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Introduction

In the linear filter theory, Wiener considered especially a weighting
K in the time domain, i.e. the filters K* for which the response g to an
input signal f is given by

g“”“%{"sl K(t—0)f@de=(K*f)t), te(—oo, o0) .
Also, he indicated the importance of admitting as inputs arbitrary signals
of the class S. His main theorem in [9] is: If

A+[tDK@E) e L' N L (— oo, ),

then the responce of the filter K to a signal f in S is a signal ge S, by
using the generalized harmonic analysis (cf. Masani [5]).

In this paper, we shall extend this result to the case of functions of
two variables under a restricted rectangular mean concerning the double
limit process, using the generalized harmonic analysis of functions of two
variables in Matsuoka [6].

Wiener has proved a Tauberian theorem in a generalized sense, with
respect to a weighted moving average of a function which is bounded on
the average. On the other hand, in Anzai, Koizumi and Matsuoka [1],
we have considered the form of general Tauberian theorems about a
weighted moving average Kxf of f. We shall also extend the above
theorem of Wiener to the case of functions of two variables under a
restricted rectangular mean concerning the double limit process in con-
sideration of the modified form.
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The proofs can be done along the similar lines as in Wiener [9].

§1. The spectral analysis of convolution.

Throughout this paper, all functions are assumed to be complex

valued and (Borel) measurable and we use the following notation (see
Matsuoka [6]):

@) W(RY)= {f(xl, 7)€ Lin(B): _ SUD_ Zé? S: S:lf(s, £)ltdsdt < oo } :

(b) The double generalized Fourier transform of f:
. 13 _1_ 4 -1 :": 4 -1 e~tus  gmivt
s(u, v; f)—l.j;gl. o Ul +S_4 Sl +§_A:|f(s, t) — 5 dsdt
. -_1— A —1 1 \ e—tua_l e—-tvt
+1.};§1. o2 I:Sx +S-—A] S—lf(s’ 2 —18 —t dsdi

+1.i.m.—1—SI [S‘+S"l]f(s, e =1 Goas
Ao 2 Jl s -4 —18 —t

1 (1 —ius__ —tvt
+-1—§ fis, )=l ™1 gt

-1J-1 —18 —t

(e) 4..,5(u, v; f)=s(u+e, v+79; f)—s(u—e, v+79; f)—s(u+e, v—7u; f)
+s(u—e, v—7; f);

(d) The notations <2-limg ;... and Z;-lim, ,., mean that in each of
them a limit exists and has the same limit for every positive constant
C whenever S and T tend to infinity or ¢ and » tend to zero in such a
way that S=CT or np=Ce respectively;

 eopetim L (" (° o Tidedt ;
@ $@, 2 H=2elim —= " | fwts, vt )7, Ddsdt ;

(£) S(R)={f(x, x,) € W(R): ¢(x,, x,; f) exists for all (x, x,) € K*};
(g) S'(RY)={flx, x,) € S(R?: ¢(,, ,; f) is continuous on R?};
(h) The Fourier transform of f:

Fau, vy=2-\"

—00

S“ f(S, t)e—t(us+vt)dsdt ;

(i) The convolution of f and g:

(f 20y 2) =2\~ _\"_flwi—s, m—)g(s, t)dsdt ;
7[ —_—00 —00
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(1) (B ={K(x;, ,): 1+ |2.)(L+ |a,)) K (w,, @) € L' N LARY};

(k) By .2, we denote a subclass of .97 (R?), such that for each
(u, v) € B?, there is in .97 a function K(z, x,) =K, ,(x,, 2,) depending on
(u, v) with I'f(u, v)#0.

In this section, we shall show a multiplier property, which is analogous
to that in the harmonic analysis, concerning the convolution K xf of fe
W(R") and Ke 2% (R*). And also we shall establish the spectral relation
between a given function and its convolution.

First, we state the following multiplier property.

THEOREM 1. If fe W(R? and Ke 22 (R, then

1
1.1 -1
(1.1) T I Terer

—K(u, )4, ,8(u, v; 1)|*dudv=0 .

