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On the Mixed Problem for Wave Equation
in a Domain with a Corner
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Introduction

The purpose of this paper is to generalize the results in [5] and to
obtain the complete results.
We consider mixed problems
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Bjull,-= (%g— + Bu) L:o =g,(t, x, 2)

ou

Bilull,— = (54‘72&) |‘=o=gs(ty x, Y)

& x, ¥y, 2) € (RL)

where b, ¢, d, a, 8 and 7 are complex constants.
In [5], for the problem (I), we obtained the result that the problem
(I) is L*-well-posed if mixed problems

L[u]=f, =, v)

u©0, o, Y=ux, ¥), w0, 2, Y)=u,®, ¥)
Bl[u]lz=o=g1(t, y)

it z 9y)e(RL*XR!

(1)

and

L[u}=1(, «, v)

#(0, x, ¥)=wuo(x, ¥) , (0, 2, ¥) =u,(, ¥)
Bz[u] ly=0 =g,(t, x)

(&, =z, ¥) e R, X R*X R,

(2)

are L’-well-posed and b#=%. In this paper, we shall show the result
that the problem (I) is L*-well-posed if the problems (1) and (2) are L*-
well-posed and b= +1. Therefore, we get the complete result that the
problem (I) is L*-well-posed if and only if the problems (1) and (2) are
L*-well-posed. Also, in [5], for the problems (II) and (III), we were con-
cerned with the mixed problems with homogenenous boundary condition
and could not obtain the boundary estimate for the solution. In this
paper, we treat the mixed problems with non-homogeneous boundary
condition and get the similar energy inequality as to the one for the
mixed problem with the Neumann boundary condition in a domain with
smooth boundary (see [3]).

To obtain the energy inequality, we reduce the mixed problem for
wave equation to the one for symmetric hyperbolic system of first order
with non-negative boundary condition. This method was used in [1], [4],
[5], [6] and [7].

An outline of this paper is as follows. In §1, we explain the nota-
tion. In §2, we state the results. In §8, we are concerned with roots
of the quadratic equation (c+1)2*+2bz+(¢c—1)=0 (b==+%). In §4, we
treat the mixed problem for symmetric hyperbolic system of first order
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in a domain with a corner and give the simple proof comparing with the
one in [6]. In §5, we obtain the energy inequality. In §6 and §7, we
prove the existence of the classical solution.

§1. Notation.

R™(C™): n-dimensional real (complex) Euclidean space.
Rz : the set {(x, ¥)|2>0, ye R*'}.

e =, 5, 0, 0§, ao D avlere(ZoY () () ] on

), a¢ | ds | aw asleee(Z) () (5) (5)
() ()|

e aat )’( aay ) (5
o (at
e“”ﬂ(aat)(ai)(aa )u -
(5 (2) ()]
“rH a(aat )ﬁ( aax )T( ay>’ 2

atp+yFo+0=m Sw do S dy S dz *#‘#a< iiat >p< 8(17 )T( aay )a<-8%>0u

(,) : the inner product in L*[(R.)?] or L*(RY)*].
((,)): the inner product in C-.

{u, v)= S:, S:o uvdydz or S: uvdy .

2

atp+yF+o=m

@pe=_ % |Tat( ay

atpt+r=m

or

2

rdt S“’ dy §°° dz
atft+r+i=m Jo 0

U= = STdt S: da

a+B+yr=m Jo

or

" dt Sj da So dz

a+ptyt+i=m SO

C@Wipr=_ 5 | at| as| ayle

a+pfrti=m

lw@®lE,= = g“dxg”dy

atpgt+r+d=m Jo

or

2

(u, 'v))=S:° S” uvdzdz or S“’wdx.

0

K, oy =\ wodady .

[u, v]=§l uvd?) .

H,(2): the Sobolev space.
&, J(R5)"]: the space of functions which are obtained by the com-
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pletion of C7[(R%)"] with the norm |||, -
A5 =T+ )P, . ete. .
T =P+ x(+), ete..
0

D,=—, ete..
ox
§2. Statement of the result.

We consider the mixed problems (I), (II) and (III).
We assume following conditions for the problem (I):

(C.1) b=1 or b=—4
and

(C.2) The quadratic equation

2.1) (c+1)2*+2bz+(c—1)=0

has roots in the domain D={z€C||z|<1, Re2<0} if they are dif-
ferent and in D={z € C||z|<1, Re2<0} if they are equal.

DEFINITION 1. (i) We say that {f, g, u, u,} satisfies the compati-
bility condition of order % in the region 2, (2,) if the following condition
(C..) holds:

(Cu) B, g u) =3, (BP Mo
=D 9= (m=1,2, ---, k)
where
J_z"__"{) B Dju= Dy {Bu}
%imE{(Dt‘f)|¢=o—(D:‘I~z—D?+‘)u} (t=0,1,2, ---)
L=L, or L,, B=B, or B; or B,
and

{91={y|y20} or {(¥, 2)|¥=0, 2=0}
2,={ylye R} .

