT OF MATHEMATICS SOPHIA UNIVERSITY KIOI-CHO, CHIYODA-KU, TOKYO 102 AND HIGASHI MUNICIPAL JUNIOR HIGH SCHOOL, UENOHARA, HIGASHIKURUME-SHI TOKYO 203