S” S:o 4. ,8(u, v; K*f)

-0

Note that this theorem is thought of as an analogue of the multiplier
property (K= f) =KJf.

We shall prove Theorem 1, after showing the following two lemmas
and a proposition.

LEMMA 2. Suppose [f((@; @), (s, us); N)=S(2;, %), +; N) € LA(R?) for
every (x,, x,) € R’ and every \e(— o, ),

S: Sl | F (s ), (g U); W) Pdu dut,

18 bounded in (x,, x,) € R* and \€(— oo, ), and there exists a function
Sy, a5), (s, u.))=F (20, @), +) € LA(R?) for every (x, x.) € R* such that

w2 7|7 1 e, e w) - 20, (0, w)idudu,— 0,
Sor every (x, x,) € R?, as n— . If Kz, x,) eL‘(Rz), then
@) " T ke eo@ =, (, w); vdsda,
" {7 B, 22 @), (w,, w)dede| dudu, — 0
as \— oo,
PrOOF. We first note that Sm Sw | (s 25), (U1, uy))|*du,du, is uni-

—oo
’

formly bounded on (%, x,) ¢ R’.. In -fmact
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{S:" S :" sy 22)s (s uz))lzdulduz}m
= {S: S :" [f(esy 2), (s, U); N)—S (1 22), (% uz))l2du1du2}1/z

+ {Sl S: | (s %5)s (g Us); x)[zdulduz}m )

Letting A»— o on the right hand side, we have, from (1.2),

Sl Sw | (@ %)y (%, wo))Pdu,dus,

-0

—00 -—00

<lim sup S” S“’ 1A @y 22, (e Ua); N)dttades ,

which is uniformly bounded on (x, «,) € R* in view of the assumption of
the lemma. Therefore, there is a constant C independent of (x,, x,) such
that

Sl r | (s, @), (g, uo))du,du,<C .

-— 0

Hence, we see that (1.2) holds boundedly on (x, x,) € R*.
Now, the left hand side of (1.3) is not greater than

Sw Sw {S‘jw S:o | K, )| | S((,, 25), (s, Us); N)

e ad e ad

— R @), ()} dudu,

which is, by the Schwarz inequality,

<" A7 1 1k, woideda, |7 1K@ 11 @ @, (o wa); 2

—00 -—00

— (i, ), iy W) ) du,du,
=" |71k, eotwdn | |7 1K@, eoldnds, | |7 17, 2, G w0
—f(y, 22), (s, u,))du,du, .

This converges to 0 as n— o by the dominated convergence theorem,
since (1.2) holds boundedly as we have seen above. Thus, (1.8) holds.

PROPOSITION 3. If fe W(R? and K is a function on R® such that
(1.4) A+ |2.))A + |2, ) K(x,, %) € LX(R") ,
then Kx*f e W(R?.
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PROOF. Since, by the Schwarz inequality and (1.4),
(1.5)  [(K* f)(w, ;)]

() VL et am e

X S:, Sl | K (2, — &1, 2— &)HL + (2, — &) H1 + (0, — &,)2} e dg,

= (" S8 &I°
=const. S‘” S“°° {1+ @@ —&)H1 + (. — &)} ek

seonst. |7 ite g | -}
de 1+(?t— &y s
=const. |”_{”_Ifte, &)l o Tan T:%%—e_

1., 2T
Tan™ Jaeds.
%[ g Tan - g t%

Here we write Tan™* for the principal value of arctan. Now, let us
notice that

T (ee(—2T, 2T))
1 q,oo 2T 2T
(1.6) o7 LT e =<

2 1-T*+¢ |_4 (elsewhere) .
1+4¢

As for the detailed calculations, refer to Wiener [9]. Therefore,

1 T (s 2
w7 ) ) NE ), tdsa

<const. {

ol R : 21 (7 (= |fe, &)
48T S—2T S—zs gy gl dede+ T S—zr S_m 1te de.de,

s L L e T [ Gl sasac)