(ii) We say that {f, g,, u,, u,} satisfies the compatibility condition of
order k in the region 2, (2,) if the following condition (C,.) holds:
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Car) B(M)(fy Uy u1)5jz=‘ao {Ez(am)uj}h:o
=D g)i= (M=1,2, « k)

where

S, By Dfu=Dp-(Bu)

§=0

Usrs = {(DEN))imo— (DEL—DFthyu}  (4=0,1,2, )

L=L,or L,, B=B, or B, or B,
and

2,={x|x=0} or {(x, 2)|x=0, 2=0}
R,={x|lxeR}.

(ilii) We say that {f, g, u,, u,} satisfies the compatibility condition of
order k£ in the region 2, if the following condition (C,) holds:

(Csk) E(M)(f» ) ul)E?:‘f) {ng,’-")u,-}’,,:o
:(Dtm—lgs)lmo (m=12, .-, k)
where
3 By Déu=Dp-(Bu)
Uor i ={(Dif)imo— (DEL—DFu}  (=0,1,2, «+-)
L=L,, B=B,
and

2y={(z, ¥)|x=0, y=0} .

DEFINITION 2. (i) We say that {g, g,} satisfies the compatibility
condition (D,) (k=1, 8, 5) if the following condition holds:

(Dl) gl(tv 0) =b- gz(ty 0)

@) bty 0= (T =L+ d)a, |, 0B 0,0
©)  ueslty O=| (o= Tt d) 0, |t O~ BlfumFunt et N, 0,0)

(ii) We say that {g, g,} satisfies the compatibility condition (,)
k=1, 3,5,7,9) if the following condition holds:

@© (55 +8)|_ =(Z+a)o.

¥ =0 2=0
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(el
©  (5+e)z

0| =(Zra)ttradn ~(L+a)(2+6)s|

)
Jo| =(Z+a)ar+ayel
(re)(Zea)

0 (G D)o (L)ool ~(Zra)Era)

z=y=0

x[(M+d)2+ai}{
Y
L) (a%+ﬁ)(5%)891 ’=o=(—aa—+ a)(M+d)‘g2 .

~(Z+a)(Z+a) @r+ar+Zn+ay

AL 1
where

N IR L S
e o7 ot oxF o

(iii) We say that {g,, g;} satisfies the compatibility condition (II,)
(k=1, 3, 5) if the following condition holds:

L) (_a_+ | =(i+ﬁ)gs .

@ (247 )| _= (&-2-- ;;2 +d)a)
“(7+3)(‘a7+”’)f .

@ (Z+7 )], ~(Z+ )G o) 0,

—(—+B)(az+ 7)(Z 2 aa; 32 +d)f

(iv) We say that {g, g,} satisfies the compatibility condition (III,)
(k=1, 3, 5) if the following condition holds:

(Gl

y=2=0

(I11) (3‘1—+a)g3
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=( A )(‘92 _F_ 7 +d)91

(I11,) <'a%'+ a)g,,,,,

o= 0z ot* oy* 07’ e=0
(GG
W) (L], (Gt W o Lol

GG N e Y

DEFINITION 3. (i) We say that {f, g,, %, u,} has the property (E,):

e=2=0

(E,) {fi 9., %, u,} satisfies the (C,,) in 2,={y|y=0} and has an extension
{f, 9., %, #,} which satisfies the (C,) in £, and has the same regu-

larity as {f, g,, %, u.}.
(ii) We say that {f, g,, %, u,} has the property (E}):

(Ex)  {/, 92 %o u,} satisfies the (Cy) in 2,={xr|x=0} and has an extension
{fs 9> %, @} which satisfies the (C,) in 2, and has the same regu-
larity as {f, g o u.}.

(iii) We say that {{f, g,, %, .}, {f, 9 %, ,}} has the property (E}’):

E) O {f 9 4o w} satisfies the (Cy,) in {(, 2)|y=0, 2=0} and has an
extension {f, §,, %, #,} which satisfies the (C,) in {(y, 2)|¥=0, z ¢
R'} and has the same regularity as {f, g, %o, %.}.
® {/, 9» U, u,} satisfies the (C,,) in {(x, 2)|x=0, 2=0} and has an
extension {f, §,, %, %} which satisfies the (C,,) in {(z, 2)|(x, 2) € R%}
and has the same regularity as {f, g, u, u.}.
Olc {g., §.} satisfies the compatibility conditions (I,;_,) (3 1, 2,

2
2

We now state our results,

THEOREM 1. Assume the conditions (C.1) and (C.2). Let u be the
solusion of the problem (I) which belongs to 5% J(RY)*]. Then, there exist
positive constants C and p, such that the following inequality holds for
any t€ R and any p=p,

2.2)  llu@®IlE, +#l|u![1pt

g, o e ()
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SOOI o+l A0 s+ AL ]

THEOREM 2. Assume the conditions (C.1) and (C.2). Let (f, g, g5 %o %y)

belongs to CT[(RL)'] X [CEI(RL) ] and suppose that the conditions (El), (C.)
wn {y|ly=0}, Dy, (Ds) and (Dy) hold.

