On the Isotropy Subgroup of the Automorphism Group of a Parahermitian Symmetric Space

Soji KANEYUKI and Masato KOZAI
Sophia University

Introduction

Let (M, I, g) be a parahermitian symmetric space [2] which is identified with a co-adjoint orbit of a real simple Lie group with Lie algebra g. Such a manifold M can be expressed as an affine symmetric coset space $G / C(Z)$, where G is the analytic subgroup generated by g in the simply connected Lie group corresponding to the complexification of \mathfrak{g}, and $C(Z)$ is the centralizer in G of an element $Z \in \mathrm{~g}$ satisfying the condition (C) (see §1).

The purpose of this paper is to study the isotropy subgroup $C(Z)$-the number of its connected components and the structure of the identity component. Our method here is classification-free. A main result is Theorem 3.7, which is efficiently used in Kaneyuki and Williams [3], [4], in applying the method of geometric quantization.

Notations.

G^{0} the identity component of a Lie group G,
G_{α} the set of elements in G left fixed by an automorphism α of G,
C^{*} (resp. \boldsymbol{R}^{*}) the multiplicative group of non-zero complex (resp. real) numbers,
\boldsymbol{R}^{+}the multiplicative group of positive real numbers, $i=\sqrt{-1}$.

§ 1. Symmetric triples.

Let \mathfrak{g} be a real simple Lie algebra and \mathfrak{b} be a subalgebra of \mathfrak{g} and σ be an involutive automorphism of g such that \mathfrak{b} is the set of σ-fixed elements in \mathfrak{g}. Then the triple $\{\mathfrak{g}, \mathfrak{G}, \sigma\}$ is called a simple symmetric triple. Suppose further that $\{\mathfrak{g}, \mathfrak{b}, \sigma\}$ satisfies the following condition (C) (which is equivalent to $\left(\mathrm{C}_{3}\right)$ in [2]):

[^0](C) there exists an element $Z \in g$ such that ad Z is a semisimple operator with eigenvalues $0, \pm 1$ only and that \mathfrak{G} is the centralizer of Z in g.

We will denote by $\mathfrak{m}^{ \pm}$the ± 1 eigenspaces in \mathfrak{g} of ad Z and put $\mathfrak{m}=\mathfrak{m}^{+}+\mathfrak{m}^{-}$. Then it is known [5] that the center $z(\mathfrak{G})$ of \mathfrak{G} is of one or two dimension over \boldsymbol{R}. $\{\mathrm{g}, \mathfrak{G}, \sigma\}$ is said to be of the first category or of the second category, according as $\operatorname{dim} \mathfrak{z}(\mathfrak{G})=1$ or 2 . If $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is of the second category, then g has a structure of complex Lie algebra and σ is an involutive automorphism of g, regarded as the complex Lie algebra [5]; in particular, \mathfrak{G} is a complex subalgebra of \mathfrak{g}. Let $\left\{\mathfrak{g}_{0}, \mathfrak{G}_{0}, \sigma\right\}$ be of the first category, and let g and \mathfrak{G} be the complexifications of \mathfrak{g}_{0} and \mathfrak{g}_{0}, respectively. Then the triple $\{\mathfrak{g}, \mathfrak{G}, \sigma\}$ satisfies the condition (C) and it is of the second category, where σ is the C-linear extension of the original σ on g_{0}.

§ 2. Symmetric triple of the second category.

Let $\{\mathfrak{g}, \mathfrak{G}, \sigma\}$ be a (complex) simple symmetric triple of the second category (which satisfies the condition (C)). The subalgebra \mathfrak{G} is then reductive and can be written as the direct sum of complex ideals,

$$
\begin{equation*}
\mathfrak{h}=\mathfrak{b}+\mathfrak{z}(\mathfrak{h}), \tag{2.1}
\end{equation*}
$$

where \mathcal{Z} is the commutator (semisimple) subalgebra [$\mathfrak{G}, \mathfrak{G}$] of \mathfrak{G} and $\mathfrak{z}(\mathfrak{G})$ is the center of \mathfrak{b}. Let us denote by G the simply connected (complex) Lie group generated by Lie $G=g$, and let H be the analytic subgroup of G corresponding to \mathfrak{G}. We extend σ to an involutive automorphism of G, which is denoted again by σ. Then H coincides with the set of σ-fixed elements in G [5], and so it is closed in G. Let us denote by S the (closed) analytic subgroup of G corresponding to 8 . Then we can write