Thus, using Theorem 1 and the inequality preceding (3.10) of Matsuoka [6],

_1_
ST

ST §S (K £)(s, t)Idsdt <const. sup ——1——SV SU |f& &)Pdede
B ’ - " o<u,V<w AUV Vv J-w P52 ree
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which implies K= f € W(R?).
LEMMA 4. Under the hypotheses of Proposition 3,
A7) 4,50, v; K= f)—R(u, v)4,,8(u, v; f)
2 (oo oo A A
=1-i-m-(_1—) S S_oo K(eu 52) S—A S_A 4f(3_51’ t—¢&)

A—rc0 27[ —00

o [ sines sinyt _sine(s—¢) sinn—8&) |o-wwerongsdrde de, .
S t 8$— 51 t— 52

ProoOF. First, by (2.4) of Matsuoka [6], we have

1.8)  K(u, v)4.,3u, v; f)
1

BN T S

« 2sine(s—¢&) 2sin P(t—¢&) et dadide.de, .
8$—& t—&

Now, let us put

Fy((&, &), (u, v); A)

_ 1 (* (" fe_r z_py28ine(s—¢) 28in P(E—E&) —cweton
=5 || Ao e 2ERER LI gmuerseodads

Then, F((&, &), (u, v); A) belongs to L*(R?) in (u, v) for every (&, &) and A,

a9 |77 1P &), ) Apdudo

oo o In 3
§S_w S_w 178, B 4s1;: es 4si

?: 7 dsdt< oo,

and Lim. .. Fy((&, &), (u, v); A)=F((¢, &), (u, v)) exists for every (¢, &).
Moreover, we have

{r S: \Fy((&y &), (u, v); A)—Fi((&) &), (u, v)[*du dv}l/z

I T i ot s g

t

+ {[Sj_ez—l_ S::'“] S:o |f(s, )2 4 Sisn: es 4 Si;2 Nt dsdt}m ,

which tends to 0 for every (&, &) (actually uniformly on any bounded
region of (&, &)) a8 A— . Therefore, since K(¢&, &) € L'N L*(R*) by (1.4),
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and Sw Sm lFl((§19 Ez), (uy ‘U); A)[Zdud?} is bounded in (61, 52) and A, because
of (1.9), it follows from Lemma 2 that

_1_ S” Sw K&, &) Li.m. F\((&, &), (u, v); A)deds,

277: -0 J -0 A—00

=1.i.m. —1— Sojm So_:o K(En Sz)Fl((Eu &2)’ (u’ ’U); A)d$1d52 *

400 27T
Consequently, combining this with (1.8), we get
1.10)  K(u, v)4. 8, v; f)
2 (oo oo A4 A
=Lim. ()" {7 ke ol |° fs—s t-2

4-0  \ 27 0 J—co
< 2 sin 6(3 _51) 2 sin 77(t_"52) 3—i(us+vt)d8dtd$1d52 .
s—§& t—&

Next, by (1.5),

2 R e 1+¢&8 14& = | f(&, &)
&+ ey myseonst. |~ |7 i o P EE o T+ e +ap e

Now, let us notice that for all real ¢,

(1.11) 1+&  _Vait+d +laf ={1/x2+4 + ] }2’
1+ @—2F —Vo+d —[a| 5

which is due to Wiener [9]. Therefore, by Theorem 1 of Matsuoka [6],
(K * f)(x,, x,)]<(const. |x,|+const.)(const. |x,| +const.) ,
and so, applying Proposition 8 and the Fubini theorem, we have

12) s v Kef)=Llim. (=) |7 " ke e " {° fs—sn 120

A—o0 27[

2sines 2 Si;l 7t e~ twetvidsdtde,dg, .
s

Thus, by (1.10) and (1.12), (1.7) is proved.
Proor or THEOREM 1. First, by letting

F((,, %), (u, v); A)