Then, there exists a wunique classical solution u € 5% [(RY)*] of the
problem (I) which satisfies (2.2).

REMARK 1. We have Theorem 2 by the assumption that the condi-
tions (B,), (Cy) in {x|x=0}, (D)), (Ds) and (D) hold.

THEOREM 3. Let u be the solution of the problem (II) which belongs
to 57 J(RY)’].

Then, there exist positive comstants C and p, such that the following
inequality holds for any t€ R and any p=p,

@.3) I+ 2ellullz, o

e {0 () W) (22 (5 )>1_,,,,,}

sc{mum)mz,y+-”—||fnz.,.,,+;<m91> b A0

THEOREM 4. Let (f, g1, gz %o U,) belongs CE[(RL)®] X [Cr[(RL)’]]‘ and
suppose that the conditions (Ep), (Cyp) in {y|y=0} (1), (I;) and (I;) hold.

Then, there exists a unique classical solution u € 34 [(R})'] of the
problem (II) which satisfies (2.3).

REMARK 2. We have Theorem 4 by the assumption that the condi-
tions (Eg), (C) in {z|2=0}, (I,), (Is) and (I;) hold.

THEOREM 5. Let u be the solution of the problem (III) which belongs
to 223 [(RY)].

Then, there exist positive constants C and p, such that the following
wnequality holds for any te R and any pu=p,

@4 @I+ el e 2, {<A’”<3a;)u>+ A;g,»g,,(_i)"u>>

ay 1—-k,p,t
+ (((A;’I"I?P(T')Qz— ku» :—k,[x,t}

SOOI o 21 b 5 <0t A 9

1 1/2
o (AL 0D b} -



WAVE EQUATION 195

THEOREM 6. Let (f, 9, o 9o %o %) belongs to C[(RL)]X [CE[(RL P
and suppose that the conditions (E!), (Cs), (1), Iy, (IL,), (III), (IIL,) and
(II1;) hold.

Then, there exists a unique classical solution wu € 24, J(RY)] of the
problem (III) which satisfies (2.4).

REMARK 3. We have Theorem 6 by the similar assumption in (y, 2)
or (z, 2).

§3. The root of the quadratic equation (2.1).

We are concerned with the root of the quadratic equation (2.1) where
b= +1.

Firstly, we treat the case where b=4¢. Then, the roots of (2.1) are
—1% and 4((c—1)/(c+1)). By (C.2) and the simple calculation, we have the
following two cases for a root i((c—1)/(c+1)):

(i) Re ¢>0
and
(D)<
(ii) c=1c¢, (¢, is a positive number)
and
3.2) Re {3( g: <o

Secondly, we treat the case where b=—4. By the same arguments,
we have the following two cases for a root —i((c—1)/(c+1)):

(i) Rec>0
and
3.3) —i(=L) <1
(ii) c=1tc, (c, is a negative number)
and
(3.4) | Re {~i( z:)}<0.

The above analysis is used to obtain the energy inequality in §5.
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§4. Mixed problem for symmetric hyperbolic system of first order.

We consider the mixed problem

0U _ 48U  poU | g, u, 4)U+F(t, =, )
ot ox oy

U(O: @, y)= Uo(xy y)
|PUL-=G.¢, v)
QU/|,=-0=G:(t, x)

¢, z, ¥) € (RY)?

4.1)

where U=%U,, ---, Uy), A and B are Nx N constant Hermite matrices,
det(AB)#0, K, P and Q are respectively Nx N, px N and ¢x N smooth
complex matrices, and are constant outside a compact set in (RY), RLXR*
and (R.).

We assume the following condition for the problem (4.1):

((AU, U)=0 for any UcKer Pt,y) ({t y)eRLXR"

©3) {((BU, U))=C(U, U)) for any UeKer Q¢ z) (¢, x) e (RL))

where C is a positive constant.