$$
\begin{equation*}
H=S Z(H) \tag{2.2}
\end{equation*}
$$

where $Z(H)$ is the analytic subgroup of G corresponding to $z(\mathfrak{h})$.
Lemma 2.1. $Z(H) \cong C^{*}$.
Proof. It is known [5] that the Lie algebra $z(\mathfrak{G})$ is generated by both elements Z in the condition (C) and $i Z$, which satisfies

$$
\operatorname{ad}_{\mathfrak{w}} i Z=\left\{\begin{array}{rll}
i & \text { on } & \mathfrak{m}^{+}, \tag{2.3}\\
-i & \text { on } & \mathfrak{m}^{-} .
\end{array}\right.
$$

From this it follows that $\operatorname{Ad}_{8} Z(H)$ is isomorphic with C^{*}. On the other hand, G is complex simple and so its center is finite. Therefore $Z(H)$ is isomorphic with C^{*}.

Let τ be a Cartan involution of g which commutes with σ. Then we have the corresponding Cartan decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{f}+i \mathfrak{f}, \tag{2.4}
\end{equation*}
$$

where \mathfrak{f} is maximal compact subalgebra of g. The subalgebra \mathfrak{G} and consequently \mathfrak{z} and $\mathfrak{z}(\mathfrak{h})$ are stable under τ. Therefore we have

$$
\begin{gather*}
\mathfrak{b}=\mathfrak{b} \cap \mathfrak{l}+\mathfrak{b} \cap i \mathfrak{f}, \tag{2.5}\\
\mathfrak{B}=\mathfrak{z} \cap \mathfrak{f}+\mathfrak{z} \cap i \mathfrak{f}, \tag{2.6}\\
\mathfrak{z}(\mathfrak{h})=\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{f}+\mathfrak{z}(\mathfrak{h}) \cap i \mathfrak{f} . \tag{2.7}
\end{gather*}
$$

(2.6) is a Cartan decomposition of \mathfrak{B}. Let K, K_{S}, K_{z} be the analytic subgroups of G generated by $\mathfrak{f}, \mathfrak{Z} \cap \mathfrak{Z}(\mathfrak{G}) \cap$ which are maximal compact subgroups of $G, S, Z(H)$, respectively. Then we have

$$
\begin{array}{cl}
G=K \cdot P, & K \cap P=(1) \\
S=K_{s} \cdot P_{s}, & K_{s} \cap P_{s}=(1) \tag{2.9}
\end{array}
$$

$$
\begin{equation*}
Z(H)=K_{z} \cdot P_{z}, \quad K_{z} \cap P_{z}=(1) \tag{2.10}
\end{equation*}
$$

where $P=\exp i \mathfrak{f}, P_{S}=\exp (\mathfrak{z} \cap i \mathfrak{f})$ and $P_{z}=\exp (\mathfrak{z}(\mathfrak{k}) \cap i \mathfrak{f})$.
Lemma 2.2. $\Gamma=S \cap Z(H)$ is a finite cyclic group.
Proof. Let us take an arbitrary element $a \in \Gamma$. Then, by (2.9) and (2.10), a can be written as $a=k_{1} \exp X_{1}=k_{2} \exp X_{2}$, where $k_{1} \in K_{S}, X_{1} \in \mathfrak{B} \cap i \mathfrak{i}$, $k_{2} \in K_{z}$ and $X_{2} \in z(\mathfrak{G}) \cap i \neq$. Noting that $\left[X_{1}, X_{2}\right]=0$, we have $k_{2}^{-1} k_{1}=\exp \left(X_{2}-\right.$ X_{1}). So, from (2.8) it follows that $k_{2}^{-1} k_{1}=\exp \left(X_{2}-X_{1}\right)=1$. Since exp: $i \boldsymbol{i} \rightarrow P$ is a diffeomorphism, we get $X_{1}=X_{2} \in \mathfrak{B} \cap z(\mathfrak{G})=(0)$. Thus we obtain $a=k_{2} \in K$. Since S and $Z(H)$ are closed in G, Γ is closed in the compact group K. Hence, from Lemma 2.1 it follows that Γ is a finite cyclic group.