N

T om
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x[ sines sin ¢t _ sine(s—x,) sin P(t—uwx,) ]e—i(ua+vt)dsdt
s t : s—u, t—ux,
and
Fy((x,, @), (u, v))=1-j;gl- Fy(xy x5), (u, v); A) in (w,v),

we shall show that

(1.13) Sl r |F(,, 22), (w, v); A)—F(,, 22), (w, v))'dudv — 0

-—00

uniformly on any bounded region of (x,, ,) as A— . In order to do
this we observe ’

sines sinn)t  sine(s—x,) sin n(t—zx,)
8 t s—a, t—ux,
=|: sines _ sin e(s—x,) :": sinpt _ sin p(t—ux,)
s s—ux, t t—x,
+[ sin es _ sin &(s—ux,) | sin 9(t—x,)
8 s—x, J t—ux,

sin e(s—wx,) [ sin 9t _ sin p(t—ux,)

s—x, L ¢ t—u,
=D\(s, t)+Dy(s, t)+Dys, t), say .

_|_

Now, it follows from (3.12) of Matsuoka [6] that

Sl I:S: + S::I|4f (8—ux,, t—ax,)D,(s, t)|*dsdt

SR
el 1]

< S - B“ + S'“""] (25652x§)(256772x§)—'f(:;t-—f)"—dsdt

A—|zgl —oo

S(s—w, t—ax,) 16¢jc,|  167l2] |5, 54

sl [t1+ [z

Flo—m, t—a)-L081% 45 |2dsdt
Is] + |2,

+ S e B ) + S_A+ . ](25662wf) (167]2)%sdt

A—|=z| —o0

and hence
B:Jr S::] S:, [4/(s —,, t—x,)Di(s, T)[*dsdt

g[r—lzzl + S_Hl“':l S 81> Iz (25662x§)(256772w§)—l%d8dt

—00
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A—|zol —o0

o —A+| =gl 2 2 .9 ‘f(s’ t)lz
+D +S ]Smgw (16¢7)(2567°29)-S 2 dsd .
Similarly,

S:o [S:+ S::I [4f(s—ux,, t—a;)Dy(s, t)|*dsdt

st 4 SiI:2 nt |:S°° +S_A+Imll:| 2568212 If(i,z DI dsdt ,

R = t A—{zyl —o

B: + S—A] S:o [4f(s—,, t—2,)Dys, t)]*dsdt

-—00

S P I o A N B LR e
A—lzgl t 131> 1oy s?

—00

+[§°° +§_“'”' Asin® gt S 16¢| f(s, t)l*dsdt ,
A—| =zl lel=l=]

—eo &

and this argument is applied also to Dy(s, t). Consequently, combining
these with the one-sided Wiener formula of Koizumi [2],
a || 1 —Lim " | afts—a, t—a)
. . d.m. s—x, t—
o J-ol (ex)(p@)) 21 B J-m)-s :

v I: sines sinnt _ sine(s—=) SinPE—s) | —sweton dsdt
s t s—ux, t—x,

1 1 A A
 (em)(ym) 2x S—A S—A o= t—a)

XI: sines sin 9t _ sine(s—wx,) sin p(t—a,) :Ie“““*””dsdtrdudv
S t S —'.’171 t —w2

tends to 0 uniformly for all ¢ and » and any bounded region of (x,, x,)
as A — o, which implies (1.13). And also, by applying the same
argument as the proof of Lemma 5 of Matsuoka [6], it follows that

SW Sw | F((2, 25), (u, v); A)*dudv is bounded in (x, x,) and A. Moreover,

-0

other conditions of Lemma 2 are satisfied and, therefore, by Lemma 4,
we obtain

(1.15) 4. .8, v; Kx* —K(u, )4, ,8(u, v; f)
ST ke et [ et -

2n/ J-w -

><|: sines sinnt _ sine(s—§&,) sinP(t—&,) et dsdide de, .
8 t 8s—§& t—¢& o
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1
(e2,)(725)

longs to L*(R? in (u, v), and by (1.14), so does l.j.m. Wﬂ((% ), (u,

v); A). It also is easy to show that on any boundeél rezgion of (x, x,),
©o ©o 1

S —= S —1 (e)(Nx,)

and (z,, ,) (refer to the argument that was used in order to show (1.13)),

and by (1.14), so is S: EJE—)%W_)- l.j;rg. Fy((zx,, x.), (u, v); A)Izdud'v.
Therefore, since