We extend K to the region {(t, «, ¥)|t=0, x=0, y<0} as smooth funec-
tions and set U, =, ¥)=0 (y<0). Then, by the Fourier transform of
(4.1) with respect to y, we have

0,=A0,+inBU—B-UG, «, 0)+ KU+ F
0, z, 9)= Uz, 1)

/\ A

PU|,-=G,(, 1)

(¢, @, 7)) € (RL)' X R

(4.2)

where 7 is the dual variable of y. We set
(4.3) e T2 U=W.
Then, by (4.2) and (4.3), we obtain

W, = A= W,+ A~ W—e # T3 in) A" BU + e~ A BT UGk, , 0)
— AT T K U— e " A= T

and A is a Hermite matrix.
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—L W, W= —[W,, W]-W, W.]
dx

=—[A"'W,+pA W—e#T2(in) A" BU
+e " AMBT UG, @, 0)— A e T KU
—e AT, W] —[W, A7 W,+ pA-W
—e M T3 A BU + e A~ BT ¥ U(¢, , 0)
— e AT PR U — e r A T3 B

= —dit[A-l W, W]—2u[A~W, W]

+{le*A™BT;*(in) U, W1+[W, e~ A~ BT;(in) U}
~[A7'Be T }* Uk, @, 0), W]—[W, A~*Be~#T;12Ult, x, 0)]
P
+[A"e TR U, W)+[W, A-e TR U]
+[A e T3 F, W]+ [W, A-e T2 F] .
Therefore, we have

@y <=\ " =L, wldednas

0 J—oo Jo

é%{lll UG+ UG} +Cll U e + Gl U, .0

+%<<U>>z,,,.t+c,,|| U2 e+ z T

LI Gl U
By (4.4), we obtain

LEMMA 4.1. Assume the condition (C.3). Let U be the solution of
the problem (4.1) which belongs to 57, [(R%)%].
Then, there exist positive constants C and f, such that

- 1 1 1
4.5 A2 U e =CL=IUBE o + = TO)E .+ —=CU M e+ | U2, e
@8 LU SCLNTO I+ VO a2Vt U,
L
e L

for any te RL and any p=p,.

THEOREM 4.2. Assume the condition (C.3). Let U be the solution of
the problem (4.1) which belongs to 57 [(R.)].
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Then, there exist positive constants C and p, such that the energy
tnequality holds for any te Ry and any p=p,

4.6) U+ I U It ATV - (Ui
1 1
SC UO §p+'— F %,y,t - AlﬂllnzﬂGl %,.U,‘_I_ G 311‘" ®
SOUITO N+ IF [t (LG S+ (G}

PRrROOF.

d —put —put
(4.7) ﬂ(e U@, e U®)

= —2u(e*U, e U)+(e*(AU,+BU,+KU+F), e*U)
+(e™U, e*(AU,+BU,+KU+F))

< —Cp(e U, e U)+-—%—(e""F, e F)—(AeU, e U
—{Be~*U, e U}
where C, and C, are positive constants. By the condition (C.8), we obtain
(4.8) CAe U, e Uy =z —ouldy e U, A7 e U)
~ B MGy A7
and
(4.9) {Be U, e U)=Cle U, e U)—Cile G, e *G,)

where 0 is a sufficiently positive constants, C,, C, and C, are positive con-
stants. By (4.6), (4.7), (4.8) and (4.9), we get Theorem 4.2. Q.E.D.

§5. Energy inequalities.

Firstly, we transform the mixed problems (I), (II) and (III) for wave
equation into the ones for symmetric hyperbolic system of first order.
We set respectively

z,=—1 a=t
(6.1) izz—_—’i( g;i) or {Zz= —1:( zli)

for b=% or b=—1, and use (56.1) for the problem (I).

LEMMA 5.1. Assume the conditions (C.1) and (C.2). Then, the prob-
lem (I) is transformed into the following problem:
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oU _
ot ox oY

U, z, y)= U=, )

(5.2)

=4,2U B OU \ pU+F, 2 )

P,U|,-o=G\, )
Q. U|,-,=G,(t, )
@, =, y) € (R})*
where
-1 0 0 1
1 1 0
A= ~1 , B=| 0 1]
1 1 0]
0 T 1
D, is a 5x5 constant matrix, F,=(f, 2.f, f, z.f, 0)
1 2z 0 0 O
Pl:Q‘%(o 0 1 2 0)
t t
G.= (- cilg" - cf—1g1) . G (- c?fl o — c%f1 9
and
5.3) {((AIU, U)=0 for any UecKer P,
(B,U, U)=0 for any UcKerQ,,
PROOF. We set
U, — (U, + au) +2,u,
2w+ (U, +au)} +u,
(5.4) U= =| %y~ (U, + au) + z;u,

Zofu,+ (u,+au)} +u,
u

Then, by direct calculations, we have Lemma 5.1.