Remark 2.3. By general theory of parabolic subgroups of complex semisimple Lie groups, the centralizer $\widetilde{C}(Z)$ of Z in G is connected:

$$
\begin{equation*}
\widetilde{C}(Z)=H \tag{2.11}
\end{equation*}
$$

Lemma 2.4. S is simply connected.
Proof. Let us put $M^{+}=\exp \mathfrak{m}^{+} \subset G$. Then the coset space G / H is
the cotangent bundle of $G / H \cdot M^{+}=K / K \cap H$ which is a compact irreducible hermitian symmetric space (cf. Takeuchi [6]). $K^{*}:=K \cap H$ is a maximal compact subgroup of H. This implies that $\pi_{1}(H) \cong \pi_{1}\left(K^{*}\right)$. Let us consider the exact sequence of the homotopy groups:

$$
\begin{align*}
& \cdots \longrightarrow \pi_{2}\left(K^{*}\right) \longrightarrow \pi_{2}(K) \longrightarrow \pi_{2}\left(K / K^{*}\right) \longrightarrow \pi_{1}\left(K^{*}\right) \tag{2.12}\\
& \longrightarrow \pi_{1}(K) \longrightarrow
\end{align*}
$$

Since K is simply connected, compact, semisimple, we have $\pi_{2}(K)=\pi_{1}(K)=0$ (E. Cartan [1]). Therefore $\pi_{2}\left(K / K^{*}\right) \cong \pi_{1}\left(K^{*}\right), K / K^{*}$ is a compact hermitian symmetric space, and so $\pi_{1}\left(K / K^{*}\right)=0$. Hence, by the Hurewicz isomorphism, we have $\pi_{2}\left(K / K^{*}\right) \cong H_{2}\left(K / K^{*}, \boldsymbol{Z}\right)$. But it is well-known that $H_{2}\left(K / K^{*}, Z\right) \cong Z$. Under the covering homomorphism of $S \times Z(H)$ onto $H=S Z(H), \pi_{1}(S \times Z(H))$ is regarded as a subgroup of $\pi_{1}(H) \cong \pi_{1}\left(K^{*}\right) \cong$ $H_{2}\left(K / K^{*}, Z\right) \cong Z$. Also, by Lemma 2.1 , we have $\pi_{1}(S \times Z(H)) \cong \pi_{1}(S) \times$ $\pi_{1}(Z(H)) \cong \pi_{1}(S) \times Z$. Therefore we should have $\pi_{1}(S)=0$.

Lemma 2.5. We have the decomposition

$$
\begin{equation*}
H=\widetilde{S} \cdot P_{z}, \quad \text { (direct product) } \tag{2.13}
\end{equation*}
$$

where $\widetilde{S}=S K_{z}$ and $P_{z} \cong R^{+}$.
Proof. $\Gamma=S \cap Z(H)$ is a finite group and so it is contained in the maximal compact subgroup K_{z} of $Z(H)$. Take an element $r \in S K_{z} \cap P_{z}$ and write $r=s t$, where $s \in S, t \in K_{z}$. Then $s=r t^{-1} \in S \cap Z(H)=\Gamma \subset K_{z}$. Hence $r=s t \in K_{z} \cap P_{z}=$ (1) (cf. (2.10)).

§ 3. Symmetric triple of the first category.

Let $\left\{g_{0}, \mathfrak{G}_{0}, \sigma\right\}$ be a simple symmetric triple of the first category satisfying the condition (C). Let g and \mathfrak{g} be the complexifications of g_{0} and \mathfrak{h}_{0}, respectively. Then, as is mentioned in $\S 1,\{\mathfrak{g}, \mathfrak{b}, \sigma\}$ is a (complex) simple symmetric triple of the second category. All arguments in $\S 2$ are then valid for $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ here. We will keep the notations in $\S 2$.

LEmma 3.1. The element $Z \in g_{0}$ satisfying the condition (C) is contained in $\mathfrak{z}(\mathfrak{h}) \cap i \mathbf{f} ; \mathfrak{z}(\mathfrak{G})$ is spanned by Z and $i Z$ over R.