Next, it is immediately clear that F((x, ), (u, v); A) be-

Fy((x,, x;), (u, v); A)Izdudv is uniformly bounded in ¢, %

I 1 . 1 SA SA _ .
.,@2 l.sl,;m. W 1.:;21- —2—7; 4 ). 4f(8 Xy t xz)
< [ sines sinyt  sine(s—z) sin p(t—uax,)

e—t(uc+ut)dsdt — 0
8 t s—ux, t—a,

for every (x, «,), an application of Lemma 2, in which 1/¢ is taken in
place of A, and £¢£,K(g, &) in place of K(g, &), gives us
A

Pl L (LY [ ke g [ o e

81/2771/2 o _
X[ sines sinyt _ sine(s—g&) sinp(t—e&,) st dedtde, de, =0 .
8 t s—§& t—¢&

Thus, the theorem now follows immediately from (1.15).
The combination of Theorem 1 above and Theorem 8 of Matsuoka [6]
gives us

COROLLARY 5. Suppose f € W(R*) and Ke 9% (R?). Then

l' 1 T S K 2
eeelim " 7 (e f)6, yrdsdi=0

f and only if

. 1 A® B . 2 —
e lim e | 1RO ), 03 fdudo=0.

In the following, we shall determine the spectral relation between f
and Kx*f. It is to be noted that whenever fe W(R*) and K satisfies
(1.4), K*f is also defined (see Proposition 8).

THEOREM 6. If feS(R*) and Ke 22 (R, then
(a) K+*feS(R) and
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18) gt s Kxn)=(3=) |7 17 17 |7 K 0B m

X¢(w1+771"‘§1’ Lo+ —&s f)dfldfzdvldvz ’
(b) K= feS'(RY.
PrOOF. (a): We see
¢(x,, 5 K f)
. BT —L 2 (oo oo o oo
=zz-lim (=) 7 7 7 {7 ke, &K@

8,T—c0 27‘[ —o0 J—0 J—o0

1 T S
*AST S_T S_Sf (@, +8—&,, X +t—E)f(s—,, t—1,)dsdtde,de,dn.dy, .

Now, by applying the Schwarz inequality and the same argument as in the
proof of Lemma 1 of Matsuoka [6], we have for all large values of S, T,

\"Zfé'f S: Ss f(@+s—&, mt+t—E)f(s—7,, t—m)dsdtl

-8

é{ 1 ST+!¢2—€2I SS+I«;1—€1I I !f(s, t)lzdsdt}lﬂ

4ST —T—log—&gl J—8—lz;—§;

1 T+ingl  (S+Inl ) "
8 { 4ST S—T—I’?gl S—S—Ivll | f(s, D) dsdt}

= D e

" \fts, t)rdsdt

1
x o<§71,1r;)<oo 44UV S—-V S
=const. (1+[&))A+|&DA+[7:)A +[7.]) .
Thus, since K(w,, x,)(1+|x,|) A+ |x.]) € L*(R*), by Lemma 2 of Matsuoka [6],

. 1 T (S
G- lim —=rr S_T S_Sf(w1+s—$1, o+t —E)f(s =7, t—7),)dsdl

=¢(w1+7]1_$1’ Lo+ —&:s f) ’

and (1.16) immediately follows from the dominated convergence theorem.
(b): Let us put

G, x2>=% | K@.+s, eads (0<e<1).