We treat the case where Rec>0 in (I). We set

U,
V=(U2)
Us

Then, by (8.1) and (8.3), we have

(5.5)

for U in (5.4).

)

199

Q.E.D
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LEMMA 5.2. The following fact holds:

( 1 0 010 -
_‘?alt’-=( 1 )-%’-+(1 0 0)-aal+DuV+EuW+H1
0o 1 oo 1/ %
:A11Vs+B11Vy+DuV+E11W+H1

66 | V05 D=Ve 1

2
P,V]pmo=———=0
1V |a=o c+1g
2b
Qu V|y=0= "'—c:_ng

\(t, x, ¥) € (R%)°

where D, and E, are respectively 3x3 and 3 X2 constant matrices, W=
Yo, U), H=4f, 2.1, 0), P,=Q,,=(1, 2, 0) and for a positive constant C
{((Au V, V)=C(V, V)) for any VeKer P,

(6.7 (BuV, V)0 Sfor any VeKerQ,, .

Next, we treat the case where Rec¢=0 in (I). We set

U,
(5.8) V=(U2)
U,

for U in (5.4). Then, by (8.2) and (3.4), we have
LEMMA 5.3. The following fact holds:

(ov [T Nov [0 F Now

_5?':( 1 )_55;_+(1 0 O)W+D12V+E1,W+Hz
o 1 00 1

—A,V,+ByV,+DyV+E,W+H,

(5.9) { V0, z, y)= Vo(:: Y)

Pl g=0— ——="Y1
2V |e=o c+1g

QuV o= ——2

\, =, v) € (BL)®

where D,, and E,, are respectively 3 X3 and 3 X2 constant matrices, W=

d.
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WU, U), Hy=(f, z.f, 0), Po=Q,=(, 2, 0) and for a posiitive constant C

(6.10)

{((Au Vv,

V=0 for any VeKer P,
(BLV, V)=C(V, V) for any VeKer @, .

Now, we consider the problems (II) and (III).

LEMMA 5.4. The problem (II) is transformed into the following

problem:

(6.11)

where

oU _ 49U . p U _ puy+F,
2 oy

ot *a
U, z, )= Uz, ¥)

<
P,U\sm0= —20,

Qz U|y=o= 1/—2—92
(¢, x, ¥) € (RY)®

D, is a 4% 4 constant matriz, F,=*(f, f, 0, 0)
P2=(1, ""1’ 0’ O) ’

and
5.12)

PROOF.

(56.13)

Q.=(0, 0,1, 0)

{((AzU, U)=0 for any UeKer P,
(B,U, U))=0 for any UcKerQ,.

We set

U,

-

U — (U, + au)

U, u,+ (u, +an)

U=
U

U~ \V 2w, + suw

u

Then, by direct calculations, we have Lemma 5.4.

1

0 0 —=

/ V2

1

0 0 ——

V' 2

11 9
vV'2 V2

\0 0 0

0/

Q.E.D.



202 MASARU TANIGUCHI

LEMMA 5.5. The problem (III) is transformed into the following
problem:

oU
(‘;f —=A, gg +B, 23 +E S +DU+F,
U@, z, 9y, 2)=Uyzx, ¥, 2)
(5.14) { P,U|,-=G,
Q3U|v=o=Gz
R3U|-=0=Gs
\&, =, ¥, 2) e (R)*
where
1
-1 (0 ’ &3 o\
1 0 0 0 17%
A= 0 , B=| , 1 .
0 0 Ve Ve
1 \ . 0 }
0
(0 0 o L_ o)
Ve
1
0 0 0 Ve 0
E=l o 0 0 0 0
1 1
o= 5 0 0 0
\o o o o o
F=%f,1,0,0,00, P,=(—1,1,0,0,0)
@=00,0,1,0,00, R,=(0,0,0,1,0)
G,=—2g,, G,=v"2g,, G,=1v"2¢g,
and

((4,U, U)=0 for any UeKer P,
(5.15) ((BsU, U))=0 for any UeKer Q,
((E,U, U))=0 for any UcKer R, .

PROOF. We set
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U, u,— (u,+ au)
U, U+ (U, +au)

(5.16) U=|U,|=|V"2 (u,+Bu)
Ul \v2@,+vu)
U, %
Then, by direct calculations, we have Lemma 5.5. Q.E.D.

- Secondly, we shall get the energy inequalities for the problems (I),
(II) and (III).
LEMMA 5.6. (1) Let u belong to 57, [(R%)’). Then, we have
@) | ez, 0, nidy=Cllu@|l,,

(5.17) | "
(i) So e~ (47 u,)(E, ®, 0)*dz = Cl||u(@)I|t,.

where C is a positive constant, any t € R. and any p=p, (¢ 1s a positive

constant).
(2) Let u belong to 5% ,[(R})]. Then, we have

(G [T ez, 0, v, 2F +(45 250, 0, v, AFdydz

=C|llu@IIL:,.