Proof. (C) implies that the eigenvalues of ad Z on g are also $0, \pm 1$. By (2.7) we can write $Z=Z^{\prime}+Z^{\prime \prime}, Z^{\prime} \in z(\mathfrak{h}) \cap \mathfrak{P}, Z^{\prime \prime} \in z(\mathfrak{y}) \cap i$. We have $\operatorname{ad} Z=\operatorname{ad} Z^{\prime}+\operatorname{ad} Z^{\prime \prime}$; here ad Z^{\prime} is a semisimple operator and has purely imaginary eigenvalues only, and ad $Z^{\prime \prime}$ is also semisimple with real
eigenvalues only. So, ad $Z^{\prime}=0$ and consequently $Z^{\prime}=0$. Hence we get $Z=Z^{\prime \prime} \in z(\mathfrak{h}) \cap i \neq$. The second assertion is evident, since $z(\mathfrak{h})$ is the complexification of the center $z\left(\mathfrak{H}_{0}\right)$ of \mathfrak{H}_{0}.

Let G_{0} be the analytic subgroup of G generated by g_{0}, and $C(Z)$ be the centralizer of Z in G_{0}. The conjugation θ of g with respect to g_{0} extends to an involutive automorphism of G which is denoted again by θ.

Lemma 3.2. We have

$$
\begin{equation*}
C(Z)=H_{\theta}, \tag{3.1}
\end{equation*}
$$

where H_{θ} denotes the set of elements in H left fixed by θ.
Proof. Since G is simply connected, the set G_{θ} of θ-fixed elements in G is connected; so we have $G_{\theta}=G_{0}$. Let $\widetilde{C}(Z)$ be the centralizer of Z in G. Then, by (2.11), we get $H=\widetilde{C}(Z)$. Therefore $H_{\theta}=(\widetilde{C}(Z))_{\theta}=\widetilde{C}(Z) \cap$ $G_{0}=C(Z)$.

Since Γ is a finite cyclic group, it is given by

$$
\begin{equation*}
\Gamma=\left\{1, z, z^{2}, \cdots, z^{m-1}\right\} \cong Z_{m} \tag{3.2}
\end{equation*}
$$

Let 2Γ be the subgroup of the squares of elements in Γ. We will define a homomorphism ω of $C(Z)$ to $\Gamma / 2 \Gamma \cong Z_{2}$. Let us take an arbitrary element $x \in C(Z)$ and write it in the form

$$
\begin{equation*}
x=a b, \quad \text { where } \quad a \in S \text { and } b \in Z(H) . \tag{3.3}
\end{equation*}
$$

Then we have the following
Lemma 3.3. The element $y=a^{-1} \theta(a)=b \theta\left(b^{-1}\right)$ is in Γ.
Proof. Since $x \in G_{0}$, we have $a^{-1} \theta(a)=b \theta\left(b^{-1}\right)$. θ leaves h stable and so does 8. Since S is connected, we get $\theta(a) \in S$. By Lemma 3.1, $\theta\left(b^{-1}\right) \in$ $Z(H)$. So we get $a^{-1} \theta(a)=b \theta\left(b^{-1}\right) \in S \cap Z(H)=\Gamma$.

We define a map ω by putting

$$
\begin{equation*}
\omega(x)=[y] \tag{3.4}
\end{equation*}
$$

where [y] denotes the equivalence class of y in $\Gamma / 2 \Gamma$. It can be verified (cf. Proof of Theorem 3.5 below) that $\omega(x)$ is well-defined, that is, $\omega(x)$ does not depend on the choices of a and b in (3.3).

Lemma 3.4. $\omega: C(Z) \rightarrow \Gamma / 2 \Gamma$ is a homomorphism.
Proof. Take two elements $x=a b, x_{1}=a_{1} b_{1}$, where $a, a_{1} \in S$ and b, $b_{1} \in Z(H)$. Then, since $a^{-1} \theta(a) \in \Gamma \subset Z(H)$, we have $a^{-1} \theta(a) \cdot a_{1}^{-1} \theta\left(a_{1}\right)=$
$a_{1}^{-1}\left(a^{-1} \theta(a)\right) \theta\left(a_{1}\right)=\left(a a_{1}\right)^{-1} \theta\left(a a_{1}\right)$, which implies $\omega(x) \omega\left(x_{1}\right)=\omega\left(x x_{1}\right)$. Let π be the natural projection of Γ onto $\Gamma / 2 \Gamma$. We denote $\pi^{-1}\left(\omega(C(Z))\right.$) by Γ_{0}, which is a subgroup of Γ. Note that $\omega(C(Z))=\Gamma_{0} / 2 \Gamma$.