Then, it follows that
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[~ -]

r r |2,2,G(2,, %,)|dz,dx,< sup§
—00 0<8s<¢

B ad

|"_ Gt sl+ Ol 1K a5, 22)ldmd

-0

ssw S: (1 + [ao, YL+ [ac,] )| K (e, 05) |t di, < o0

and the Schwarz inequality applied to G(z,, x,) gives us
[ 1+ md@+ oG, m)idsds,

ssup|” " A+impa+imiKe, +5, idods,

0<8<E J 00

sa+er|" |7 a+ara+iediKe, srdede, <o |

that is Ge 977 (R?. Therefore, by Theorem 1,

(1.17) Z,-lim 1 Sw r |4,,,8(u, v; G f Y—Glu, v)4,,,8(u, v; )Pdudv
o1 167%en J-o J-o

=0,

and since

GA(u’ 'v)= e“je—l K('M/, ’U) ’
mué

(1.17) becomes

(1.18) %,—Hm;r r 4.,3(u, v; G+ f)

&,7—0 lﬁﬂzev —

e _1 - 2
— K(u, v)4,,,3(u, v; f)l dudv=0 .

Tus

Also, by Theorem 1,

. 1 ° (| e—1
dim — L (" | sl 33 K
Frlim Tower S_m _”l e S, v; K*f)

eiue__l A 2
— K(u, v)4., ,8(u, v; f)I dudv=0.

U

Hence, combining this with (1.18), we have, by means of the Minkowski
inequality,

© =) tué __
(1.19) .991% _@%&7 S_w Ll e — 1 4.3, v; K*f)

— 4, ,8(u, v; G* f) 2dudv:O .
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On the other hand, applying the same argument that was used in
the proof of Proposition 3 and using the Schwarz inequality, we have

1

o | =6+ 11s, titdsde

1 v 2
gconst O<§u§<wm S S v lf(&v 52)] d51d52

<" |7 1K@, )G, 2P0+ a1 +at)da.dn,

-—C0  J

<const. sup S“’ S” \K(z,, 2,)— K(x,+3, 2,)|(1+2)(1 +ad)dw,da,

0<8<é J—

<const. sup {S:o S: | K (2, 0,)(1 4 |20, YA + |2c,])

0<8<¢

— K(w,+38, @)1+ |2, +8)(L +|c,))*dw,der,
+§°° §°_° | K(z,+s, xz>(|w1+s|—|x1|)(1+|x2|)|2dx1dx2},

- 00

Since sup of the first term in {} of the last expression obviously
vanishes as £—0, and that of the second term in { } is dominated by

s’ Sm Sw | K(,, ,)*(1 + |z,|)*dz,dx,, and likewise vanishes, we have

T
— 2 =0 .
lim 2 SI?ELFS §S|[(K @) * F1(s, £)Pdsdt=0

Because of Theorem 3 of Matsuoka [6], we therefore have

(1.20) 11m Fy-lim
e,—0 1672 &7

=0.

Sw S |4.,,8(u, v; K* f)—4,,8(u, v; Gxf)*dudv

Now, if we combine (1.20) with (1.19) and make use of the Minkowski
inequality, we obtain

—1 |2

1™ ’ |4, ,8(u, v; K* f)*dudv=0 .

1 [ oo
1i 1 S S
1m ‘%)Ze lnr—r-% 167°en oo

Since, when |ug|>4,

it follows at once that
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. . 1 oo oo —4/€
lim .2,-lim sup ——— S [S + S :lld,,,,s(u, v; K* f)fdudv=0 .
£—0 —00 4/¢ —c0

e 647
Similarly,
. . 1 © —4/& oo
lim &2,-lim sup ——— B + S ] S |4, ,s(u, v; K=*f)|*dudv=0 .
€0 a1 64nen Llwve J-wo 1J-w

Thus, by Theorem 7 of Matsuoka [6] and (a), we have Kx*f e S'(R?. This
completes the proof of Theorem 2.
§2. Some Tauberian theorems.

In this section, we shall extend a Tauberian theorem which is due
to Wiener [9, Theorem 29] to the case of functions of two variables.

THEOREM 7. Suppose fe W(R), K,e % (R), K(w,v)#0 for all
(u, v) € R?, and

. 1 T (s 2 _
@.1) S lim = S_T S_S (K, * f)(s, t)|tdsdt=0 .
Then the limat relation
2.2 im —+_{" {* «x *dsdt =0
(2.2) geclim =" " (& (e, tyrdsdt=

holds for every K,e .57 (RY.
THEOREM 8. Suppose f € W(RY, and for all K, € 5%,

. 1 T S 2 _
(2.3) e lim ——— S_T S_s (K, * £)(s, t)dsdt=0 .
Then the limit relation
2.4 im L " * g £)dsdt=0
(2.4) %l-s,gglw—ms_rs_s |(K,* f)(s, t)|*dsdt=

holds for every K, e . 2% (R?.
Before proving the theorems, we show the following two lemmas.