) i) S:’ S: e {|(A7u,)(E, @, 0, 2)[*+ (472, (¢, =, 0, 2)[Ydadz
=Clllu®Ill,.

(iii) §°° S:’ e {[(AZ 2w (8, %, ¥, O+ (4535, @, ¥, 0)*}dady
=Clllu@®II,

where C is a positive constant, any t € R and any p=p, (4, 18 a positive
constant).

(6.18)

The proof of this lemma is not given here, because it is popular.

LEMMA 5.7. (1) Let u belong to 2% [(RY)°]. Then, there exist
positive constants C and p, such that for any te R} and any p=p,

(5.19)  |llzw@, .+ el pewlls, o, + (AT UDT o+ AT UNS 0,6
=C{|[lu(0)]]13 .+ /““utllg,p,t =+ F‘”uz”g,y,t + F‘”uv”g,p.t} .

(2) Let u belong to 57, ,[(R})'). Then, there exist positive constants
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C and p, such that for any te R and any p=p,

(5.20) |l @)3 .+ el pewll} ..+ AT ELUDE
+ A2 A e KAT U S
SC{llwOI1, o+ £ellwell5, e+ £l1%al5, 0+ 22l %0 |15, e+ 2| 13, e}

PrROOF. It follows easily
"dt'i{(e""u(t), e~ u(t)) = —2u(e™"u, e~*'u) +2 Re(e™**u,, e *'u)
= —C,p(e *u, e"“u)-i—%—(e“"‘u,, e *y,)

where C, and C, are positive constants. Then, we get

(5.21) lzew@IN, o+ Cugell eell3, o = 1w (O3, + Cottl el -

Also, we obtain

(5.22) (s, o= S: (ertpeu, erpddt

=—p S: {(e~**u,, e " peu) + (e * teu, e *u,)}dt
=C- pe(ll pewe|3 e+ Nl 4,0)

and similarly, we have

(5.23) QeeuNs, p,e = C- pe|| ewl]§ e+ NNty 13,0, 0)

where C is a positive constant. Also, we have

{puds, e = uSAT DS, .
CpuDs e = pCATL LU e

By (5.21), (5.22), (5.23) and (5.24), we have (5.19). By the same method,
we have (5.20). Q.E.D.

(5.24) {

PrROOF OF THEOREM 1. We treat the case where Re ¢>0 in (I) because
the similar method and Lemma 5.3 are applied to the case where Rec=0
in (I).

By results in §4, Lemma 5.2 and Lemma 5.6, we have

625 a3y {(ae(L)uy , +{ 4 (55) )
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GO+l s <05+ K A5005
+ 2 O N Uil ]
where U, and U, in (56.4). For U in (5.4), we obtain
(5.26) .g?(e-ﬂ*U, e U))

=—2u(e U, e U)+ (e * U, e *U)+ (e *U, e *U,)
=—2u(e™*U, e U)+ (e (A, U,+B,U,+D U+ F)), e*U)
+(e U, e *(A,U,+B,U,+D, U+ F,))

S G U, e U)+ e Fy ' F)
— (AT, e Uy — (B U, e U)
and by (5.3), we have
CA e U, e Uy = —opuld, e~ U, A e *U)
~ G MG, MG
(5.27) ] # .
(Be U, e Uy 2 —spl Az e U, Az e U
*'—;f-«/lif Lo~ G,, Ae ™ GL)

where 0 is a sufficiently small positive constant. By (5.4), (5.25), (5.26)
and (5.27), we obtain Theorem 1. Q.E.D.

PROOF OF THEOREM 8. For U in (5.13), we set U, z, ¥)=0 (y<0).
By the Fourier transform of (5.11) with respect to y, we have

(U,=A,0,+ipB,U—B,-UQ, z, 0)+D,U+F,
00, z, ) =Uy(x, 7)
PU|,-,=G,
&, x, ) e (RLXR!

(5.28)

where U= Sw e~ U, x, y)dy. We set

ad

—put —1(7:
(5.29) {6 U=V

e T 0=W .
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By QU|,-o.=v"2 g,, (5.28) and (5.29), we obtain
V,= A,V,+e#T;4in)B,0 —e " T;AB,- UG, @, 0)— pV+D,V-+e TR,

and

t
(5.30) B, Uty 3, 0)= (g0 90 25222, 0) .

Therefore, we obtain
(5.31) —AV,=—A,V,+ABe T3 U—eTri-H
+A(—pV+D,V+e “T,LF,)
where
1 0
(5.32) A=

and
H=%—g, g 0, 0) .