Theorem 3.5. $S_{\theta} Z(H)_{\theta}$ is a normal subgroup of $C(Z)$, and ω induces the following isomorphism:

$$
\begin{equation*}
\mathrm{C}(Z) / \mathrm{S}_{\theta} Z(H)_{\theta} \cong \Gamma_{0} / 2 \Gamma \tag{3.5}
\end{equation*}
$$

Proof. Let us take an element $x \in S_{\theta} Z(H)_{\theta}$. We can write x in two ways: $x=a b=a_{1} b_{1}$, where $a \in S_{\theta}, b \in Z(H)_{\theta}, a_{1} \in S, b_{1} \in Z(H)$. Then we get $a_{1}^{-1} a=b_{1} b^{-1} \in S \cap Z(H)=\Gamma$, and so we have $a=a_{1} z^{l}, b_{1}=b z^{l} . \Gamma$ is a finite subgroup of $Z(H)$ and so it is contained in a unique maximal compact subgroup K_{z} of $Z(H)$. Since $K_{Z}=\exp R i Z$, we have $\theta(\gamma)=\gamma^{-1}$ for $\gamma \in \Gamma$. Noting this in mind, $a_{1}^{-1} \theta\left(a_{1}\right)=\left(a z^{-l}\right)^{-1} \theta\left(a z^{-l}\right)=z^{l} a^{-1} \theta(a) z^{l}=z^{2 l} \in 2 \Gamma$, which implies $S_{\theta} Z(H)_{\theta} \subset \operatorname{Ker} \omega$.

Conversely, let us take $x \in \operatorname{Ker} \omega$, and write it in the form of (3.3). Then $y=a^{-1} \theta(a)=b \theta\left(b^{-1}\right) \in 2 \Gamma$; we write $y=y_{1}^{2}, y_{1} \in \Gamma$. Then we put $x=a_{1} b_{1}$, where $a_{1}=a y_{1}$ and $b_{1}=y_{1}^{-1} b$. Then we have $\theta\left(a_{1}\right)=\theta\left(a y_{1}\right)=\theta(a) \theta\left(y_{1}\right)=\theta(a) y_{1}^{-1}=$ $a y y_{1}^{-1}=a y_{1}=a_{1}$, which implies $a_{1} \in S_{\theta}$. Analogously we have $\theta\left(b_{1}\right)=b_{1}$, which implies $b_{1} \in Z(H)_{\theta}$. These arguments show that $\operatorname{Ker} \omega \subset S_{\theta} Z(H)_{\theta}$.

Let φ be the isomorphism of $Z(H)$ onto C^{*} given in Lemma 2.1, and let us consider the conjugation $\tilde{\theta}=\varphi \theta \varphi^{-1}$ of C^{*}. Then it is easily verified that $\tilde{\theta}$ is the restriction of the usual complex conjugation of C to \boldsymbol{C}^{*}. Therefore $\varphi\left(Z(H)_{\theta}\right)=(\varphi(Z(H)))_{\bar{\theta}}=C_{\bar{\theta}}^{*}=R^{*}$. We will give the structure of the subgroup $S_{\theta} Z(H)_{\theta}$.

Lemma 3.6. If m in (3.2) is odd, then

$$
\begin{equation*}
S_{\theta} Z(H)_{\theta} \cong S_{\theta} \times Z(H)_{\theta} \cong S_{\theta} \times R^{*} ; \tag{3.6}
\end{equation*}
$$

if m is even, then $S_{\theta} Z(H)_{\theta}$ is connected and

$$
\begin{equation*}
S_{\theta} Z(H)_{\theta} \cong S_{\theta} \times \boldsymbol{R}^{+} \tag{3.7}
\end{equation*}
$$

Proof. Suppose first that m is odd. Then it is enough to show $S_{\theta} \cap Z(H)_{\theta}=(1)$. From the fact mentioned just before the lemma, it follows that

$$
\begin{align*}
\varphi\left(S_{\theta} \cap Z(H)_{\theta}\right) & =\varphi\left(\Gamma \cap Z(H)_{\theta}\right) \tag{3.8}\\
& =\varphi(\Gamma) \cap \varphi\left(Z(H)_{\theta}\right)=\varphi(\Gamma) \cap R^{*}
\end{align*}
$$