LEMMA 9. Suppose f € W(R?), Ke ¥ (RY, R(u, v)#0 for all (u, v)e
R%, and

im —L_{" & tdedt=0
e lim |" | 1k rxs, trasat=0.
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Then, for any bounded rectangle © with sides parallel to the axes,

. 1
2.5 -1
( ) %2 '»1713’10 1677.'267]

SSPIA,,,,s(u, v; [P dudv=0.

PROOF. Since I?(u, ) Ais continuous and never 0, there exists some
constant C>0 such that [K(u, v)|>C on any bounded region of (u, v), by
the hypothesis. Thus, by Corollary 5,

: c e
%rlnsr,ln sup 6wy SSP |4,,,8(u, v; £)|*dudv
BT 1 = s . 2 —
=y }1,71'2) Torer S-w S”m |K(u, v)4, .8, v; f)*dudv=0,

which implies (2.5).
LEMMA 10. Suppose fe W(RY), and all Ke e

lim -1 (" {° *dsdt=0
geelim ——\" " (& 1), yrdsat=o0 .

Then, for any bounded rectangle © with sides parallel to the axes,

(2.6) P-lim 1

. 2 _
lim e ), 140000 03 Pbdudo=0

PROOF. There exists a decomposition of 0 such that

(i) p is the union of rectangles, 0= Ui~; p;, whose sides are parallel
to the axes;

(ii) Yo., *Ke.%;: K+0 on p,.
Thus, by Lemma 9, for any rectangle Oqs

-lin
s e 16z%ey

“,,"Aws(u: v; f)IFdudv=0,

which gives us (2.6).
PROOF OF THEOREM 7. By Lemma 9 and Theorem 1, we have respec-
tively

'. 1 ¢ f° 5 . 2 —
el Ty Vo ) o R W) s 0 P ddn=0
and

. 1 ¢ (o N )
Foelim e {1 Vs, 03 Ko )= R, 014,500, 07 NPdudo=0,
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for any C>0. It follows, therefore, that

1 fe e . s
@2.7) Fclim e S_o S_o \4,..8(u, v; Ky» f)Pdudv=0 .

While, from the proof of part (b) of Theorem 6,

oo

lim <2,-lim sup [S:Jr S:Z]]A.,qs(u, v; Ky» f)lPdudv=0

O er—0 - 167%en S—w

and

lim 2, lim sup — L — [ {"+ {107 1sstan v Ko podudv=0 .
167%en Lo J-wd)-w

C—o0 &,7—0

Consequently, combining these with (2.7), we easily obtain

F,-lim 1

——— = = , ; 2 2 =0 .
e 167%7) S S_m |4..18(u, v; Ky* f)l'dudv

Thus, by Theorem 8 of Matsuoka [6], (2.2) is proved. This concludes the
proof of Theorem 7.
By using Lemma 10 and Theorem 7, we can also prove Theorem 8.

REMARK 1. In order to study the spectral analysis and the Tauberian
theorems about the convolution of functions of two variables, we use, in
this paper, the generalized harmonic analysis of functions of two variables
which was established by Matsuoka [6]. Their limit processes, therefore,
also depend on the limit process involved in the above generalized har-
monic analysis. On the other hand, the generalized harmonic analysis
of functions of two variables is also obtained under the unrestricted
rectangular mean concerning the double limit process. Thus, if we use
this generalized harmonic analysis, then the spectral analysis and the
Tauberian theorems about the convolution of functions of two variables
are also obtained under the above limit process instead of the restricted
limit process.

REMARK 2. In the course of preparation of this paper, the author
found the papers of Lau [3, 4], in which the extended theorems of Wiener
[9] are shown in some more simplified method.
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