By (V, e»U)=(W, W) and (5.31), we get

5.33) —-L[a,w, W]
dx

=—[A W, W]-[W, AW,]

=—[AV, e O0]-[e*T, A, V)]

=[—A, V,+ A" T;2(in)B,U—e " T;L- H
+ A(—pV+D,V+e T AF), e U]
+le U, —A,V,+ Ae ™ T;A(in)B,0—e*T;4-H
+ Ay (—puV+D,V+e#TLEF)]

= —L (AW, WI+[ABeTy4n) T, e 0]
+[e U, ABe " T;iin)U1—[e™T;4-H, e U]
—[eU, e T54 HI+[A(— 1V +D,V+e T LF,), e U]
+le T, A(—pV+D,V+e Tiul)] .

By Lemma 5.6 and (5.33), we have
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(5.34) LU =S (TN I TOED +Cll U,
J7;
DI it LGNS

where C,, C,, C; and C, are positive constants. By the symmetricity of
the condition in « and y, we get

(5.85) (422 UMN.. ts%(lll UDONE.+ UGN+ Cl U5, .6

24 <A1/2 1>o ot
where C!, C}, C; and C, are positive constants. For U in (5.18), we obtain
(5.36) ‘ddT(e""t U, e*U)=—Ciple™ U, e U)+ %‘(e‘ﬂ*Fz, e )

—< AU, e U)—{B,e U, e~ U)

and by (5.12), we have

CA,e U, e Uy = —ould; e U, A;¥ e "U)
- s</1# Fe—ptGU A%//,z#e—mGD

(Be U, e Uy —op(Asire U, Az U
- 4<A§=/,p _Fthy Ai/z‘e—ptGg»

(5.37)

where § is a sufficiently small positive constant, C,, C,, C; and C, are positive
constants. By (5.34), (5.35), (5.86) and (5.37), we get Theorem 8. Q.E.D.

ProOF OF THEOREM 5. For U in (5.16), we set U(t, z, ¥, 2)=0 (y<0
or 2<0). By the Fourier transform of (5.14) with respect to (y, z), we
have

(5.838) U,=A,U,+ipB,U+iCE,U0—B,Ut, , 0, {)— E,Ut, x, 5, 0)+D, T+ F,

where
t7=§°° S” e~ Wt Ut @, y, 2)dydz
3 ﬁ———gw e—“.cU(t’ &, O, Z)dz
U=S°° e~ U, , ¥, 0)dy .

We set
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—ptp—1 I —
(5.39) {e T;: U=V

e Ta0=W.
By QUly=e=G, R Ul|,-o=G,, (5.38) and (5.39), we obtain

(5.40) Vi=A4,V,+e Tt ((in)B, U+ (G0 E, T}
—e Tt (B, UK, x, 0, O+ E, U, 2, 1, 0}
—pV+D,V+e =Tt F,

and
. tr 3 Al 7 F7
B, U, «, 0, )= (l-/%. 170;23 —1%_ 0, 0)
5-41 =S = 3 | -
S etk s 0=(Gy, S, o, Dt
8° y &y 7, )— Té" ‘_'=2"’ 07 '—W’ 0

Therefore, we have

(5.42) —AV,=AV,—Afe T} (inB,U+iLE,U)]
— e Tt (H U+ H,U)+ A[—pV+D,V+e T}, Fy]

where
1

1 0
(5.43) A= 0

0 0

1
and
¢ G G
H,= (——-_2_, —2=, 0, 0, 0)

(5.44) v 2 ‘/.,2

'(—]fsz, % 0, 0, o).

By the same arguments as the one for the proof of Theorem 38, Lemma
5.5, Lemma 5.6 and (5.42), we have Theorem 5. Q.E.D.

=
I

§6. The existence of the solution (I).
In this section, we shall prove Theorems 2 and 4.

LEMMA 6.1. Let u be the solution of the problem (I) which belongs
to %,y[(R:}i-)sl'
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Then, there exist positive constants C and U, such that the following
inequality holds for any te R and any L=,

6.1) lllu(t)lllaﬁ#llullw¢+#Z{</1"”2( SRR (e C LY .

5k, ¢ oY 5—k,pt,t

S OOt b AL AN ]

PROOF. By the same method in [1: § 5], we have Lemma 6.1. Q.E.D.

PROOF OF THEOREM 2. By Lemma 6.1 and the same arguments in
[6: §5], we have Theorem 2. Q.E.D.

PROOF OF THEOREM 4. We consider the mixed problem

L[w]=fQ, =, v)

wi(0, @, Y)=U(x, ¥) , w0, x, Y= (, ¥)
B [w.]l,=e=7:(, @)

(# =z, ¥) e R X R'x R..