$\varphi(\Gamma)$ here, isomorphic to Z_{m}, is a cyclic subgroup of $U(1)$, and so $\varphi(\Gamma)$ is the group of the m-th roots of unity. Since m is odd, $-1 \in \boldsymbol{R}^{*}$ is not
contained in $\varphi(\Gamma)$. Therefore $\varphi(\Gamma) \cap \boldsymbol{R}^{*}=(1)$, which implies $S_{\theta} \cap Z(H)_{\theta}=$ (1).

Let us consider next the case where m is even. In this case, the group $\varphi(\Gamma)$ contains -1 , and so $\varphi(\Gamma) \cap \boldsymbol{R}^{*}=\{ \pm 1\}$. On the other hand, since $Z(H)_{\theta}$ is a central subgroup in $C(Z)$, we have the isomorphisms

$$
\begin{align*}
S_{\theta} Z(H)_{\theta} & \cong\left(S_{\theta} \times Z(H)_{\theta}\right) / S_{\theta} \cap Z(H)_{\theta} \tag{3.9}\\
& \cong\left(S_{\theta} \times \boldsymbol{R}^{*}\right) /\{ \pm 1\}
\end{align*}
$$

The natural projection π of $S_{\theta} \times \boldsymbol{R}^{*}$ onto $\left(S_{\theta} \times \boldsymbol{R}^{*}\right) /\{ \pm 1\}$ induces an isomorphism of $S_{\theta} \times \boldsymbol{R}^{+}$onto ($S_{\theta} \times \boldsymbol{R}^{*}$)/\{ $\left.\pm 1\right\}$.

Theorem 3.7. Let $\left\{\mathfrak{g}_{0}, \mathfrak{h}_{0}, \sigma\right\}$ be a simple symmetric triple of the first category satisfying the condition (C). Let G_{0} be the analytic subgroup, generated by g_{0}, of the simply connected Lie group corresponding to the complexification of g_{0}. Let $C(Z)$ be the centralizer of Z in G_{0} whose identity component is denoted by $C^{\circ}(Z)$, and let S_{0} be the analytic subgroup of $C(Z)$ generated by the commutator subalgebra $\mathfrak{B}_{0}=\left[\mathfrak{G}_{0}, \mathfrak{G}_{0}\right]$. Then, if m in (3.2) is odd, then

$$
\begin{equation*}
C(Z) \cong S_{0} \times \boldsymbol{R}^{*} \tag{3.10}
\end{equation*}
$$

If m in (3.2) is even, then

$$
\begin{equation*}
C^{0}(Z) \cong S_{0} \times \boldsymbol{R}^{+} ; \tag{3.11}
\end{equation*}
$$

furthermore, in this case, we have $\left[C(Z): C^{0}(Z)\right]=1$ or 2 , according as $\Gamma_{0}=2 \Gamma$ or $\Gamma_{0}=\Gamma$.

Proof. By Lemma 2.4, S is simply connected and so S_{θ} is connected [5]. Therefore we have $S_{\theta}=S \cap G_{0}=S_{0}$. Suppose first that m is odd. Then $2 \Gamma=\Gamma$ and so $\Gamma_{0}=2 \Gamma$. By Theorem 3.5 and Lemma 3.6, we have the first assertion. The other case follows also from Theorem 3.5 and Lemma 3.6.

References

[1] E. Cartan, La Topologie des Groupes de Lie, Hermann, Paris, 1936.
[2] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81-98.
[3] S. Kaneyuki and F. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
[4] S. Kaneyuki and F. Williams, On a class of quantizable co-adjoint orbits, Algebras Groups Geom., 2 (1985), 70-94.
[5] S. S. Kor, On affine symmetric spaces, Trans. Amer. Math. Soc., 119 (1965), 291-309.
[6] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sect. I, 12 (1965), 81-192.

Present Address:
Department of Mathematics
Sophia University
Kioi-cho, Chiyoda-ku, Tokyo 102
AND
Higasiei Municipal Junior High School,
Uenohara, Higashikurume-shi
TOKyo 203

[^0]: Received July 17, 1984