(6.2)

where [ is an extended function in the domain {®, =, ¥)|t=0, 2<0, y=0}
or {(x, ¥)|#<0, y=0}. Then, we have the solution w, e 2% ARy X R*X R4]
of the problem (6.3) and w, has a compact support in the domain R: x R,
for fixed ¢t (=0). We set

€3 nit, )=(5-+6)0 O~ (Z+6) (Z+a)w]

Then, we obtain, by (1),

=0

(6.4) n(t, O)=<—-a—+6)gl(t, 0)— —i—a)l:( —|—,8)'w1

oy S | P
— 0
=5t 8)ot, 0 (—+a)g2<t 0)=
Also, by (I,) and (I,), we have
Ny (t, 0)=0
€2 {nm,xt, 0)=0

We extend n({, y) to the region {y|y<0} by the following

(e, y)z{ n(t, ¥) (y=0)

(6.6) —n(t, —y) ¥<0).
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Then, we have 437 e 57 [(R.x RY] and % has a compact support in R;
for fixed ¢ (=0). Here, we consider the problem

L1[w2] =0
wz(oy X, y) =0, wzt(O’ x, y) =0
6.7 ~
) By[w,]ls=0=7%

(t, = y) € (RL)'XR" .

Then, we have the solution w, of the problem (6.7) which belongs to
57, [(Ry)*x R'] and has a compact support in the region R%, X R} for fixed
t(=0). Also, we have w,(t, x, 0)=0. Next, we solve the equation

(6.8) OWs | By, =w,
oy

for L(RY,) space. Then, we have the solution

v
wy=e"? S eP*wy(t, x, s)ds .
We set
U=w,+W; .

By the above construction, we obtain the solution u of the problem (II)
which satisfies Theorem 4. Q.E.D.

§7. The existence of the solution (II).

In this section, we shall prove Theorem 6.
By the assumption, we extend u,, %, f, g, and g, to the region {z|z2<0}.
We consider the problem

Lz[w1]=f(t: %, Y, 2)

wy(0, %, ¥, 2)=T(®, ¥, 2) »  Wil0, %, Y, 2)=W(, ¥, 2)
(7.1) 1 Blw,1la=o=8:(¢, ¥, 2)

Bi[w,]ly=0=8:(t, , 2)

¢, =, ¥, 2) € (RL)'X R .

By the assumption and the result in §6, we have the solution w, e
S J(RLY X R] of the problem (7.1) and w, has a compact support in the
domain R.,x R.,x R: for fixed ¢t (=0). We set

(7.2) n(t, x, ¥) =( aaa: +a)( aay +/3)gs—(—a—a;+a)(%+ B)(—(%—+'Y)w1

£=0
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Then, we have, by (III,) and (III,),

@3)  ntt, 0, =(L+8){ (L +a)s.

e

G (Grra)e

a 3—0} - 0

=o"($+”>91

and

@8 e, 0 0=(Z+ B0 (G+a)ond |- (Z ) G re)e] ]
e ) [

A
TRV

J

"

=0.
Similarly, we get, by (III,),
(7'5) nzfcmz(t’ O’ y>=0 .
Also, by (II,), (II,) and (II,), we obtain

(7.6) n(t, x, 0)=n,,t, x, 0)=n,,,,& «, 0)=0
Now, we consider the mixed problem
Lz['wz]=0
@ wy(0, x, ¥, z3=0 , wy(0, 2, ¥, 2)=0
B7[w2]|z=0=n(t9 X, y)
(&, z, ¥, 2) € Ry X (R X R,
where
n(t, x, y) (x=0, y=0)
t} — Wy 0, gO
(7.8) ity 3 )= " TBY @<0,420)

n(t, -z, —¥) (<0, ¥y<0) .

Then, we have the solution w, € 5% [R% X (R')*x R%] of the problem (7.7)
which satisfies

(7'9) wz(ty 09 Y, z)='w2(t, , Oa Z)=0

and has a compact support in (x, ¥, 2) for fixed ¢ (=0). We solve the
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equation

(7.10) (-%+a>(%+ﬁ)ws=w,

for L*(R.,%x R.,) space. Then, we get the solution

(7.11) Wy=e " # Sz Sy ety (t, r, 8, z)drds .

The function w, satisfies

ws(oy x, Y, z)=wst(0’ x, Y, Z)=0

0 _
("a—x-‘i'a)wa z=0_0
(7.12) (a8 _
( ay +B)ws y=0—0
9 ) I ‘
(az +7 Jws o (az +7)w1 ’=0+gs(tr x, Y)
and
(7.13) LJw,]=0 .
We set w=w,+w, By the above construction, we obtain the solution
of the problem (III) which satisfies Theorem 6. - Q.E.D.
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